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Abstract. Event detection (ED) is an important and challenging information extrac-
tion task, which aims to identify triggers from unstructured text and classify them into
an event type. Most of the current supervised ED methods rely heavily on high-quality
annotation data and are difficult to use with new types. In order to solve the event detec-
tion task of new types in low-resource scenarios, we proposed SynED, a low-resource ED
system based on syntactic embedding. We first obtain syntactic information through nat-
ural language processing (NLP) tools and combine them into syntactic embeddings which
are then sent to a syntactic-gated Transformer model to extract event triggers. To create
the appropriate event type ontology, we combine the syntactic and textual embeddings of
event triggers. Through the correlation of event types, we realize the knowledge transfer
from the seen event type ontology to the new event type ontology. Experimental results
on the ACE 2005 and MAVEN datasets show that the SynED model based on syntactic
embedding achieves state-of-the-art performance for new event types without annotation.
Compared with the previous low-resource ED methods, our proposed SynED model has
more overt benefits in the case of fewer training data and has a greater capacity for
application expansion. We also explored the role of syntactic and textual embeddings in
low-resource ED, demonstrating the significance of introducing syntactic information.
Keywords: Event detection, Syntactics, Low-resource, Natural language processing,
Knowledge transfer

1. Introduction. Event detection (ED) is a task of automatically extracting event struc-
tural information (specifically, event triggers and types) from unstructured text [1]. For
example, in the event mention “The battle was fought at the Silesian town”, an ED model
is expected to extract the trigger “Fought” and classify it as “Conflict”. The structural
event information can promote various applications, such as biological sciences [2, 3],
financial analysis [4, 5], and fake news detection [6, 7].

Traditional ED studies [1, 8-20] mainly focus on supervised learning methods and de-
pend heavily on manual annotation, making it challenging to adapt to new event types
without extra annotation effort [21]. Real-world applications expect that ED methods
can be flexibly adapted to new event types in low-resource scenarios [22].
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Recently, several efforts have explored low-resource ED approaches for new event types.
Huang et al. [21, 30] proposed to learn event ontology representations for each seen event
type and new event type from event mentions, which can be trained using a limited amount
of seen type data and expanded to new event types. Deng et al. [22] further considered the
inter-structures of event types and expanded the event ontology by modeling the internal
correlation between seen event types and new event types.
Although substantial advancements have been achieved, the existing low-resource ED

methods are still struggling in event types with scant or no training data, which severely
restricts their practical application. We analyze that this is because the generic charac-
teristics of different event domains are not actually captured, and the acquisition of the
cross-domain detection ability of the existing methods still relies on the modeling of the
data distribution in the new domain. Instead, we believe that designing generic features
across domains is more beneficial to enhancing the capacity to accommodate new event
types, which has received scant attention in prior research. We are committed to building
a generic feature and low-resource ED model that can expand effectively to new event
types even in the absence of pertinent training data.
As a generic language feature, syntactic information has been shown to play an impor-

tant role in ED [11, 34]. Table 1 displays the parsing results of some event mentions as
obtained by the SpaCy library, a well-known NLP tool1. We can see that event infor-
mation presents obvious regularity in the results of syntactic analysis, which is helpful
for event detection. Event triggers, for instance, are frequently employed as the primary
word in dependency analysis, and typically appear in generic verbs or nouns in part of
speech (POS) analysis. For new event types without annotation, textual information can-
not effectively discriminate but rather confuses the model, while syntactic information is
almost universal for different event types and the syntactic knowledge learned from exist-
ing event types can be effectively migrated to new event types. Therefore, we propose to
introduce syntactic embedding to improve the detection ability of new event types under
low-resource conditions.

Table 1. Examples of parsing result of some event mentions, where bold-
faced words represent the event triggers

Event mention Event types

Conflict

Attack

Arrest

Attack
killing

In this paper, we construct a syntactic embedding and propose SynED, a novel low-
resource ED approach with syntactic embedding. We first build the syntactic embedding
with some syntactic information obtained by the SpaCy library. The syntactic embedding
is then encoded to predict event triggers using a syntactic-gated Transformer model.
We combine the syntactic and textual embeddings of event triggers to construct the

1https://spacy.io
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corresponding event type ontology and enrich the ontology of new event types through
the correlation between event types. Finally, we achieve the best trigger classification
result based on the similarity between the trigger embedding and the ontology of each
event type.

Our contributions can be summarized as follows.

• We propose a novel SynED model based on syntactic embedding for low-resource
ED of new event types.

• We provide an experimental study on ACE 2005 and MAVEN [35] datasets to demon-
strate that our proposed SynED model achieves better performance for new event
types in low-resource settings.

• We conduct careful analyses to demonstrate the different roles of syntactic and tex-
tual embeddings for low-resource ED.

An overview of this paper is organized as follows. In Section 2, we review the recent
related work on event detection and syntactic features. In Section 3, we introduce our
proposed low-resource ED method with syntactic embedding called SynED in detail. Sec-
tion 4 shows the details of the experimental setting and results. In Section 5, we conduct
empirical analysis to verify the effectiveness of the method and further discuss the mech-
anism of the method. Finally, we summarize the conclusion and future work in Section 6.

2. Related Work.

2.1. Event detection methods. Most of the previous studies on event detection are
fully supervised methods, which can be divided into feature-based methods and neural
network-based methods. Feature-based ED methods employ manual-designed features,
such as syntactic feature [8], sentiment polarity feature [36], document-level feature [9],
entity-level feature [10] and global feature [11]. Neural network-based methods adopt the
deep neural architectures which depend on large-scale annotation data, such as convolu-
tion neural network (CNN) [1], recurrent neural network (RNN) [12, 15], graph convolu-
tion neural network (GCN) [14, 16-18] and hierarchical attention network (HAN) [19].

Other researchers also explored low-resource ED methods. Deng et al. [24], Lai et al. [25],
Shen et al. [26] reconstructed the low-resource ED as a few-shot learning task that can be
resolved with meta-learning. Wang et al. [23] applied an adversarial training mechanism
to iteratively identifying informative instances from a large event-related candidate set.
Tong et al. [27] improved the low-resource ED via open-domain trigger knowledge. Liu
et al. [28], Du and Cardie [29] enhanced the compatibility of ED models for low-resource
event types by casting ED as a machine reading comprehension (MRC) task. Meanwhile,
other recent studies [21, 22, 30-33] tended to address the low-resource ED by modeling
event ontology with event mentions or event type structure.

In this paper, we propose combining the feature-based approaches and event type on-
tology approaches, and utilizing the generalization of syntactic features to enhance the
ontology representation of new event types. Comparatively to the prior low-resource ED
approaches, our proposed SynED method can better handle new event types with little
training data by introducing the cross-domain syntactic features.

2.2. Syntactic features. As an essential linguistic element, syntactic features are wide-
ly employed in studies to provide more comprehensive semantic information, including
speech recognition [37], prosodic event detection [38], text classification [39], named en-
tity recognition [40], author recognition [41], emotion recognition [42], etc. The previous
syntactic features are typically created manually for particular applications, making their
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expansion challenging. In this paper, we utilize the transformer network’s potent mod-
eling capabilities to automatically learn syntactic embedding from syntactic tags, which
has better task adaptability and expansion ability.

3. Methodology. In this paper, we propose a low-resource ED model called SynED
with three modules: 1) Syntactic Embedding Construction, 2) Event Trigger Detection,
and 3) Event Trigger Classification. The detailed architecture of SynED with running
examples is illustrated in Figure 1.

Figure 1. Overview of our proposed SynED

3.1. Syntactic Embedding Construction. We obtain syntactic information through
the SpaCy library and construct corresponding embeddings as follows.

• Positional embedding Eposition: We use the same positional embedding in the pre-
trained BERT-base model [43]. Positional embedding helps to model the temporal
connection of tokens.

• POS tagging embedding EPosTag : We construct a learnable embedding for each POS
tag, e.g., Determiner (DT ), and Noun (NN ). The POS tag identifies the attribute
and purpose of the token.

• Syntactic dependency tagging embedding EDepTag : We construct a learnable embed-
ding for each dependency tag between tokens and their head, e.g., nominal subject
(nsubj ), and prepositional object (pobj ). The dependency tag determines the role of
the token in the sentence.

• Syntactic dependency head embedding EDepId: We construct a learnable embedding
for the head id of each token, e.g., the head of “battle (id: 2)” is “fought (id: 4)”.
The head id indicates the level of the token in the syntactic dependency tree.
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For a given token, we construct its syntactic embedding Esyntax by summing the corre-
sponding positional, POS tagging, syntactic dependency tagging, and head embeddings:

Esyntax = Eposition + EPosTag + EDepTag + EDepId (1)

The above embedding dictionaries are initialized to a normal distribution and updated
during event detection training.

3.2. Event Trigger Detection. Given the syntactic embedding Esyntax of an event men-
tion, we adopt a syntactic-gated Transformer model to get a syntactic-aware representa-
tion H . Compared with the original Transformer, the syntactic-gated Transformer model
adopts a gated matrix G in the self-attention layer:

H = SoftMax

(

(

Q ·KT
)

×G√
dk

)

× V (2)

where Q = WQH , K = WKH , V = W VH , and WQ, WK , W V are all learnable param-
eters, and H denotes the hidden state of Transformer with initial state H(0) = Esyntax.
The gated matrix G denotes the connection matrix of the syntactic dependency tree. ×
and · denote matrix multiplication and element-wise multiplication, respectively.

Then, the syntactic-aware representation H obtained by the syntactic-gated Trans-
former is fed to a multi-layer perceptron (MLP) to get the trigger prediction Trigger :

Trigger = SoftMax (MLP(H)) (3)

We adopt cross entropy as the loss function for trigger detection (TD):

LTD = −
N
∑

i=0

y
trigger
i log(Trigger i) (4)

where ytrigger denotes the ground-truth label for trigger prediction and N is the length of
input sequence.

3.3. Event Trigger Classification. We concatenate syntactic and textual representa-
tions and fuse them through trigger prediction Trigger to obtain trigger representation:

ETrigger = Trigger · [Esyntax;Etext] (5)

where the textual representation Etext is obtained from the word embeddings of the pre-
trained BERT-base [43].

We then initialize the event type prototype Pk for type k with its average instance
embedding and event type description embedding.

P
(0)
k =

1

1 + |Ek|

(

∑

e∈Ek

e + E
(k)
type

)

(6)

where Ek and E
(k)
type denote the trigger embeddings of all event mentions and the description

embedding for event type k, respectively.
Modeling the internal correlation between different domains has proved to be helpful

for knowledge transfer from the source domain to the target domain [22, 44]. Therefore,
we update the event type prototype using the correlation of event types, which we refer
to as the Correlation Inference mechanism. Here, we use a relational transition matrix
Rr ∈ R

d×d to model the correlation of event types, which has been proven great robustness
in low-resource settings [45].

P ∗
k = Pk + λ

∑

(k,r,j)∈O

PjRr (7)
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where a triple (k, r, j) ∈ O denotes there is a correlation r between event types k and j,
and O is a set of all triples, and λ is a hyperparameter.
We compute the likelihood of the corresponding event type for event trigger embedding

ETrigger , denoted by

P (type = k) =
exp (−‖Etrigger − P ∗

k ‖)
∑Nt

j=0 exp
(

−
∥

∥Etrigger − P ∗
j

∥

∥

) (8)

where ‖ · ‖ denotes Euclidean distance, and Nt denotes the number of event types.
We adopt cross entropy as the loss function for Event Trigger Classification (TC):

LTC = −
Nt
∑

i=0

yk log(P (type = k)) (9)

Besides, we compute the loss function for event type correlation by minimizing the
correlation transfer distance and maximizing the inter-class distance:

LTR = − 1

|O|
∑

(k,r,j)∈O

log
PjRrPk

|PjRr| · |Pk|
+

2

Nt(Nt − 1)

∑

k 6=j

log
PjPk

|Pj| · |Pk|
(10)

where | · | denotes Euclidean norm.
The final loss function for Event Trigger Classification is calculated by

L̂TC = LTC + α · LTR (11)

where α is a hyperparameter.

4. Experiment.

4.1. Data. Our experiments are set up on the widely studied ACE 2005 dataset and the
newly released large-scale MAVEN [35] dataset. The ACE 2005 dataset contains 33 event
types and 5,349 instances, while the MAVEN [35] dataset contains 168 event types and
118,732 instances. To evaluate the performance of our proposed SynED method for new
event types, we split the dataset into a training set, validation set and test set with ratios
of 0.8, 0.1, and 0.1 respectively, and select 20% of the event types as new event types,
ensuring that the training set does not contain data of new event types.

4.2. Implementation details. In SynED, the hidden layer size of the embedding layer
and Transformer is set to d = 768, and the maximum sequence length is set to l = 128.
During the training phase, the Adam optimizer is applied, where the learning rate is set
to 2 × 10−5 and the batch size is set to 64. The hyperparameters of λ and α are set to
0.1 and 0.5, respectively.
All experiments are arranged on 4× NVIDIA Tesla P100 GPUs. For each model, we

trained a total of 30 epochs, which took about 206 minutes. In the test phase, we select
the model that performs best in the verification set, and then obtain the evaluation results
on the test set. We conducted five repeated trials with different random seeds to calculate
the mean and confidence interval of all results.
We evaluate the performance of ED using Prediction (P), Recall (R), and F1 score (F).

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(12)

where true positive (TP ) denotes the number of positive samples predicted correctly, false
positive (FP ) denotes the number of negative samples which are predicted as positive,
and false negative (FN) denotes the number of positive samples which are predicted as
negative.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.19, NO.1, 2023 53

4.3. Baselines. We compare our method with many low-resource ED models:

• Dynamic-memory-based prototypical network (DMBPN) [24]: a low-resour-
ce ED model based on prototype which reformulates ED as a few-shot learning task
and exploits dynamic memory network (DMN) to learn better prototypes for new
event types with a little annotation;

• Enrichment knowledge distillation (EKD) [27]: a knowledge-enhanced model
which leverages external open-domain trigger knowledge to improve the event detec-
tion for new event types without annotation;

• Zero-shot event extraction (ZSEE) [21]: a zero-shot model which learns the
event prototype for new event types through the structure of event type without
annotation.

• Semi-supervised vector quantized variational autoencoder (SS-VQ-VAE)
[30]: a semi-supervised ED framework which automatically learns discrete latent
type representations for each type;

• OntoED [22]: a low-resource ED model with ontology embedding which enriches
the event ontology for new event types with connections between event types.

We have created a number of variants of our proposed SynED model, as shown below,
to make it easier to investigate how various modules and features introduced in Section 3
affect the model. The corresponding experimental results are discussed in Section 5.2 and
Section 5.3.

• SynED w/o SynGated: the SynED model without the syntactic-gated mechanism
in the Event Trigger Detection module.

• SynED w/o Ontology Initialization: the SynED model without the initialization
of event ontology in the Event Trigger Classification module.

• SynED w/o Correlation Inference: the SynED model without the Correlation
Inference mechanism in the Event Trigger Classification module.

• SynED w/o Ontology Learning: the SynED model which treats low-resource
ED as a sequence classification task instead of learning event ontology.

• SynED w/o PosTag: the SynED model without the POS tagging embedding in
the Syntactic Embedding Construction module.

• SynED w/o DepTag: the SynED model without the syntactic dependency tagging
embedding in the Syntactic Embedding Construction module.

• SynED w/o DepId: the SynED model without the syntactic dependency head
embedding in the Syntactic Embedding Construction module.

• SynEDtext: the SynED model which uses textual embedding as the input of the
Event Trigger Detection module instead.

• SynEDrandom: the SynED model which uses the unordered textual embedding as
the input of the Event Trigger Detection module instead.

4.4. Experimental results. Table 2 reports the ED evaluation results of the new event
types on the ACE 2005 dataset and the MAVEN [35] dataset. We can see that our pro-
posed SynED method achieves better performance compared to baselines, demonstrating
its efficacy in handling new event types without annotation data. Our proposed SynED
significantly exceeds baseline models on the MAVEN [35] dataset, but shows a weak
advantage with large volatility on ACE 2005 dataset. We analyzed that the ACE 2005
dataset, compared with the large-scale MAVEN [35] dataset, has a smaller scale and more
incomplete event types, which leads to the invalidity of the knowledge migration method
based on event type correlation to the ACE 2005 dataset. Therefore, our following analysis
experiments are based on the large-scale MAVEN [35] dataset.
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Table 2. The ED evaluation results of the new event types on the ACE
2005 dataset and the MAVEN [35] dataset. P (%), R (%) and F (%) stand
for precision, recall, and F1-score, respectively.

Model
ACE 2005 MAVEN

P R F P R F

DMBPN [24] 12.62±1.69 17.62±1.86 13.51±0.61 24.58±0.55 19.82±0.44 22.10±0.14

EKD [27] 30.38±1.09 30.78±0.99 30.58±0.34 36.28±0.63 41.31±0.43 38.77±0.21

ZSEE [21] 46.72±2.13 34.16±1.06 36.86±1.14 44.28±0.60 40.12±0.53 42.08±0.04

SS-VQ-VAE [30] 43.26±2.36 47.54±2.03 39.78±2.17 44.18±0.30 40.52±0.26 42.22±0.15

OntoED [22] 50.22±5.40 36.56±2.18 41.68±2.04 42.36±0.33 46.08±0.52 44.16±0.99

SynED 40.56±2.23 47.81±0.67 43.05±0.54 69.73±0.20 65.78±0.84 68.06±0.44

5. Discussion. We have created more analysis experiments and covered them in-depth in
this section in order to get a thorough assessment of our SynED method and comprehend
how syntactic embedding works.

5.1. Impact of the number of training data. We evaluate the performance of several
low-resource ED methods for new event types with different ratios of training data, as
shown in Figure 2. Experimental results demonstrate the superiority of our proposed
SynED method in low-resource settings compared to previous ED methods. We can see
that the SynED model achieves competitive performance with fully supervised settings,
using only a very small amount of training data (1%). In contrast, other baselines require
at least 30% of the training data, which demonstrates the benefits of the SynED method
using syntactic embedding in overcoming data reliance compared with prior studies.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of training data for ED

10

20

30

40

50

60

70

Ev
en
t D

et
ec
tio

n 
F1
 (%

)

SynED
OntoED
SS-VQ-VAE
ZSEE
EKD
DMBPN

Figure 2. Results on different ratios of ED training data for new event types

5.2. Ablation study: Impact of each module. To assess the effect of each module, we
remove some mechanisms (e.g., the syntactic-gated mechanism in the Event Trigger De-
tection module, the initialization of event ontology, the Correlation Inference mechanism,
and the event ontology learning in the Event Trigger Classification module) applied in
SynED method and evaluate F1 score for new event types in zero-shot and fully supervised
settings as shown in Table 3. We observe that the removal of either of those mechanisms
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Table 3. F1 (%) score of ablation study of each module

Model Zero-shot Fully supervised
SynED 68.06±0.44 69.42±0.13
w/o SynGated 67.52±0.19 67.98±0.11
w/o Ontology Initialization 38.74±0.41 69.15±0.23
w/o Correlation Inference 29.09±0.54 69.41±0.16
w/o Ontology Learning 0.00±0.00 69.92±0.59

Table 4. F1 (%) score of ablation study of syntactic embedding

Model Zero-shot Fully supervised
SynED 68.06±0.44 69.42±0.13
w/o PosTag 65.52±0.27 66.72±0.29
w/o DepTag 65.78±0.45 67.86±0.13
w/o DepId 67.38±0.19 68.28±0.22

SynEDtext 44.94±0.11 72.48±0.31
SynEDrandom 37.96±1.24 66.42±0.61

causes a significant performance reduction (e.g., 0.54% ↓ v.s. 29.32% ↓ v.s. 38.97% ↓
and 68.06% ↓) in zero-shot settings, especially SynED w/o Ontology Learning. We guess
the phenomenon is due to the overfitting of the sequence classification model to seen
event types. In the fully supervised settings, the removal of syntactic-gated mechanism,
ontology initialization or correlation inference results in variable degrees of performance
degradation (e.g., 1.44% ↓ v.s. 0.27% ↓ and 0.01% ↓), but the removal of ontology learning
results in performance improvement (e.g., 0.50% ↑). We analyze that the training data
of new event types in the fully supervised settings is very sufficient, which minimizes the
effects of the initialization and correlation reasoning of event ontology, and improves the
performance of the sequence classification model.

5.3. Ablation study: Impact of syntactic embedding. To assess the impact of syn-
tactic embedding on ED, we evaluate the ED performance using different embeddings as
input, as shown in Table 4. We discover that significant performance reduction occurs
when POS tagging, dependency tagging, or dependency heads are removed (e.g., 2.54% ↓
v.s. 2.28% ↓ and 0.68% ↓). Compared with the SynED with syntactic embedding, the
SynED with textual embedding (SynEDtext) shows low accuracy (e.g., 23.12% ↓) for new
event types in zero-shot settings but better performance (e.g., 3.06% ↑) in the fully su-
pervised settings. Experimental results demonstrate that syntactic information is general
for different event types, which makes it easier to transfer knowledge between event types
with the loss of some type-specific knowledge. We also evaluate the ED performance of
the SynED with unordered textual embedding (SynEDrandom) which can be regarded as
the complete removal of syntactic information. The SynEDtext model outperforms the
SynEDrandom model in both zero-shot and fully supervised settings (e.g., 6.98% ↑ and
6.06% ↑), highlighting the importance of syntactic information for ED.

5.4. Visualization study: How does syntactic embedding work? To figure out the
mechanism of syntactic embedding in new event type detection, we randomly sampled
some samples from four event types and visualized their syntactic and textual embed-
dings as shown in Figure 3 through T-SNE [46]. We observed that syntactic embeddings
distinguish between triggers and non-triggers but mingle between different event types,
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(a) Syntactic embedding (b) Textual embedding

Figure 3. The embedding distribution of syntactic embedding and textual
embedding of four event types (e.g., Attack, Arrest, Sending and Protest)

while textual embeddings present the opposite. Therefore, in the Event Trigger Detection
module, only using syntactic embedding can well distinguish triggers from non-triggers
without additional annotation, while in the Event Trigger Classification module, adding
textual embedding makes different event types distinguished easily.

6. Conclusion. In this paper, we propose a novel syntactic-based low-resource ED model
called SynED. We first propose a Syntactic Embedding Construction module to improve
the detection of new event types through the generalization of syntactic information. For
the Event Trigger Detection module, we propose a syntactic-gated Transformer as the
trigger extractor. For the Event Trigger Classification module, we propose to learn the
ontology of new event types through knowledge transfer based on type correlation. Exper-
imental results on ACE 2005 and MAVEN [35] datasets demonstrate the effectiveness of
our proposed SynED method for low-resource ED of new event types. We also explore the
mechanism of syntactic and textual embeddings in new event type detection and reveal
the important role of introducing syntactic information for low-resource ED.
In this paper, we introduce syntactic information by constructing learnable syntactic

embedding and applying a syntactic-gated Transformer model, which is proved to be
effective for detecting new event types under low resource settings. In future work, we
intend to investigate more effective ways to utilize syntactic information. For example,
we will try to use a graph neural network to learn the graph structure representation of
the syntactic dependency tree.
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