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Abstract. This paper aims to present a new numerical modification for solving frac-
tional initial value problem. The proposed modification, which is named Modified Frac-
tional Euler Method (MFEM), attempts to further improve the Fractional Euler Method
(FEM) in terms of attaining more accuracy. The error bound generated by the proposed
method is analysed and estimated by demonstrating a specific theoretical result. In order
to validate the efficiency of the proposed method, several numerical comparisons are per-
formed using MATLAB routines.
Keywords: Fractional differential equations, Fractional Euler method, Caputo fraction-
al derivative operator

1. Introduction. In the past few years, the applications of fractional differential equa-
tions have been significantly implemented in widely different practical and engineering
fields such as viscosity, signal processing, control and process modeling [1, 2, 3, 4, 5]. It is
noteworthy that the analytical solutions of the nonlinear fractional differential equations
are difficult to be obtained, and for this reason, resorting to approximate and numerical
techniques has become a must [6, 7, 8, 9, 10]. In this regard, various numerical methods
have been recently established and used to address this gap. Most of these methods have
proved their accuracy in obtaining accurate approximate solutions when dealing with a
lot of linear and nonlinear problems.

In [11], the authors proposed a numerical generalization to the classical Euler method
called the Fractional Euler Method (FEM). This method played an active role in handling
fractional initial value problems. The research context presented in this paper tends to
develop upon the Modified Fractional Euler Method (MFEM) instead of the FEM for
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finding approximate numerical solutions for linear and nonlinear fractional differential
equations. The proposed algorithm is characterized by the fact that it can provide more
accuracy and efficiency than that of the FEM. This will be confirmed by performing several
numerical comparisons via several illustrative examples. The error bound generated by
the proposed method will be moreover analysed and estimated by demonstrating a specific
theoretical result.
This paper is organized as follows. In Section 2, we present the basic definitions and

theories that underpin the fundamentals of our research. In Section 3, we establish the
MFEM based on FEM to solve the fractional initial value problem. In Section 4, we
analyse and estimate the error bound generated by the MFEM by introducing some
theoretical result. In Section 5, different numerical examples are presented showing the
accuracy of the proposed method. Finally in Section 6, a quick conclusion of the research
is summarized for completeness.

2. Preliminaries. This work aims to propose a numerical algorithm for introducing an
approximate solution to the fractional initial value problem formulated in the sense of
Caputo fractional differentiator. Such a problem has the form:

Dα
∗
y(t) = f(t, y(t)), (1)

with initial condition:

y(0) = y0, (2)

where 0 < α ≤ 1. For this purpose, we recall next the most important definitions and
concepts that will be useful for use throughout the paper.

Definition 2.1. [12] The Riemann-Liouville integral operator of order α is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, (3)

where x > 0 and 0 < α ≤ 1.

The Riemann-Liouville integrator satisfies the following properties [12]:

• JαJβf(x) = JβJαf(x), α, β > 0.

• JαJβf(x) = Jα+βf(x), α, β > 0.

• Jαxϕ =
Γ(α+ ϕ)

Γ(α + ϕ+ 1)
xϕ+α, ϕ > −1.

Definition 2.2. [12] Suppose m − 1 < α ≤ m such that m ∈ N and f ∈ Cm[0, b]. The
Caputo fractional differentiator is defined by

Dα
∗
f(x) = Jm−αDmf(x) =

1

Γ(m− α)

∫ x

0

(x− t)(m−α−1)f (m)(t)dt. (4)

Lemma 2.1. [12] If f ∈ Cm[0, b], x > 0 and m − 1 < α ≤ m such that m ∈ N, then we
have

Dα
∗
Jαf(x) = f(x), (5)

JαDα
∗
f(x) = f(x)−

m−1
∑

k=1

fk(0+)
xk

k!
. (6)

Definition 2.3. [12] The Mittag-Leffler function of two parameters α and β is outlined
by the following series:
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Eα,β(t) =

∞
∑

k=0

tk

Γ(αk + β)
,

where α, β > 0 and t ∈ C.

Theorem 2.1. [Generalized Taylor’s formula] [11] Suppose that Dkα
∗
f(x) ∈ C(0, b] for

k = 0, 1, 2, . . . , n+1, where 0 < α ≤ 1. Then we can expand the function f about the node
x0 as follows:

f(x) =

n
∑

i=0

(x− x0)
iα

Γ(iα + 1)

(

Diα
∗
f
)

(x0) +
(x− x0)

(n+1)α

Γ((n+ 1)α + 1)

(

D(n+1)α
∗

f
)

(ξ), (7)

with 0 < ξ < x, ∀x ∈ (0, b].

Actually, for more illustration, we can express the above expression of the function f

as follows:

f(x) = f(x0) + (Dα
∗
f)(x0)

(x− x0)
α

Γ(α + 1)
+
(

D2α
∗
f
)

(x0)
(x− x0)

2α

Γ(2α+ 1)
+ · · ·

+
(Dnα

∗
f)(x0)

Γ(nα + 1)
(x− x0)

nα +

(

D
(n+1)α
∗ f

)

(ξ)

Γ((n+ 1)α + 1)
(x− x0)

(n+1)α.

(8)

3. Modified Fractional Euler Method (MFEM). With the aim of handling the
following initial value problem:

dy

dx
= f(x, y), (9)

subject to initial condition:

y(x0) = y0, (10)

a small modification to the classical Euler Method (EM) was proposed in [13]. It was
reported in [13, 14] that this method has confirmed its reliability and validity in dealing
with such above classical initial value problem. In particular, it was declared in [13] that
the numerical method that could be used to solve problem (9)-(10) applies on the following
formula:

yn+1 = yn + hf

(

xn +
h

2
, yn +

h

2
f(xn, yn)

)

, n = 0, 1, 2, . . . . (11)

From this point of view and based on Formula (11), we intend in this section to propose
the MFEM that would help one to solve the fractional initial value problem (1)-(2).
The MFEM represents an improvement of the well-known FEM that typically applied to
dealing with problem (1)-(2). For instance, to deal with the fractional initial value problem
(1)-(2), we first suppose that 0 = t0 < t1 = t0 + h < t2 = t0 +2h < · · · < tn = t0 +nh = b

in which ti are called the mesh points, and h is called the step size such that h = b−a
n
,

for i = 1, 2, . . . , n. Now, by using the first three terms of the generalized Taylor theorem
given in Theorem 2.1, we can expand y(t) about t = ti as follows:

y(t) = y(ti) +
(Dα

∗
y)(ti)

Γ(α+ 1)
(t− ti)

α +

(

D2α
∗
y
)

(ξ)

Γ(2α+ 1)
(t− ti)

2α,

where ξ ∈ (0, t). If one substitutes ti+1 instead of t in the above equality, we get

y(ti+1) = y(ti) +
(Dα

∗
y)(ti)

Γ(α+ 1)
(ti+1 − ti)

α +

(

D2α
∗
y
)

(ξ)

Γ(2α+ 1)
(ti+1 − ti)

2α,
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which immediately implies

y(ti+1) = y(ti) +
hα

Γ(α + 1)
(Dα

∗
y)(ti) +

h2α

Γ(2α+ 1)

(

D2α
∗
y
)

(ξ).

Now, based on Formula (11), we can propose the following formula:

y(ti+1) = y(ti) +
hα

Γ(α + 1)
f

(

ti +
hα

2Γ(α+ 1)
, yi +

hα

2Γ(α+ 1)
f(ti, yi)

)

+
h2α

Γ(2α+ 1)

(

D2α
∗
y
)

(ξ).

(12)

From now on, we may use y(ti) to denote the exact solution of problem (1)-(2) at ti, and
wi to denote the numerical solution of the same problem at ti such that

w0 = y0

wi+1 = wi +
hα

Γ(α + 1)
f

(

ti +
hα

2Γ(α + 1)
, wi +

hα

2Γ(α + 1)
f(ti, wi)

)

,
(13)

for i = 1, 2, . . . , n− 1.

4. The Error Bound of MFEM. Through this part, we aim to estimate the error
bound of our proposed scheme established in Formula (13). This would be carried out by
using the next lemma.

Lemma 4.1. [15] Suppose that δ and γ are two positive real numbers and (ai)
k
i=0 is a

sequence satisfying a0 ≥
−γ

δ
and ai+1 ≤ (1 + δ)ai + γ for each i = 0, 1, 2, . . . , k. Then we

have

ai+1 ≤ e(i+1)δ
(

a0 +
γ

δ

)

−
γ

δ
.

In what follows, we introduce a theoretical result that concerns with an estimation of
the upper bound of the error generated by the proposed scheme MFEM.

Theorem 4.1. Suppose that f is a continuous real-valued function satisfying Lipschetz
condition with constant L on D = [a, b]× R, i.e.,

|f(t, e1)− f(t, e2)| ≤ L|e1 − e2|.

Suppose that a constant M exists with

|Dnα
∗
y(t)| ≤ M, ∀t ∈ [a, b].

Then, we have

|y(ti)− wi| ≤
γ

δ

(

e(iδ) − 1
)

, ∀i = 0, 1, . . . , n,

where γ = h2αM
Γ(2α+1)

, and δ =
(

2Γ(α+1)hα+h2αL

2(Γ(α+1))2

)

.

Proof: In order to prove this result, we first subtract (13) from (12) to get

y(ti+1)− wi+1 = y(ti)− wi +
hα

Γ(α + 1)

{

f

(

ti +
hα

2Γ(α + 1)
, yi +

hα

2Γ(α + 1)
f(ti, yi)

)

− f

(

ti +
hα

2Γ(α + 1)
, wi +

hα

2Γ(α+ 1)

)}

+
h2α

Γ(2α + 1)

(

D2α
∗
y
)

(ξ).

This consequently gives
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|y(ti+1)− wi+1|

≤ |y(ti)− wi|+
hα

Γ(α + 1)

∣

∣

∣

∣

y(ti) +
hα

2Γ(α+ 1)
f(ti, yi)− wi −

h2α

2Γ(α+ 1)
f(ti, wi)

∣

∣

∣

∣

+
h2α

Γ(2α + 1)

∣

∣

(

D2α
∗
y
)

(ξ)
∣

∣ ,

which implies

|y(ti+1)− wi+1| ≤ |y(ti)− wi|+
hα

Γ(α+ 1)
|y(ti)− wi|

+
hα

Γ(α + 1)

hα

2Γ(α+ 1)
|f(ti, yi)− f(ti, wi)|+

h2α

Γ(2α+ 1)
M.

Hence, we have

|y(ti+1)−wi+1| ≤ |y(ti)−wi|+
hα

Γ(α + 1)
|y(ti)−wi|+

h2α

2(Γ(α+ 1))2
L|yi−wi|+

h2αM

Γ(2α + 1)
,

i.e.,

|y(ti+1)− wi+1| ≤

(

1 +
2Γ(α + 1)hα + h2αL

2(Γ(α+ 1))2

)

|y(ti)− wi|+
h2αM

Γ(2α+ 1)
.

Now, by letting δ =
(

2Γ(α+1)hα+h2αL

2(Γ(α+1))2

)

, γ = h2αM
Γ(2α+1)

and ai = |y(ti)− wi|, we obtain

ai+1 ≤ (1 + δ)ai + γ, for i = 0, 1, . . . , k.

Thus, by Lemma 4.1, we can have

|y(ti+1)− wi+1| ≤ e(i+1)δ
(

|y0 − w0|+
γ

δ

)

−
γ

δ

= e(i+1)δ γ

δ
−

γ

δ

=
γ

δ

(

e(i+1)δ − 1
)

,

(14)

which implies directly the desired result.

5. Numerical Applications. In this part, we provide three numerical examples that
would demonstrate the simplicity of implementing the proposed scheme. In particular,
the solutions produced by using the MFEM are shown for several values of α and h.
In other words, the solutions’ behaviors generated by the presented method appear to
depend mainly on the values of α, and the accuracy of the approximation appears to be
related to step size of h.

Example 5.1. Consider the following linear fractional initial value problem [11]:

Dα
∗
y(t) = −y(t), y(0) = 1, t > 0, (15)

where 0 < α ≤ 1. Note that the exact solution of the above problem is y(t) = Eα,1(−tα).
However, to deal with such problem, we apply on Formula (13). This would produce Figure
1 that includes a numerical comparison between the numerical solution of problem (15)
gained by using MFEM and FEM by considering α = 0.9 and h = 0.1.

For more illustration, we plot below Figure 2 and produce Table 1 that show a strong
contrast in absolute error values for the numerical solutions between the two schemes in
favor of our proposed schema.

Based on the previous numerical simulations, it can be noticed that the MFEM’s solution
is closer to the exact solution than that of the FEM’s solution.
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Figure 1. Numerical solution of problem (15) using MFEM and FEM
when h = 0.1 and α = 0.9
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Figure 2. Absolute error between the exact and numerical solution of
problem (15)

Example 5.2. Consider the following nonlinear fractional initial value problem [11]:

Dα
∗
y(t) =

2

Γ(3− α)
t2−α −

1

Γ(2− α)
t1−α − y(t) + t2 − t, y(0) = 0, t > 0, (16)

where 0 < α ≤ 1. The exact solution when α = 1 of the above problem is y(t) = t2 − t.
Herein, we apply on Formula (13) to solve problem (16), and hence generate Figure 3.
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Table 1. Absolute error between the exact and numerical solution of prob-
lem (15)

t Fractional Euler Method Modified Fractional Euler Method
0 0.000000 0.000000
0.1 0.008993 0.001069
0.2 0.030423 0.016586
0.3 0.051607 0.033486
0.4 0.070561 0.049466
0.5 0.086758 0.063735
0.6 0.100164 0.076044
0.7 0.110951 0.086382
0.8 0.119368 0.094852
0.9 0.125691 0.101610
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Figure 3. Numerical solution of problem (16) using MFEM and FEM
when h = 0.1 and α = 1

Such a figure illustrates the numerical solution of problem (16) gained by using MFEM
and FEM by considering α = 1 and h = 0.1.

In order to take a look at the absolute error values for the numerical solutions generated
by the MFEM and FEM, we plot Figure 4 and produce Table 2.

In view of the previous numerical results, one can clearly observe that the accuracy of
the proposed method is better than that of the FEM.

Example 5.3. Consider the following nonlinear fractional initial value problem [16]:

Dα
∗
y(t) + 2(y(t))2 = Γ(α + 2)t+ 2

(

tα+1
)2

, y(0) = 0, t > 0, (17)

where 0 < α ≤ 1. The exact solution of the above problem is given by y(t) = tα+1. In a
similar manner to the previous two examples, we apply also Formula (13) to solving this
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Figure 4. Absolute error between the exact and numerical solution of
problem (16)

Table 2. Absolute error between the exact and numerical solution of prob-
lem (16)

t Fractional Euler Method Modified Fractional Euler Method
0 0.000000 0.000000
0.1 0.010000 0.000250
0.2 0.019000 0.000476
0.3 0.027100 0.000681
0.4 0.034390 0.000866
0.5 0.040951 0.001034
0.6 0.046856 0.001186
0.7 0.052170 0.001323
0.8 0.056953 0.001447
0.9 0.061258 0.001560

problem. As a result, Figure 5 is then generated that illustrates the numerical solutions of
such a problem using MFEM and FEM with α = 0.5 and h = 0.1.
In the same regard, we plot Figure 6 and produce Table 3 for the purpose of highlighting

the absolute error values for the numerical solutions generated by the MFEM and FEM.
Clearly, one can note that the numerical solution generated by the presented method

is closer to the exact solution than that of the numerical solution generated by the FEM.
Thus, we conclude the importance of the presented method in gaining a reasonable accuracy
when dealing with fractional initial value problems.

6. Conclusion. The intended objective of this work has been to create a numerical
scheme for finding numerical solutions to linear and nonlinear fractional initial value
problems based on the Fractional Euler Method (FEM). This scheme, which is named
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Figure 5. Numerical solution of problem (17) using MFEM and FEM
when h = 0.1 and α = 0.5
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Figure 6. Absolute error between the exact and numerical solution of
problem (17)

Modified Fractional Euler Method (MFEM), has confirmed its efficiency in providing a
more accurate approximate solution than that of the approximate solution provided by
the FEM. The error bound generated by the proposed method has been discussed and
estimated. In the near future, we will attempt to find more accurate and comprehensive
numerical methods to solve fractional initial value problems.
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Table 3. Absolute error between the exact and numerical solution of prob-
lem (17)

t Fractional Euler Method Modified Fractional Euler Method
0 0.000000 0.000000
0.1 0.010715 0.000256
0.2 0.021222 0.000738
0.3 0.030780 0.001994
0.4 0.038606 0.004313
0.5 0.043831 0.007796
0.6 0.045654 0.012316
0.7 0.043600 0.017500
0.8 0.037798 0.022773
0.9 0.029162 0.027490
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