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Abstract. Visual evoked stimulus is one of the most important paradigms for construc-
tion of brain computer interface (BCI). To improve the diversity of the visual stimulus
paradigm, this paper proposes a hybrid visual evoked stimulus paradigm to simultaneous-
ly evoke event-related desynchronization (ERD) and steady-state motion visual evoked
potential (SSMVEP). The hybrid visual evoked stimulus paradigm is based on the ra-
dial motion of robotic arms. The SSMVEP is generated by the periodic motion of the
robotic arm modulated by the sinusoidal function, and the ERD is generated by observing
the motion of robotic arms and discriminating between left and right. Six subjects were
invited to participate in the experiment, and radial motions of robotic arms with six dif-
ferent frequencies were designed. During the experiment, the stimulus paradigms of the
arm movement based on body (AMB), arm movement based on itself (AMI), and Newton
rings were designed for comparison, and two different algorithms were used to analyze
the ERD and SSMVEP for the recorded EEG signals, respectively. Experimental results
have shown that the proposed hybrid paradigm will evoke such two phenomena with good
recognition accuracy, and the recognition accuracy of the SSMVEP is significantly higher
than that of the Newton rings. The results of the analysis for the fatigue and comfort
questionnaire after the experiment have shown that the proposed hybrid paradigm has a
higher comfort and can cope well with fatigue after a long-term use.
Keywords: Brain computer interface, Hybrid paradigm, Steady-state motion visual
evoked potential, Event-related desynchronization, Comfort and fatigue

1. Introduction. Brain computer interface (BCI) realizes direct control of external de-
vices by using the recorded brain signals and bypassing the muscular system [1]. Specif-
ically, BCI based on noninvasive electroencephalogram (EEG) signals is of considerable
interest in biomedical engineering and rehabilitation [2]. Currently, EEG-based stimulus
paradigms for BCI include spontaneous and evoked types of stimuli [3]. Evoked stimulus
paradigms typically generate brain feedback patterns by using a specific sound task or a
visual task, including event-related potential (ERP) feedback from the frontal lobe [4] and
visual evoked potential (VEP) feedback from the occipital lobe [5]. A single visual stimulus
can induce transient VEP (TVEP) feedback [6], and repeated visual stimuli with a fixed
frequency can induce a steady-state VEP (SSVEP) feedback [7]. The stable event-related
desynchronization (ERD) [8] phenomenon produced by human brain in the process of mo-
tor imagery (MI) is the main paradigm for spontaneous stimulus. In recent studies, the
correlation between action observation (AO) and human mirror neuron system (hMNS)
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demonstrated that continuous and stable observation of the human body or a humanoid
robot can also generate ERD feedback by visual induction [9].
Rapid development of deep learning algorithms is increasing the recognition accuracy

of the conventional BCI paradigm. Thus, the single stimulus paradigm has become a key
factor that restricts the development of the BCI control system [10]. Recently, hybrid
stimulus paradigm studies have been conducted, including ERP + SSVEP [11], ERP +
MI [12], and SSVEP + MI [13], and the performance of the BCI control system has been
significantly improved. However, the hybrid paradigm cannot settle the disadvantages of
three conventional paradigms [14]:
1) Repeated ERP will lead to suppression of the cognitive process;
2) Repeated SSVEP will result in significant visual fatigue;
3) Spontaneous MI requires rigorous prior training and has no good solution to the

problem of BCI blindness.
To solve the comfort problem of conventional SSVEP stimulus paradigm based on

flickers, some studies have proposed a BCI stimulus paradigm based on the steady-state
motion visual evoked potential (SSMVEP) with a radial periodic motion as the stimulus
material to reduce the visual fatigue of a long-term scintillation. Yan et al. [15] proved
that the SSMVEP can quickly record the brain feedback of a periodic motion, and it does
not show an obvious adaptation observed in the case of repeated ERP visual stimulus.
SSMVEP stimulus paradigm can alleviate visual fatigue and discomfort. Although the
extreme performance of SSMVEP is not as high as SSVEP, the performance degradation
of SSMVEP is significantly lower than that of SSVEP with an increase in visual fatigue
[16]. Additionally, to solve the BCI blindness problem of MI, certain studies began to
investigate the ERD phenomenon generated by the guidance of AO and to use it in the
BCI control system [17].
In the conventional SSVEP stimulation paradigm, stable visual stimuli can be encoded

in the occipital lobe through flickering stimuli at different frequencies. However, this
method results in a high level of fatigue and subjects cannot use it for a long time.
Although SSMVEP partially alleviates visual fatigue through periodic motion, it also
brings performance bottlenecks. The MI stimulation paradigm encodes corresponding
stimulus results through active movement perception rhythms. However, its disadvantage
lies in the long MI process, resulting in a lower information transfer rate. Therefore,
although each of the three conventional stimulation paradigms has its own advantages,
their disadvantages are relatively obvious. In addition, a single conventional stimulation
paradigm cannot simultaneously stimulate both SSVEP and ERD phenomena, so the
controllability and scalability of the encoding are weak. Based on this, this article proposes
to construct a hybrid stimulation paradigm that simultaneously activates both SSVEP
and ERD phenomena in the brain area through a specific stimulus material, enhancing the
controllability and scalability of the encoding while improving performance and reducing
fatigue.
Based on the above analysis, the present study uses the AO tasks of robotic arm move-

ments as a hybrid visual evoked stimulus paradigm. Initially, the radial movement of the
robotic arm is modulated by the sinusoidal function to match various frequencies and in-
duce the SSMVEP. The left and right movements are encoded into different frequencies to
activate hMNS to produce the ERD phenomenon. Unlike the existing stimulus paradigms
that use different media to realize two or more stimulus patterns, the hybrid stimulus
paradigm proposed in this paper uses radial movement of the robotic arm as a single
medium to realize two different stimulus patterns, ERD and SSMVEP. These two stim-
ulus patterns are evoked in different brain regions and can thus be used simultaneously
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in the BCI control system. Overall, the contributions of this paper can be summarized as
follows:

1) We propose a visual evoked stimulus paradigm based on the periodic radial movement
of the robotic arm, which can induce the stable SSMVEP;

2) Based on the observation of the periodic radial movement of the robotic arm, the
stable ERD phenomenon can be induced by discriminating between left or right move-
ments;

3) Based on the comparison of the comfort and fatigue scores of various levels, the arm
movement based on body (AMB) stimuli can achieve the best comfort scores and the arm
movement based on itself (AMI) stimuli can achieve the best fatigue scores.

The rest of the paper can be organized as follows. Section 2 presents the subjects, visual
evoked materials, experimental procedure, and EEG signals recording. Section 3 gives the
EEG signals processing procedure, and the recognition method of SSMVEP and ERD.
Section 4 illustrates the results of SSMVEP and ERD recognition, and the fatigue level
evaluation. Section 5 and Section 6 discussed and concluded the paper.

2. Materials and Methods.

2.1. Subjects. Six subjects were invited to participate in the experiment, including three
males and three females; the average age was (23.27±1.38) years and the range was 23-25
years. We recruited subjects without prior BCI experience from among university students.
As individuals in this age range have stronger and more efficient brain activation abilities,
they are capable of simultaneously performing visual stimulation and action observation-
assisted motor imagery, ensuring representative EEG samples are recorded during the
actual experiment. All subjects were right-handed and healthy and had normal color and
visual perception. None of the subjects had prior BCI experience. A written informed
consent was obtained from all subjects in compliance with the Declaration of Helsinki.
The data of all experimental procedures were collected according to the recommendations
and guidelines for the EEG experiments.

2.2. Visual evoked paradigm design. This study designed the hybrid visual evoked
paradigm based on the periodic radial movement of robotic arms. To ensure the precision
of periodic radial movement, the “NAO robot” platform was introduced to design the
humanoid robotic arm movements. This platform can decode the detailed parameters of
robotic movements to enable the design of SSMVEP of different frequencies according
to the refresh rate of the monitor. However, for the purpose of action observation, the
existing studies only considered the ERD phenomenon without encoding the frequency of
the movements according to the refresh rate of the screen. In this study, the trajectory of
the robotic arm movement is encoded based on the modulation of a sinusoidal function.
Assume that the frequency of the currently presented stimulus paradigm is f , the refresh
rate of the presenting screen is r, and the current frame of the stimulus paradigm is i.
Then, the stimulus signal of periodic robotic arm movements can be given by the following
equation:

ϕ(i) = abs

(
sin

(
π ∗ f

2
∗
(
i

r

)))
, i = 1, 2, . . . , 60 (1)

According to the radial motion procedure of the Newton rings [15], the phase of the
robotic arm movement is related to the stimulus signal, which is given by the following
equation:
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where the constant λ = 0.05, and the matrix d = 360∗360 cm2, which are presented as the
stimuli in the screen. The “waving” periodic movement of the robotic arm is modulated by
the function ϕ(i). When the index in the function ϕ(i) is increased, the phase i increases
from 0 to π, and the robotic arm movement goes from π back to 0. Figure 1 showed
the robotic arm movement cycle of a single periodic stimulus. For a 10 Hz frequency of
reversal robotic arm movements, a single cycle includes 10 frames. The first 5 frames
correspond to the upward movement of the robotic arm, and the last 5 frames correspond
to the downward movement of the robotic arm. In the comparison experiments, we have
presented the SSMVEP of arm movement based on body (AMB), arm movement based
on itself (AMI), and the Newton rings.

Figure 1. The robotic arm movement cycle of a single periodic stimulus
(10 Hz)

This paper presents two types of experimental stimuli, as shown in Figure 1, both in-
volve a waving robot motion. On the one hand, the waving motion is encoded according
to a sine function, allowing the subject to induce the SSMVEP phenomenon in the occip-
ital lobe. On the other hand, the waving motion is a typical action observation to induce
the ERD phenomenon in the central lobe. During the actual experiment, we require the
subject to complete the corresponding motor imagery process according to the robot’s
instructions. Therefore, unlike existing stimulation paradigms, we use a single stimulus
material to activate both the passive SSMVEP phenomenon and the active ERD phenom-
enon through motor imagery. Thus, the stimulation paradigm constructed in this study
has hybrid potential for constructing BCI applications.

2.3. Experimental procedure. During the EEG recording, each subject was seated in
a comfortable armchair in front of a computer monitor in a dimly lit and sound-attenuated
room. Three different groups of SSMVEP stimulus paradigms, including AMB, AMI, and
the Newton rings were displayed as shown in Figure 2(a) on a DELL P2314HLCD monitor
with a refresh rate of 60 frames/s. The background screen was homogeneous gray with a
luminance of 38 cd/m2, and the distance between the monitor and the subjects was set
to 100 cm according to the principle of an experimental paradigm.
Each experimental paradigm consisted of six stimulus modules. Three robotic left arm

movements were shown in the first line, and three robotic right arm movements were shown
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in the second line. The size and position of the stimulus blocks are shown in Figure 2(a).
The timing sequence of the stimulus paradigm presentation is shown in Figure 2(b). All
subjects were asked to focus on one target stimulus for 4 seconds to form a trial and
to rest for 2 seconds; then, the subjects selected and focused on another target stimulus
for 4 seconds to form the next trial. To analyze the stable ERD phenomenon, 120 trials
were included in each stimulus paradigm group, and were divided into four runs. Each
run generated 30 trials, including five trials at six different frequencies. Therefore, each
frequency included 20 trials for the analysis of the SSMVEP and ERD phenomena.

(a) Three groups of stimuli representation

(b) Details of three groups of stimulus procedures

Figure 2. The presentation procedure of the stimulus paradigm

As can be seen in Figure 2(b), before each trial, there was a cross “+” clue that
randomly appeared in the target stimulus and was maintained for 0.5 seconds. Then, the
selected target stimulus appeared as SSMVEP and was maintained for 4 seconds. The
subjects focused on the target stimulus to form a trial. Each trial was separated by a black
screen for 1.5 seconds. Therefore, the rest time between two trials was 2 seconds, including
1.5 seconds break and 0.5 seconds “+” clue. Three groups of stimulus paradigms (AMB,
AMI, and Newton rings) were carried out separately with a 10 minutes rest between each
experiment to ensure that each type of the stimulus for the same subject did not interfere
with each other.

To verify the comfort of the three stimulus groups, each subject was asked to fill in
the comfort questionnaire and evaluate the visual comfort of various stimuli within 10
minutes rest after the completion of each stimulus group. Based on the four problems
reported in the previous study [16], all subjects were asked to assign scores of 1-10 to the
following four questions:

(A) How do you like this stimulation?
(B) How will this stimulation increase your tiredness?
(C) How long can you look at this stimulation?
(D) How annoying is this stimulation?
To ensure the fairness of the comfort score after visual stimulus presentation, three

groups of visual stimuli presented by six subjects were randomly arranged in different
order.
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3. Data Processing and Analysis.

3.1. Preprocessing. After completing the experimental process and recording EEG
samples from all subjects, data processing and analysis were conducted. Figure 3 illus-
trates the framework for EEG samples processing and analysis in this paper. First, the
classical three-step approach was used for preprocessing, including filtering, baseline cal-
ibration, and sample segmentation. After preprocessing, both SSMVEP and ERD phe-
nomena were analyzed simultaneously in this study, and the EEG from the occipital
and central regions were divided into two parts. The occipital EEG was analyzed using
the task-related component analysis algorithm to identify SSMVEP components, while
the central EEG was analyzed using a convolutional neural network to identify ERD
components. Finally, the results of SSMVEP and ERD identification were outputted for
constructing a hybrid BCI.

Figure 3. The framework for EEG samples processing and analysis

Formally, the preprocessing procedure of the recorded EEG signals used 0-40 Hz band-
pass filters and 48-52 Hz notch filters. After preprocessing, the recorded labels of six
different frequencies were used to define the EEG segments, and the 10% EEG signals
acquired before the labeled recording time were used as the baseline to calibrate each
EEG segment. Then, the recorded EOG signals were used to prevent eyeball movement
and blink interference. Finally, the electrodes of C3, C1, Cz, C2, C4, P3, P1, Pz, P2, and
P4 were selected to recognize the ERD phenomenon, and the electrodes of PO5, PO3,
POz, PO4, PO6, O1, Oz, and O2 were selected to recognize the SSMVEP phenomenon.
To intuitively demonstrate that the hybrid visual evoked stimulus paradigm of the robotic
arm movement can produce reliable SSMVEP and ERD phenomenon simultaneously, ma-
chine learning and pattern recognition based methods were used to identify the SSMVEP
and ERD phenomena at six frequencies in the three stimulus groups.

3.2. Recognition of SSMVEP. The recognition of SSMVEP used the latest task-
related component algorithm (TRCA) [18]. Unlike the conventional canonical correlated
analysis (CCA) algorithm, TRCA does not match the EEG signals collected based on a
specific frequency with the signal template to find the maximum correlation coefficients.
Instead, TRCA uses the optimal projection vector to find the task-related part of the EEG
signals, which is more accurate and efficient for the recognition of SSMVEP. Assume that
EEG signals detected by eight electrodes in the occipital region are X(t) ∈ RNc×Nt ,
and the recorded signals are task-related signals s(t) ∈ R and task-independent signals
n(t) ∈ R:

Xi(t) = ai1s(t) + ai2n(t), i = 1, 2, . . . , Nc (3)

where i represents the EEG-collecting electrode, and Nc represents the total number of
the electrodes. ai1 and ai2 represent the mixed coefficients that projected from the original
EEG signals to the collected EEG signals. The purpose of TRCA is to restore the task-
related components using the collected EEG signals:
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Y (t) =
Nc∑
i=1

wiXi(t) =
Nc∑
i=1

(wiai1s(t) + wiai2n(t)) (4)

This recovery task can be accomplished by maximizing the covariance matrix between
the trials of the EEG signals. Therefore, maximization of the covariance matrix with
constrained conditions is given by the following equation:

ŵ = argmax
w

wTSw

wTQw
(5)

The optimization problem can be solved by calculating the eigen-vectors of the matrix.
By sorting the eigen-values of the matrix in a descending order, the eigen-vectors corre-
sponding to the eigen-values can be obtained as the results of the optimization problem.
For recognition of the SSMVEP-BCI control system, the EEG signals of each subject
were preprocessed using a filter bank. Then, for the stimulus frequency fn, the optimal

eigen-vector w
(m)
n ∈ RNc can be calculated by TRCA. Finally, for each tested EEG sample

from each subject, the correlation coefficient can be calculated based on the test signals

and the average signals X̄
(m)
train of the training set:

r(m)
n = ρ

((
X

(m)
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)
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(m)
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)
w(m)

n

)
(6)

where ρ(·) represents the Pearson correlation coefficient between the test EEG samples
and average training samples. Similarly, TRCA needs to divide all EEG samples into a
training set and a test set. In the case of the experimental data for 20 trials at each
frequency, TRCA uses the leave-one-rest strategy to give the final recognition results.

3.3. ERD recognition based on AO. The recognition of ERD phenomenon is mainly
used to classify the visual stimuli of different robotic arm movements on the left and right
sides. The left and right movements were classified based on the columns in Figure 2(a)
generating a total of three groups for the AMB and AMI stimulus paradigms. Newton
rings do not generate ERD phenomenon. Hence, this stimulus paradigm was not included
in the ERD recognition. In this study, the FBCSPnet deep learning model [19] was used
to recognize the ERD phenomenon. Assuming that the EEG signals include 10 electrodes
in the central region, Xj ∈ RE×T . Since only 20 trials were recorded at each frequency,
there were 40 trials combining left and right movements that do not properly train the
FBCSPnet model. Therefore, a cropping strategy was used to generate additional samples
from 40 trials [20]. During the experiment, a single trial recorded 1,000 sampling points,
and the results of the studies described in [20] indicate that stable ERD phenomenon can
be produced within 2 seconds. Hence, we selected this interval as the length of a time
slice, and 500 time slices were generated from one trial to form a total of 20,000 samples
for the recognition of ERD.

During training of the FBCSPnet model, the error function was calculated based on
the negative log of cross entropy. Assume that the time slice at t is pf,k

(
Xj

t

)
, and the

time slice at t+ T ′ is pf,k
(
Xj

t,...,t+T ′

)
. Then, the recognition probability of the jth sample

is p
(
lk|f

(
Xj

t,...,t+T ′ ; θ
))
, where θ is the parameter of the FBCSPnet model that needs to

be learned. lk is the recognized label, and k = 1, 2 represent the movement of the left and
right arms. Based on this definition, the loss function between the current time slice and
the next time slice can be expressed as

loss
(
yj, pf,k

(
Xj

t,...,t+T ′

))
=

K∑
k=1

− log
(
pf,k

(
Xj

t,...,t+T ′

))
× δ

(
yj = lk

)
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+
K∑
k=1

− log
(
pf,k

(
Xj

t,...,t+T ′

))
× pf,k

(
Xj

t,...,t+T ′+1

)
(7)

After sufficient iterations and training of the FBCSPnet model, the optimal recognition
parameter can be obtained as θ∗:

θ∗ = argmin
θ

N∑
j=1

loss
(
yj, pf,k

(
Xj

t,...,t+T ′

))
(8)

During training of the FBCSPnet model, the Adam optimizer was used and the learning
rate was set to 0.0001. The “dropout = 0.5” and “batch normalization” strategies were
used to avoid the over-fitting problem, and the “early stopping” strategy was used to
speed up network training and obtain the optimal parameters.

3.4. Statistical analysis of comfort and fatigue. The recorded EEG signals in each
run were used to extract the SSMVEP trials, which were divided into four groups, in-
cluding 1-30, 31-60, 61-90, and 91-120. These four groups contained stimulus presentation
of variable duration and were divided into four fatigue levels, 1, 2, 3, and 4. All comfort
and fatigue scores were calculated for six different frequencies of three group stimulus
paradigms, and the results were normalized by averaging the scores. The average visual
comfort scores were calculated using two positive questions (A) and (C) and two negative
questions (B) and (D):

Comfort =
A+ (8−B) + C + (8−D)

4.0
(9)

The average fatigue scores were calculated using questions (B) and (C):

Fatigue =
B + (8− C)

2.0
(10)

The analysis results included comfort scores, recognition accuracy, fatigue scores, and
recognition accuracy reduction according to various fatigue levels. The paired t-test ex-
amination was used to analyze the recognition accuracy and comfort scores of six different
frequencies under three stimulus paradigms. The confidence level of statistically signifi-
cant differences was set to 95% (p < 0.05).

4. Results.

4.1. Recognition results of three different groups of SSMVEP stimulus para-
digms. To recognize the SSMVEP phenomenon, TRCA was used to train and test the
recorded 120 trials at six different frequencies. During the training procedure, 108 trials
were selected as the training set, and 12 trials were selected as the test set with a strategy of
10∗10 cross-validation. The average recognition accuracy in 10 validations was calculated
as the final result. Table 1 shows the average recognition results for three groups of the
SSMVEP stimulus paradigms. According to Table 1, the average recognition results of
the AMI, AMB, and Newton rings are 75.32%±4.04%, 72.96%±5.56%, 75.41%±6.42%,
respectively.
The significance test of the three groups of the SSMVEP stimulus paradigms indicates

that the recognition accuracy of AMI is significantly higher than that of AMB and the
Newton rings while there are no significant differences in recognition accuracy between
AMB and the Newton rings. Figure 4 shows the average recognition results for the three
groups of paradigms at each frequency. The results of Figure 4 indicate that the AMI
stimulus paradigm achieves a more significant improvement in recognition accuracy at
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Table 1. The average recognition results of three groups of SSMVEP
stimulus paradigms

SSMVEP stimuli AMB AMI Newton rings
Subject-1 77.40% 78.53% 78.62%
Subject-2 70.53% 71.40% 71.87%
Subject-3 72.07% 75.33% 74.86%
Subject-4 64.27% 69.86% 65.63%
Subject-5 80.20% 80.27% 84.63%
Subject-6 73.27% 76.53% 76.86%
Average 72.96% 75.32% 75.41%
Std 5.56% 4.04% 6.42%

Paired t-test – p < 0.05 p < 0.01

Figure 4. The average recognition results of the three groups of paradigms
at each frequency

almost all frequencies, and the recognition accuracies of AMB and the Newton rings have
only small differences at each frequency.

An additional important index, information transfer rate (ITR), was compared between
the three groups of the SSMVEP stimulus paradigms. Assume the recognition rate is p,
the presentation time is T , and the number of total frequencies is N , the equation for
calculation of ITR is as follows:

ITR =
60

T

[
log2N + p log2 p+ (1− p) log2

(
1− p

N − 1

)]
(11)

In general, the recognition accuracy will be improved with an increase in the pre-
sentation time. However, an increase in the presentation time will also reduce the ITR.
Therefore, eight presentation time points, T = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, were used to com-
pute the corresponding recognition accuracy and ITR. Figure 5 illustrates the accuracy
and ITR at various time points. The results of Figure 5 indicate that the best recognition
accuracy (71.22%) of AMB is at T = 4, and the best ITR (36.79 bits/min) of AMB is
at T = 1. In addition, the best recognition accuracy (81.63%) of AMI is at T = 4, and
the best ITR (46.09 bits/min) of AMI is at T = 1. Furthermore, the best recognition
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(a) Accuracy (b) ITR

Figure 5. The accuracy and ITR of the three SSMVEP stimulus
paradigms at various time points

accuracy (72.08%) of the Newton rings is at T = 4, and the best ITR (25.53 bits/min) of
the Newton rings is at T = 4.
Analysis of the recognition accuracy at various time points indicates that all three

SSMVEP stimulus paradigms show an increase in discipline concomitant to an increase in
the presentation duration. The arm movement-based SSMVEP stimulus paradigms have
a flat trend at longer presentation duration (T > 2), while the conventional Newton rings
SSMVEP stimulus paradigm has a stable increasing trend. Analysis of ITR at various
time points indicates that arm movement-based SSMVEP stimulus paradigms have an
oscillation trend at shorter presentation duration (T ≤ 2) and a general decrease at
longer presentation duration (T > 2). However, the conventional Newton rings SSMVEP
stimulus paradigm also has a plateau trend at higher values of the ITR index.

4.2. Recognition results of ERD for the arm movement-based stimulus para-
digms. To verify the ERD phenomenon, the periodic movements of the robotic left arm
and right arm were classified and recognized as a set of samples. Each group of the stimuli
paradigms included 20,000 time slice samples for training and testing. FBCSPnet was
used to train a model to discriminate the movements of the left arm and right arm. The
ERD phenomenon can be reflected by the classification accuracy of the testing samples.
Table 2 illustrates the classification accuracy and the ERD phenomenon. The results of
Table 2 indicate that the classification accuracy of AMB is higher than that detected
in the case of the AMI stimulus paradigm. Specifically, the AMB stimulus paradigm
at 15 Hz (left) + 20 Hz (right) has significantly improved the classification accuracy
compared to that detected in the case of the AMI stimulus paradigm (p < 0.05). On
the other hand, the AMI stimulus paradigm is not strong enough to activate hMNS due
to its poor humanness. These results provided a certain reference significance for the
subsequent studies of action observation guided MI. In the case of the paradigm based on
a humanoid robot, the presentation of the whole “humanoid” body is more conductive to
the stimulation of the hMNS feedback to action observation guided MI.

4.3. Evaluation of the visual comfort and fatigue for the SSMVEP stimulus
paradigms. Table 3 illustrates the scores of visual comfort questionnaire. The visual
comfort is higher for the periodic radial movement of robotic arm compared with that
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Table 2. ERD classification results for left and right arm movements for
AMI and AMB

AO tasks Left-7.5 Hz Right-8.75 Hz Left-10 Hz Right-12 Hz Left-15 Hz Right-20 Hz
Stimuli a: AMI b: AMB c: AMI d: AMB e: AMI f: AMB
Subject-1 70.58% 64.56% 81.12% 77.23% 61.16% 67.62%
Subject-2 77.54% 77.45% 71.65% 60.42% 66.48% 76.93%
Subject-3 71.48% 86.83% 76.52% 84.28% 64.56% 74.13%
Subject-4 72.31% 83.29% 80.83% 85.19% 70.87% 65.65%
Subject-5 70.68% 87.64% 67.12% 86.87% 63.54% 75.79%
Subject-6 77.83% 73.45% 76.86% 75.23% 64.88% 74.94%
Average 73.40% 78.87% 75.68% 78.20% 65.25% 72.51%
Standard

3.38% 8.90% 5.44% 9.87% 3.27% 4.69%
deviation

ITR
4.65 7.65 6.23 7.29 1.87 4.84

(bits/min)
Paired t-test a vs. b p = 0.246 c vs. d p = 0.590 e vs. f p < 0.05

Table 3. The average scores of visual comfort questionnaire

Stimuli A B C D Comfort Fatigue
AMI 6.50 5.17 5.67 5.00 5.75 5.25
AMB 7.67 3.17 7.33 2.82 7.75 3.42

Newton rings 4.83 6.83 3.83 6.33 4.37 7.00
Average 6.33 5.06 5.61 4.72 5.96 5.22

Standard deviation 1.43 1.83 1.75 1.77 1.70 1.79

(a) Comfort scores (b) Fatigue levels

Figure 6. The relationship between recognition accuracy and visual com-
fort and fatigue levels

for the Newton rings. However, the differences in the visual comfort between AMI and
AMB are not significant. The AMB stimulus paradigm achieves the best visual comfort
apparently because the presentation form includes the whole “humanoid” body. Figure
6(a) shows the comparative relationship between the visual comfort and the recognition
accuracy. The horizontal axis and the vertical axis represent the average comfort score and
the average recognition accuracy of all six subjects, respectively. The results of Figure 6
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indicate that the AMB stimulus paradigm has a comfort advantage over that of the
conventional Newton rings, and the AMI stimulus paradigm has a recognition accuracy
advantage over that of the conventional Newton rings. Two robotic arm movement-based
hybrid stimulus paradigms have better advantages.
Long-term use of the SSMVEP-BCI control system will cause greater visual fatigue.

Based on the presentation duration and fatigue levels (1, 2, 3, and 4), the TRCA algorithm
was used to classify the trials to four fatigue levels. Figure 6(b) shows the SSMVEP
recognition accuracy under various fatigue levels. The results of Figure 6 indicate that
all three groups of the SSMVEP stimulus paradigms have a trend of a decrease in the
recognition accuracy concomitant to an increase in the fatigue level. The decrease is the
highest in the Newton rings stimulus paradigm (1.03%) followed by the AMI stimulus
paradigm (2.67%), and the AMB stimulus paradigm induced the lowest decrease (4.86%).
According to the results in Table 3, both the AMI and AMB stimuli materials con-

structed in this study have higher comfort and lower fatigue levels than the conventional
Newton rings SSMVEP stimuli material. In fact, the Newton rings SSMVEP stimuli ma-
terial is significantly superior to the fatigue and discomfort caused by traditional flicker
stimuli materials. Therefore, long-term use of the AMI and AMB stimuli materials will
not cause significant fatigue problems for the subjects. In addition, compared to a single
type of stimulus material, the stimulus material constructed in this study simultaneously
activates both the ERD and SSMVEP phenomena, enabling a more diverse range of en-
coding schemes to be combined and enriching the practical application scenarios of hybrid
BCI. For example, when using BCI technology to control the fingers of a robot with high
precision, it is not possible to control all 20 joints of the 5 fingers with just motor imagery.
If the AMI/AMB stimulation paradigm constructed in this study is used, 20 joint control
instructions can be easily encoded by relying on 5 sets of SSMVEP commands and 4 sets
of ERD commands, achieving the goal of precise robot control.

5. Discussion. The purpose of the hybrid visual stimulus paradigm is to use two or
more materials to evoke multiple brain phenomena. The commonly used hybrid para-
digm is combined with SSVEP based on flickers, P300 based on screening stimulus, and
ERD based on MI. In this study, two brain phenomena, SSMVEP and ERD, were simul-
taneously generated by the periodic radial robotic arm movement of the visual stimulus
paradigm. Such two phenomena were verified based on the spectral power and recognition
accuracy. Previous studies have shown that two parallel primary pathways are presented
in the human visual system [21], including the shape and color perception pathway and
the movement perception pathway. The periodic radial movements of the robotic arms
cause the perception process of the spatial motion of the visual system, and the repeat-
ed observation induces the stable SSMVEP phenomenon. Additionally, the robotic arm
movements can be observed, and the left movement can be discriminated from the right
movement. During the observation and discrimination, the visual system in the brain
further activates the hMNS, and the ERD phenomenon in the contralateral brain region
can be generated due to the action observation guided MI [22]. Since these two differ-
ent phenomena are located in different brain regions, including the ERD phenomenon in
the parietal region and the SSMVEP in the occipital region, the signals can be analyzed
simultaneously.
Assuming that the SSMVEP-BCI control system contains N frequencies with the left

and right commands from the ERD phenomenon, the hybrid stimulus paradigm can be
used to generate 2×N control signals. Additional commands will improve the ITR of the
BCI control system. The recognition accuracy results of Table 1 and Table 2 indicate that
the recognition accuracy of SSMVEP (75.41%) is slightly higher than that of the ERD
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phenomenon (72.51%). The combination of SSMVEP and ERD will reduce the recogni-
tion rate to (65.25%) after doubling the commands. Therefore, our further studies will
investigate how these two phenomena can be reasonably combined to obtain more stable
and higher ITR. Additionally, the highest ITR of SSMVEP duration is concentrated in the
range from 1 to 1.5 s, and ERD is generally believed to require continuous presentation for
2 s. Time matching between these two phenomena is another direction for our future stud-
ies. Finally, action observation guided MI should be included in a visual evoked stimulus
paradigm. Relevant studies [23,24] on action observation guided MI have shown that
the hMNS activation produces power variations in the occipital region concentrated in
the alpha and beta rhythms. Additional studies are needed to determine the presence
of coupling between the SSMVEP and ERD phenomenon in the occipital region during
the visual stimulus presentation of the periodic radial movement, and solutions of the
coupling of the mutually restricted phenomena are required.

Comparison of the recognition accuracy of the SSMVEP stimulus paradigm in three
groups indicates that the AMB stimulus paradigm achieves the highest accuracy in the
case of the ERD phenomenon, and the AMI stimulus paradigm achieves the highest
accuracy in the case of SSMVEP. The two stimulus paradigms proposed in this study
have certain advantages over the Newton rings. The recognition accuracy of the AMB
stimulus paradigm in SSMVEP is not substantially different from that of the Newton
rings. However, the ERD phenomenon, which is not available in the Newton rings, can
generate more commands and improve the ITR of BCI [25]. However, the recognition
accuracy of the AMI stimulus paradigm is significantly higher than that of the Newton
rings although the recognition of the ERD phenomenon is relatively general. The comfort
scores shown in Table 3 and Figure 6(a) indicate that the stimulus paradigms based
on the periodic radial robotic arm movements have better comfort scores than those of
the conventional Newton rings, which are essentially consistent with the comfort degree
of the radial zoom motion-based stimulus paradigm. However, the overall recognition is
limited by coupling of various visual stimulus phenomena, and the recognition accuracy
of SSMVEP cannot achieve the results of the radial zoom motion (93.41%). Complex
visual stimulus phenomena were detected in the robotic-based paradigm, and various
factors, such as humanoid shape, posture, and color, are all needed to be considered. The
current design of the robotic arm periodic radial movement is relatively simple. Design of
a more complex periodic movement mode of the robotic arm will produce different brain
phenomena, which is the next step of our studies.

When the visual evoked stimulus paradigm is used to construct the BCI control system,
the visual fatigue and adaptability caused by a long-term visual attention will inevitably
lead to the weakened process of visual feedback [26]. Therefore, an increase in the presen-
tation time of the visual stimulus paradigm suggests that the stimulus paradigm with an
insignificant decrease in recognition accuracy is more suitable for construction of the BCI
control system. In this study, two hybrid visual evoked stimulus paradigms are proposed
to build the BCI control system. Such paradigms have a lower recognition accuracy com-
pared with that of the conventional Newton rings. This decrease is due to an increase in
the visual fatigue levels. The AMB stimulus paradigm has the lowest accuracy decrease,
which has the advantage of being an overall “whole” when used for a long-term presen-
tation, and the fatigue of this paradigm accumulates more slowly than the “part” type
stimulus paradigm, which is potentially instructive due to the degradation in performance
induced by an increase in the fatigue levels. How to design a more objective fatigue eval-
uation standard in the construction of a real-world BCI control system, how to design a
personalized “humanoid robot” according to individual fatigue evaluation situation, and
how to implement a personalized hybrid visual evoked stimulus paradigm are the three
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key problems related to the hybrid evoked stimulus paradigm based on the robotic arm
periodic radial movement. Such problems will be considered in our further studies.
From the experimental results of the stimulus materials designed in this study, it can

be seen that the AMI is more suitable for passively inducing the SSMVEP phenomenon
in the subjects, while the AMB is more suitable for actively inducing the ERD phenom-
enon in the subjects. Therefore, one limitation of the stimulus materials is the inability
to combine the advantages of AMI and AMB, resulting in better adaptability in the ac-
tivation modes of the two brain regions. Another limitation of the stimulus materials is
the issue of recognition accuracy. Among the 6 subjects recruited for the experiment in
this study, the recognition accuracy of both the ERD and SSMVEP phenomena was only
about 70%, which is only sufficient for constructing a simple hybrid BCI system. If we
want to combine the encoding instructions of ERD and SSMVEP to construct a more
precise control instruction set, such as non-holonomic wheeled mobile robots control [27],
the existing 70% accuracy is far from enough. Combining the instructions will gradual-
ly amplify the misidentified instructions, reducing the performance of the BCI system.
Therefore, future research needs to construct higher-performance decoding algorithms for
ERD and SSMVEP to achieve higher recognition performance and meet the performance
indicators of constructing online hybrid BCI.

6. Conclusion. In this study, we proposed a novel hybrid evoked stimulus paradigm
based on the robotic arm periodic radial movement, and the experimental results have
demonstrated that this paradigm simultaneously generates the SSMVEP and ERD phe-
nomena. Two visual stimulus paradigms were tested: AMB can achieve higher recognition
accuracies of the ERD phenomenon, and AMI can achieve higher recognition accuracies
of the SSMVEP. The recognition accuracy results indicate that the proposed stimulus
paradigms can be potentially combined to generate multiple commands for the BCI con-
trol system. The comfort analysis results obtained after the experiment have shown that
the proposed paradigms have better comfort degree than the conventional Newton rings,
and the AMB stimulus paradigm has the highest comfort degree, which has the least
impact on a decrease in the recognition accuracy due to an increase in the visual fatigue
levels. This hybrid visual evoked paradigm has good characteristics. However, further
studies are necessary to solve the coupling problem of the SSMVEP and ERD phenome-
non in the occipital region, design more complex movement patterns of the robotic arm,
and refine the objective fatigue evaluation method to implement a personalized stimulus
paradigm.
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