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Abstract. The multi-depot vehicle routing problem (MDVRP) is a generalized form of
the vehicle routing problem (VRP) and travelling salesman problem (TSP). Considered as
one of the NP-hard problems, the MDVRP consists of multiple vehicles for transporting
goods to travel in and out of many warehouses (locations). The objective is to determine
the optimal vehicle route in order to minimize the total distance satisfying the particular
constraints and criteria. In this paper, the application of the modern metaheuristic algo-
rithm (MoMA) to optimally solving the MDVRP is presented. As one of the new hybrid
metaheuristic optimization search techniques, the MoMA combines with two types of the
random process drawn from the uniform and Lévy distributions for generating the feasible
solutions. Moreover, the automatic adjustable search radius mechanism (ASRM) is also
utilized to balance the intensification (exploitation) and diversification (exploration) as
well as to speed up the search process. The MoMA is applied to solving ten selected real-
world MDVRP consisting of approximately 50-200 locations. Results obtained by the Mo-
MA will be compared with those obtained by the genetic algorithm (GA), particle swarm
optimization (PSO) and cuckoo search (CS). As results, it was found that the MoMA
can provide optimal solutions of all ten selected MDVRP with shorter total distance than
the original CS, PSO and GA, respectively.
Keywords: Multi-depot vehicle routing problem, Modern metaheuristic algorithm,
Modern optimization, Adjustable search radius mechanism, NP-hard problem

1. Introduction. The multi-depot vehicle routing problem (MDVRP) is one of the real-
world logistic engineering problems focusing on the pickup and/or delivery of products
from several depots to many customers. The MDVRP arises as a generalization of the
vehicle routing problem (VRP) and travelling salesman problem (TSP), where vehicles
depart from and return to one of multiple depots [1-3]. The MDVRP can be considered as
a class of combinatorial optimization problems and also the NP-hard problems [4-7]. In
general, there is a set of service locations (customers) to be served by a set of vehicles from
a set of depots established in different places. The objective of the MDVRP is to minimize
total distance in order to minimize the overall costs and to maximize the customers’
demand by optimizing the sequence of locations visited by each vehicle (optimal vehicle
route), satisfying such conditions and criteria as distance, time, and cost involved in
the operation. Consisting of a fleet of vehicles, the MDVRP includes different service
requirements (pickup and/or delivery of products) at each location, different capacities
and time constraints of each vehicle in the fleet [8-10]. In the MDVRP, vehicles leave from
one of the depots, serve customers along the routes and return to the depot where they
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Figure 1. The MDVRP consisting of 2 depots and 20 service locations

leave after completion of their routes. In addition, each location will be visited exactly
once by any vehicle in a fleet. For example, assume that in the considered MDVRP there
are 2 depots and 20 service locations (excluding 2 depots) as can be visualized by Figure
1, where ⃝ stands for the service locations and � stands for the depots D1 and D2.
Following the literature, many variants of MDVRP are studied to address the variety of

conditions in real-world applications, for example, the capacitated MDVRP (CMDVRP),
the MDVRP with time windows (MDVRPTW), the heterogeneous fleet MDVRP (HMD-
VRP), the MDVRP with pickup and delivery (MDVRPPD), and the generalized vehicle
routing problem for multi-depot with pickup and delivery requests (GVRP-MDPDR) [1-
3]. Based on the modern optimization approach, the MDVRP and its variants can be
considered as a class of NP-hard problems which consume a great deal of computational
time to find optimal solutions for large problems. The MDVRP can be efficiently solved
by the efficient metaheuristic optimization search techniques, such as tabu search [11-13],
genetic algorithm (GA) [14,15], particle swarm optimization (PSO) [16-20], ant colony
optimization (ACO) [21-24], cuckoo search (CS) [25-27], artificial bee colony (ABC) [28],
iterated local search (ILS) [29] and sector combination optimization (SCO) [30]. However,
these metaheuristic techniques do not guarantee optimal solutions, but they generally
promise a near optimal solution within a reasonable solution search time.
Recently, a novel hybrid metaheuristic optimization search technique named the mod-

ern metaheuristic algorithm (MoMA) has been proposed for function minimization in
2023 [31]. Algorithms of the MoMA combine with two types of the random process drawn
from the uniform distribution and the Lévy distribution to generate the feasible solu-
tions. Moreover, the automatic adjustable search radius mechanism (ASRM) is utilized
to balance the intensification (exploitation) and diversification (exploration) properties
as well as to speed up the search process. The MoMA was tested against several bench-
mark optimization problems to perform its effectiveness and search performance. Once
comparing with other well-known metaheuristics including GA, PSO and CS, the Mo-
MA was superior to other existing metaheuristic algorithms for function minimization
[31]. From comparison with state-of-the-art studies and its advantages over existing well-
known metaheuristic algorithms, the MoMA possesses few search parameters. This makes
the MoMA algorithm not complicate and ease of use. In this paper, the MoMA is thus
applied to optimally solving ten selected real-world MDVRP consisting of approximately
50-200 locations. Results obtained by the MoMA will be compared with those obtained
by GA, PSO and CS to perform its effectiveness.
This paper consists of five sections. After an introduction is presented in Section 1,

the remainder of this paper is arranged as follows. The problem formulation including
the MDVRP model, objective function and constrained functions are provided in Section
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2. The MoMA algorithm and the MoMA-based MDVRP optimization are described
in Section 3. Experimental results and discussions are illustrated in Section 4. Finally,
conclusions and future research are given in Section 5.

2. Problem Formulation. Regarding the original VRP firstly introduced in 1959 by
Dantzig and Ramser [4], the VRP is generally defined by a graph G = (V, ε, C) based
on the graph theory, where V = (v0, . . . , vn) is the set of vertices which represent the
locations, ε = {(vi, vj)|(vi, vj) ∈ V 2, i ̸= j} is the arc set which represents distances and
C = {Cij|(vi, vj) ∈ ε} is the cost matrix defined over ε which represents traveling times
or traveling costs. The MVRP and MDVRP models will be presented as follows.

2.1. MVRP model. The MVRP having a single depot can be modeled as follows [1,32].
Assuming there areN locations (customers) andK vehicles in a fleet, the distance between
the i-th and the j-th locations is represented by dij. In the symmetric case, dij = dji, for
all locations (i, j). They can be displayed by the distance matrix d: n× n → ℜ between
the locations. All vehicles will start at the same depot. They will take a route such that
each location except the depot is visited by exactly one vehicle. Finally, all vehicles will
return to the depot at the end of the tour. The decision variables δijk = 1 if and only if
the vehicle k travels from the i-th location to the j-th location; otherwise, δijk = 0. Tijk

is the traveling time of the vehicle k from the i-th location to the j-th location. Tijk can
be calculated by the relation between the average vehicle’s speed and the working time,
and Tmax is the maximum working time of each vehicle.

Minimize Z(·) =
∑
i∈N

∑
j∈N

∑
k∈K

dijδijk, i ̸= j (1)

Subject to
∑

δijk = 1, i = 1, ∀2 ≤ j ≤ N, ∀1 ≤ k ≤ K, i ̸= j (2)∑
δjik = 1, ∀2 ≤ i ≤ N, j = 1, ∀1 ≤ k ≤ K, i ̸= j (3)∑

j∈N

∑
k∈K

δijk = 1, ∀2 ≤ i ≤ N (4)

∑
i∈N

∑
k∈K

δijk = 1, ∀2 ≤ j ≤ N (5)∑
i∈N

δirk =
∑
j∈N

δrjk, ∀2 ≤ r ≤ N, ∀1 ≤ k ≤ K (6)

ui − uj + (N −K)
∑
k∈K

δirk ≤ N −K − 1, ∀2 ≤ i, j ≤ N, i ̸= j (7)∑
i∈N

∑
j∈N

Tijk ≤ Tmax, ∀1 ≤ k ≤ K, i ̸= j (8)

The objective function Z(·) of the MVRP is stated in (1) to minimize the total trav-
eling distances satisfying the constrained functions as stated in (2)-(8). The constrained
function in (2) ensures that all vehicles will leave the depot exactly once. The constrained
function in (3) ensures that all vehicles will return to the depot exactly once. The con-
strained function in (4) ensures that all locations (except the depot) will be left by only
one vehicle exactly once. The constrained function in (5) ensures that all locations (except
the depot) will be arrived by only one vehicle exactly once. The constrained function in
(6) ensures that the amount of time that all vehicles spend for visiting all locations equals
the amount of time that all locations are left. The constrained function in (7) ensures
that no sub-tours exist (degenerate routes that do not include the depot), by using N − 1
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as dummy variables of u2, . . . , un. Finally, the constrained function in (8) ensures that
each vehicle spends the working time within its defined maximum working time.

2.2. MDVRP model. The MVRP having several depots can be modeled as follows
[1,2,33,34]. LetN be a set of nodes, N = Nc∪Nd, whereNc is a set of locations (customers),
and Nd is a set of depots with K vehicles in a fleet. Let F be the number of vehicles
available in each depot. That is |K| = F |Nd|. fi is the number of vehicles used in the i-th
depot. The distance between the i-th and the j-th locations is represented by dij as the
MVRP. All vehicles will start at any depot. Then, they will take a route such that each
location except the depot is visited by exactly one vehicle. At the end of the tour, all
vehicles will return to the depot where they depart. The decision variables δijk = 1 if and
only if the vehicle k travels from the i-th location to the j-th location; otherwise, δijk = 0.
Also, the decision variables zij = 1 if and only if the j-th depot is assigned to the i-th
location; otherwise, zij = 0. The objective function Z(·) of the MDVRP is stated in (9)
to minimize the total traveling distances satisfying the constrained functions as stated in
(10)-(19).

Minimize Z(·) =
∑
i∈N

∑
j∈N

∑
k∈K

dijδijk, i ̸= j (9)

Subject to
∑
j∈N

∑
k∈K

δijk = 1, ∀i ∈ Nc, i ̸= j (10)

∑
j∈N

δjik =
∑
j∈N

δijk, ∀i ∈ N, ∀k ∈ K, i ̸= j (11)

δijk = 0, ∀i, j ∈ Nd, ∀k ∈ K (12)∑
i∈Nd

∑
j∈Nc

δijk ≤ 1, ∀k ∈ M (13)

∑
j∈Nd

zij = 1, ∀i ∈ Nc (14)

∑
j∈Nc

∑
k∈K

δijk = fi, ∀i ∈ Nd (15)

∑
j∈Nc

∑
k∈K

Tijk ≤ Tmax, ∀k ∈ K, i ̸= j (16)

∑
k∈K

δijk ≤ zij, ∀i ∈ Nc, ∀j ∈ Nd (17)∑
k∈K

δjik ≤ zji, ∀i ∈ Nc, ∀j ∈ Nd (18)∑
k∈K

δijk + zir +
∑
m∈Nd

zjm ≤ 2, ∀i, j ∈ Nc, i ̸= j, m ̸= r, ∀r ∈ Nd (19)

The constrained function in (10) ensures that each location is served exactly once. The
constrained function in (11) ensures that the number of entering arcs is equal to the
number of leaving arcs for each node. The constrained function in (12) ensures that a
vehicle should leave and enter the same depot. The constrained function in (13) ensures
that one vehicle only travels in one route. The constrained function in (14) guarantees
that each location is assigned to one depot. The constrained function in (15) defines the
number of vehicles used for each depot. The constrained function in (16) ensures that
each vehicle spends the working time within its defined maximum working time. Finally,
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the constrained functions in (17)-(19) ensure that no sub-tours exist (prohibit infeasible
routes).

3. MoMA Algorithm for MDVRP Optimization. In this section, the MoMA algo-
rithm is briefly described. Then, the MoMA-based MDVRP optimization is elaborately
illustrated as follows.

3.1. MoMA algorithm. As one of the hybrid metaheuristic optimization search tech-
niques, the MoMA [31] utilizes the random processes drawn from the uniform distribution
and the Lévy distribution for generating the elite solutions in each search iteration. In
addition, to balance the intensification (exploitation) and diversification (exploration)
properties and speed up the search process, the ASRM mechanism is conducted in the
MoMA algorithm to automatically reduce the search radius.

The MoMA algorithm is represented by the pseudo code as shown in Figure 2 [31].
After initialization, the search radius R will be calculated by using (20), where Rt is the

Figure 2. Pseudo code of MoMA algorithm
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search radius at the tth iteration, R0 is the initial search radius and α is the decreasing
factor. Then, it goes into the search loop. In odd iterations, the MoMA performs the
population-based manner. The feasible solutions will be set as n = Np and the random
process drawn from the Lévy distribution in (21)-(24) is activated to generate the feasible
solutions. In (21)-(24), L is the random process drawn from the Lévy distribution, Γ(λ)
is the standard Gamma function, s is step-size, U and V are Gaussian distributions and
σ2 is variance. In even iterations, the MoMA becomes the trajectory-based manner. The
feasible solution n = 1 is set and the random process drawn from the uniform distribution
in (25) and (26) is invoked to generate the feasible solution. In (25) and (26), a and b are
the ranges of random and x̄ is mean. In each iteration, R will be reduced to balance the
intensification and diversification. The search process of the MoMA in the search loop
will be iteratively proceeded and stopped when the termination criteria (TC) are met

Rt = R0e
−αt, 0 < α < 1 (20)

L ∼ λΓ(λ) sin(πλ/2)

π

1

s1+λ
, (s ≫ s0 > 0) (21)

Γ(λ) =

∫ ∞

0

tλ−1e−tdt (22)

s =
U

|V |1/λ
, U ∼ N(0, σ2), V ∼ N(0, 1) (23)

σ2 =

[
Γ(1 + λ)

λΓ[(1 + λ)/2]
· sin(πλ/2)

2(λ−1)/2

]1/λ
(24)

f(x) =


1

b− a
if a ≤ x ≤ b

0 otherwise
(25)

x̄ =
a+ b

2
, σ2 =

(b− a)2

12
(26)

3.2. MoMA-based MDVRP optimization. The MoMA algorithm is applied to op-
timally solving the MDVRP. The MoMA-based MDVRP optimization can be described
as follows.

Step-0 For MDVRP: initialize the objective function Z(·) of the MDVRP as stated
in (9) and the constrained functions as stated in (10)-(19), initialize entire
search space Θ (number of locations Nc and their correspondingly distances
dij), number of vehicles K in the fleet, and number of depots Nd.
For MoMA algorithm: initialize the number of initial solutions Ns, decreasing
factor α and number of feasible solutions Np. Counters ii = jj = kk = t = CT =
1. The maximum iteration Tmax and the maximum total iteration CTmax are
set.
Pre-process: uniformly random initial solution Xii, ii ∈ Ns within Θ. Then,
evaluate Z(Xii) in (9) satisfying the constrained functions in (10)-(19). Rank
Xii and store in set ℵ. Let x0 = Xjj (the selected initial solution), Xglobal =
Xlocal = x0.

Step-1 If jj ≤ Ns, go to Step-2. Otherwise (TC are met), go to Step-10.
Step-2 If t ≤ Tmax, go to Step-3. Otherwise, go to Step-9.
Step-3 Activate ASRM mechanism to calculate Rt by using (20).
Step-4 If mod(t, 2) ̸= 0 (Odd iterations: population-based), go to Step-5. Otherwise,

go to Step-6.
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Step-5 Set the number of feasible solutions n = Np. Random xkk, kk ∈ Np, around x0

within Rt by random from the Lévy distribution in (21)-(24).
Step-6 Set the number of feasible solution n = 1 (Even iterations: trajectory-based).

Random xkk, kk = 1, around x0 within Rt by random from the uniform distri-
bution in (25) and (26).

Step-7 Evaluate Z(xkk) in (9) satisfying the constrained functions in (10)-(19).
Then set x∗ as the best solution among xkk, and set kk = 1.

Step-8 If Z(x∗) < Z(x0), update x0 = x∗. Update t = t+ 1, CT = CT+ 1. Then, go
back to Step-2.

Step-9 If Z(x0) < Z(Xlocal), update Xlocal = x0. Update jj = jj + 1 and set t = 1.
Set x0 = Xjj (as the new selected initial solution). Then, go back to Step-1.

Step-10 Post-process: If Z(Xlocal) < Z(Xglobal), update Xglobal = Xlocal. Terminate the
search process, and report the best solutions found.

4. Experimental Results and Discussions. For this study, the objective of the Mo-
MA-based MDVRP optimization is to minimize total distance. Therefore, the load capac-
ity of each vehicle, pickup/delivery time requirements, and traffic situation are neglected.
In addition, the symmetric case, dij = dji, is assumed. Ten real-world MDVRP consisting
of approximately 50-200 locations are selected from [35-37]. Ten selected MDVRP are
detailed as summarized in Table 1. For example, the 51 service locations and its depots
of MDVRP#1 (EIL51) are displayed in Figure 3, where ⃝ stands for the service locations
and � stands for the depots.

Table 1. Ten selected real-world MDVRP problems

Problems Names
Nunber

of locations
Optimal tour

for one vehicle (km.)
Comment

MDVRP#1 EIL51 51 426 Eilon
MDVRP#2 BERLIN52 52 7,542 Groetschel
MDVRP#3 EIL76 76 538 Eilon
MDVRP#4 GR96 96 55,209 Groetschel
MDVRP#5 KROB100 100 22,141 Nelson
MDVRP#6 BIER127 127 118,282 Reinelt
MDVRP#7 CH150 150 6,528 Churritz
MDVRP#8 BRG180 180 1,950 Rinaldi
MDVRP#9 RAT195 195 2,323 Pulleyblank
MDVRP#10 D198 198 15,780 Reinelt

To solve ten selected real-world MDVRP in Table 1, the MoMA algorithm was coded
by MATLAB version 2018b run on Intel(R) Core(TM) i5-3470 CPU@3.60GHz, 4.0GB-
RAM. For each MDVRP, 50 trial-runs are executed to search for their best solutions. The
depot’s locations are arbitrary defined. The daily working time of any vehicle is defined
as no longer than 8 hr. Therefore, Tmax = 8 hr. is set as the maximum working time in
(16). 80 km/hr. is approximated for the average speed of all vehicles. Thus, the overall
distance of each vehicle must not exceed 640 km/day. Also, each depot should serve at
least 10 locations. These data are used to define the number of depots Nd. The number
of vehicles K in a fleet has to be equal to or greater than the number of depots Nd for
each MDVRP problem.

In this work, the search parameters of the MoMA are set from the preliminary studies
against ten selected real-world MDVRP with different ranges of parameters, i.e., number of
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Figure 3. Service locations and depots of MDVRP#1 (EIL51)

initial solutions N = 5, 10, 15, 20, . . . , 50, decreasing factor of the ASRM mechanism α =
0.005, 0.01, 0.015, 0.02, . . . , 0.5 and number of feasible solutions Np = 5, 10, 15, 20, . . . , 50.
From the preliminary studies, the best parameters for all selected MDVRP are N = 25 to
45, α = 0.01 to 0.025 and Np = 25 to 40. Thus, N = 40, α = 0.02 and Np = 35 are set for
the MoMA algorithm in order to solve all ten selected MDVRP. For comparison with GA,
PSO and CS, the search parameters of those algorithms are also preliminary studied as
the MoMA and then set as follows. For GA [38], number of populations = 40 (fixed as Np

of MoMA), crossover probability = 0.95 and mutation probability = 0.05. For PSO [39],
number of swarms = 40 (fixed as Np of MoMA), cognitive learning rate = 2.0 and social
learning rate = 2.0. For CS [32,40], number of nests (or cuckoos) = 40 (fixed as Np of
MoMA) and discovery probability = 0.25. For all algorithms, maximum total iteration (or
maximum generation) CTmax = 10,000 is set. 50-trial runs with different initial solutions
depending on the random process are conducted to search for the optimal solutions of the
MDVRP problems.
Over 50-trial runs, the convergent rates of the MoMA for the MDVRP#1 (EIL51) are

depicted in Figure 4 as the example. The convergent rates of other MDVRP problems
are omitted because they have a similar form to those in Figure 4. From Figure 4, it can
be observed that the MoMA performs the high robustness with different initial solutions.
Results of ten selected real-world MDVRP optimization obtained by the GA, PSO, CS and
MoMA are summarized in Table 2. As an example, the optimal tours of the MDVRP#1
(EIL51) obtained by the GA, PSO, CS and MoMA are plotted in Figures 5-8, where ⃝
stands for the service locations, � stands for the depots, stands for the 1st vehicle
route, stands for the 2nd vehicle route and stands for the 3rd vehicle route,
respectively. Results in Figures 5-8 and Table 2 are further analyzed as follows.
For the MDVRP#1 (EIL51), it possesses the number of depots Nd = 3 and the number

of vehicles K = 3. From Figures 5-8 and Table 2, the GA provides the total distance of
164.36 km., the PSO performs the total distance of 162.35 km., the CS yields the total
distance of 160.01 km., while the MoMA gives the total distance of 157.32 km.
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Figure 4. (color online) Convergent rates of MoMA for MDVRP#1
(EIL51) over 50-trial runs

Table 2. Optimal tours of MDVRP obtained by GA, PSO, CS and MoMA
algorithms

Problems
No. of

depots Nd

No. of
vehicles K

Optimal tour (km.)
GA PSO CS MoMA

MDVRP#1 3 3 164.36 162.35 160.01 157.32
MDVRP#2 3 3 1,592.25 1,506.64 1,458.93 1,446.56
MDVRP#3 5 6 267.10 250.12 227.48 215.75
MDVRP#4 7 8 26,864.54 26,206.48 25,102.39 24,624.18
MDVRP#5 8 9 15,403.38 13,310.37 12,017.04 11,256.21
MDVRP#6 10 12 68,012.05 66,998.02 66,430.22 65,767.54
MDVRP#7 12 15 1,658.76 1,490.56 1,286.42 1,230.53
MDVRP#8 14 17 957.27 918.13 847.06 812.23
MDVRP#9 15 20 1,515.59 1,324.48 1,106.67 1,054.54
MDVRP#10 16 22 7,508.37 7,393.65 7,102.08 6,861.29

For the MDVRP#2 (BERLIN52), it has Nd = 3 and K = 3. From Table 2, the GA
provides the total distance of 1,592.25 km., the PSO performs the total distance of 1,506.64
km., the CS yields the total distance of 1,458.93 km., while the MoMA gives the total
distance of 1,446.56 km.

For the MDVRP#3 (EIL76), it possesses Nd = 5 and K = 6. From Table 2, the GA
provides the total distance of 267.10 km., the PSO performs the total distance of 250.12
km., the CS yields the total distance of 227.48 km., while the MoMA gives the total
distance of 215.75 km.

For the MDVRP#4 (GR96), it has Nd = 7 and K = 8. From Table 2, the GA provides
the total distance of 26,864.54 km., the PSO performs the total distance of 26,206.48 km.,
the CS yields the total distance of 25,102.39 km., while the MoMA gives the total distance
of 24,624.18 km.
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Figure 5. Optimal tour of MDVRP#1 (EIL51) obtained by GA

Figure 6. Optimal tour of MDVRP#1 (EIL51) obtained by PSO

For the MDVRP#5 (KROB100), it possesses Nd = 8 and K = 9. From Table 2, the
GA provides the total distance of 15,403.38 km., the PSO performs the total distance of
13,310.37 km., the CS yields the total distance of 12,017.04 km., while the MoMA gives
the total distance of 11,256.21 km.
For the MDVRP#6 (BIER127), it has Nd = 10 and K = 12. From Table 2, the

GA provides the total distance of 68,012.05 km., the PSO performs the total distance of
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Figure 7. Optimal tour of MDVRP#1 (EIL51) obtained by CS

Figure 8. Optimal tour of MDVRP#1 (EIL51) obtained by MoMA

66,998.02 km., the CS yields the total distance of 66,430.22 km., while the MoMA gives
the total distance of 65,767.54 km.

For the MDVRP#7 (CH150), it possesses Nd = 12 and K = 15. From Table 2, the
GA provides the total distance of 1,658.76 km., the PSO performs the total distance of
1,490.56 km., the CS yields the total distance of 1,286.42 km., while the MoMA gives the
total distance of 1,230.53 km.
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For the MDVRP#8 (BRG180), it has Nd = 14 and K = 17. From Table 2, the GA
provides the total distance of 957.27 km., the PSO performs the total distance of 918.13
km., the CS yields the total distance of 847.06 km., while the MoMA gives the total
distance of 812.23 km.
For the MDVRP#9 (RAT195), it possesses Nd = 15 and K = 20. From Table 2, the

GA provides the total distance of 1,515.59 km., the PSO performs the total distance of
1,324.48 km., the CS yields the total distance of 1,106.67 km., while the MoMA gives the
total distance of 1,054.54 km.
For the MDVRP#10 (D198), it has Nd = 16 and K = 22. From Table 2, the GA

provides the total distance of 7,508.37 km., the PSO performs the total distance of 7,393.65
km., the CS yields the total distance of 7,102.08 km., while the MoMA gives the total
distance of 6,861.29 km.
From overall results of all ten selected real-world MDVRP summarized in Table 2, it

was found that the PSO can yield shorter total distance than the GA. The CS can give
shorter total distance than the PSO, while the MoMA can provide shorter total distance
than the CS, PSO and GA, respectively.
The total distances (TD) in Table 2 are converted into percentage decrease of TD

(PDTD) of the PSO, CS and MoMA with-respect-to the GA by using the relation stated
in (27)-(29) for comparison as summarized in Table 3. From Table 3, it can be noticed
that PSO, CS and MoMA can averagely decrease the PDTD by 5.89%, 12.31% and
15.12%, respectively, once compared with the GA. From Tables 2 and 3, it was found
that the MoMA can provide optimal solutions of all ten selected MDVRP with shorter
total distance than the CS, PSO and GA, respectively.

PDTDPSO = 100×
(
TDGA − TDPSO

TDGA

)
(27)

PDTDCS = 100×
(
TDGA − TDCS

TDGA

)
(28)

PDTDMoMA = 100×
(
TDGA − TDMoMA

TDGA

)
(29)

Table 3. PDTD of PSO, CS and MoMA for MDVRP with-respect-to the GA

Problems
PDTD for MDVRP

with-respect-to the GA (%)
GA PSO CS MoMA

MDVRP#1 0.0000 1.2229 2.6466 4.2833
MDVRP#2 0.0000 5.3767 8.3731 9.1499
MDVRP#3 0.0000 6.3572 14.8334 19.2250
MDVRP#4 0.0000 2.4495 6.5594 8.3395
MDVRP#5 0.0000 13.5880 21.9844 26.9238
MDVRP#6 0.0000 1.4910 2.3258 3.3002
MDVRP#7 0.0000 10.1401 22.4469 25.8163
MDVRP#8 0.0000 4.0887 11.5129 15.1514
MDVRP#9 0.0000 12.6096 26.9809 30.4205
MDVRP#10 0.0000 1.5279 5.4112 8.6181
Averages 0.0000 5.8852 12.3075 15.1228
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5. Conclusions. The application of the MoMA to optimally solve the MDVRP problems
has been proposed in this paper. As one of the new hybrid metaheuristic optimization
search techniques, the MoMA combines with two types of the random process, i.e., uniform
and Lévy distributions, to generate the feasible solutions. It was associated with the
ASRM to balance the intensification and diversification as well as to speed up the search
process. In this work, ten selected real-world MDVRP consisting of approximately 50-
200 locations have been selected for testing the MoMA search performance based on the
modern optimization context. Results obtained by the MoMA have been compared with
those obtained by the GA, PSO and CS. From experimental results, it was found that the
MoMA can provide the optimal tours of all ten selected real-world MDVRP with shorter
total distance than the CS, PSO and GA, respectively. This can be concluded that the
MoMA can give optimal solutions of the MDVRP, satisfactory. For the future research,
the MoMA will be applied to solving the more practical MDVRP such as CMDVRP and
the MDVRP with pickup/delivery problem and time windows or MDVRP-PDPTW to
address the variety of conditions in real-world applications in order to minimize total
distance and balance the number of vehicles, number of service locations and traveling
times under traffic situation.
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[40] X.-S. Yang and S. Deb, Cuckoo search via Lévy flights, Proc. of the World Congress on Nature &
Biologically Inspired Computing (NaBIC2009), pp.210-214, 2009.

Author Biography

Supaporn Suwannarongsri received the B.Eng. degree in Industrial Engineering
from Thonburi University (TRU), Bangkok, Thailand, 2004; the M.Eng. degree in
Industrial Engineering from King Mongkut’s Institute of Technology Ladkrabang
(KMITL), Bangkok, Thailand, 2008; the Ph.D. degree in Sustainable Energy
and Environment Technology and Management from Rajamangala University of
Technology Rattanakosin (RMUTR), Nakhon Pathom, Thailand, 2014.

Dr. Suwannarongsri is currently an associate professor at the Department of Mate-
rials Handling and Logistics Engineering, Faculty of Engineering, King Mongkut’s
University of Technology North Bangkok (KMUTNB), Bangkok, Thailand. Her re-
search interests include logistics and materials handling, operation research, produc-
tion planning and design, and applications of metaheuristic algorithms to various
real-world industrial engineering problems. She has published over 90 papers in jour-
nals and conferences, nationally and internationally.


