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Abstract. This paper deals with the design of nonlinear controllers for a variable speed
permanent magnet synchronous generator (PMSG)-based wind turbine. In particular, the
design seeks to maximize the generated power of a wind turbine operating in Region II
where the wind speed is below the rated wind speed. The control design uses the maximum
power point tracking (MPPT) method to maximize energy extraction. The key step in the
design is the introduction of a state transformation that renders the nonlinear dynamics
of the wind turbine system into a form that is suitable for a variety of control designs.
Two control design schemes, a feedback linearization control and a sliding mode control
(SMC), are then proposed to achieve maximum power point tracking. It is shown that the
proposed controllers guarantee the asymptotic convergence of all state trajectories to their
desired values, and guarantee maximum power tracking. The stability of the closed-loop
system is proven through Lyapunov stability theory, and the effectiveness of the nonlinear
controllers is demonstrated through simulation studies.
Keywords: Nonlinear control, Control applications, Wind energy system, Permanent
magnet synchronous generator, MPPT, Feedback linearization, Sliding mode control

1. Introduction. In recent years, governments have become increasingly aware of the
importance of renewable energy. As a result, they are investing in the development of
major sources of renewable energy, such as wind, solar, and hydroelectric energy. Wind
turbines play a significant role in capturing wind energy and converting it into electrical
power. Maximum power point tracking (MPPT) technology is used to maximize power
generation at wind speeds below the rated wind speed [1]. In the literature, several stu-
dies have focused on control applications in wind turbine systems. The research below
summarizes a selection of the many control techniques that have been employed.

The work in [2] presented a new method for voltage regulation in microgrids. The
authors developed a large-signal model based on the concept of virtual synchronous gen-
erators (VSGs). The system’s voltage is then regulated using feedback linearization and
LQR methods. The suggested technique has been proven to be successful in regulating
the voltage while providing inertia and damping for microgrids. In [3], a super-twisting
sliding mode control (SMC) was proposed for the generator and the grid-side converter
to regulate the DC-link voltage of a permanent magnet synchronous generator (PMSG)
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wind turbine. The proposed controller was shown to be effective in achieving MPPT un-
der grid fault conditions. A control design based on first- and higher-order SMC for a
PMSG wind turbine system with bounded parameter variations was presented in [4]. The
controller was shown to be robust against bounded parameter variations. A modified per-
turb and observe algorithm for optimizing power extraction from PMSG wind turbine
systems was introduced in [5]. The suggested approach improves the efficiency of small
scale stand-alone wind turbine systems by altering the duty cycle of the buck converter
without the need for a mechanical sensor. Experimental results have shown that the pro-
posed strategy produces satisfactory results. In [6], a combined backstepping control law
and model predictive control (MPC) was used for the reliable operation of a PMSG-based
wind turbine under normal and grid fault conditions. While the backstepping control is
designed in continuous time to stabilize the dynamics, the MPC is designed for the dis-
cretized system to track the state reference signals. An improved maximum power point
tracking algorithm for a direct-driven wind turbine was proposed in [7]. The algorithm
creates a DC voltage reference signal, and then, a nonlinear control is designed to track
the desired reference. In [8], a polynomial disturbance observer was constructed for a
wind energy conversion system (WECS). The proposed observer estimates the electro-
magnetic torque, aerodynamic torque, wind speed, and disturbances. A linear quadratic
regulator (LQR) then uses these estimates to reject disturbances and achieve MPPT. In
[9], the control problem of a wind turbine with a doubly fed induction generator (DFIG)
was examined. Vector control was utilized to track the maximum power point in the re-
gion when wind speeds were less than the rated wind speed. For wind speeds greater
than the specified wind speed, a PI controller based on Taylor linearization was used to
manage the pitch dynamics. The MPPT algorithm, along with the pitch control, was
shown to give good performance. An integral backstepping control law was proposed in
[10] to attain the MPPT for a wind energy system based on a PMSG. The proposed
controller’s performance was compared to that of the sliding mode controller. The energy
generated by the PMSG under the integrated backstepping controller was found to be
of higher quality than that generated by the sliding mode controller. To compensate for
the lag in wind speed measurement, a bat algorithm is employed in [11] to improve an
extreme learning machine (ELM) to anticipate wind speed. Then, using the forecasted
wind speed, a state-feedback control law is designed to accomplish MPPT. In [12], the
control of a variable-speed squirrel-cage induction generator (SCIG)-based wind turbine
using an SMC scheme was presented. One controller is used to achieve MPPT, where-
as the other controls the grid-side converter, which regulates the DC-link voltage. The
study in [13] proposed a model reference adaptive control (MRAC) for a small wind tur-
bine with a PMSG to maximize power extraction in Region II. A state feedback control
utilizing the forecasted values is then used to achieve MPPT. The work in [14] provided a
novel structure for small-scale wind turbine systems as well as an MPPT-Fuzzy controller
architecture for improved quality control. The suggested controller provides advantages
such as fast response and flexibility. It was demonstrated that the recommended con-
troller outperformed the typical controller based on hill climb search. In [15], a sliding
mode control observer based on the supertwisting algorithm was presented to estimate
aerodynamic torque and rotor acceleration. Then, SMC was developed for the torque and
pitch control of a wind turbine system with a PMSG. The proposed control scheme was
shown to be robust against wind turbulence. In [16], a nonlinear backstepping controller,
incorporating a high gain term, was designed for a PMSG-based wind turbine system.
The controller is aimed at tracking a desired rotation speed under unknown wind torque
dynamics. The proposed control scheme was found to have a faster response and more
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precise tracking than the typical vector control technique. A back-to-back (BTB) convert-
er of a PMSG-based wind turbine was controlled through a PID-type terminal SMC [17].
The controller was able to stabilize the machine side as well as the grid side of the BTB
converter despite the voltage variations in the DC-link. In [18], an MPPT algorithm based
on the voltage-power (U -P ) curve was proposed for a small wind turbine without the need
for wind speed or mechanical rotor speed measurement. The rotor speed was estimated
using the voltage-current information from the generator. The proposed technique out-
performed methods based on the (ω-P ) curve. The stabilization of a wind energy system
under parametric uncertainties through integral terminal sliding mode control (ITSMC)
was addressed in [19]. The proposed controller was shown to regulate the converters on
the generator side and grid side while overcoming uncertainties.

This study aims to design nonlinear controllers for a variable-speed wind turbine eq-
uipped with a permanent-magnet synchronous generator to maximize the generated power
in Region II. The main contributions of this study are as follows. First, a state transforma-
tion that transforms the nonlinear dynamics of the wind turbine system into a canonical
form, which facilitates the subsequent control design, is introduced. The transformation
that is being suggested brings the dynamics of the wind turbine system into a normal
form, which makes it possible to use a wide variety of control design strategies. Subse-
quently, a feedback linearization control law and an SMC are designed to steer the state
trajectories to their desired values. Finally, a robust SMC scheme is proposed for a wind
turbine system subject to external disturbances.

The remaining sections of the paper are structured as follows. The development of
the PMSG-based wind turbine model is presented in Section 2. Section 3 presents a
transformation that maps the nonlinear dynamics into a form that eases the control
design. The employment of a feedback linearizing controller for the transformed system
is presented in Section 4. Section 5 demonstrates the design of a sliding mode control
for the transformed wind turbine system. In Section 6, a robust SMC is proposed for a
wind turbine system under external disturbance. Simulation studies demonstrating the
effectiveness of the proposed controllers are presented in Section 7, followed by concluding
remarks in Section 8.

2. Model of the Wind Turbine System.

2.1. The aerodynamic model. Wind turbines do not capture all wind energy. The
aerodynamic power (output power) of the wind turbine is given by

Pw =
1

2
ρACp(λ, β)v

3

where ρ: the air density; A: the area swept by the blades of the turbine [m2]; Cp(λ, β):
the coefficient of power conversion; λ: the tip speed ratio [m/s]; β: the blade pitch angle;
v: the wind speed [m/s].

It is assumed that the wind speed is a smooth function of time. Figure 1 depicts the
dependence of the power coefficient Cp on the blade angle β (in degrees) and the tip speed
ratio λ. It can be observed from the figure that the power coefficient is maximum when
β = 0. The power coefficient describes the efficiency of the power extraction. A typical
function of the power coefficient Cp is given by [19]

Cp (λ, β) = c1

(c2
Γ

− c3β − c4

)
e−

c5
Γ (1)

where Γ is defined as
1

Γ
=

1

λ+ c6β
− c7

1 + β3
(2)
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and the constant coefficients c1, . . . , c7 depend on the type of the wind turbine rotor. The
tip speed ratio λ is related to the wind speed v by

λ =
ωmr

v
(3)

where ωm is the mechanical rotor speed of the turbine [rad/s], and r is the radius of the
rotor [m]. The mechanical torque [N.m] that is transmitted to the generator is given by

Tm =
Pw

ωm

=
0.5ρACp(λ, β)v

3

ωm

Figure 1. Wind turbine power coefficient

2.2. The generator model. The mathematical model of the PMSG in the d-q reference
frame is derived from the equivalent circuits shown in Figures 2 and 3.

Figure 2. The d-axis equivalent circuit

Figure 3. The q-axis equivalent circuit

The voltage equations can be expressed as

Vd = Rsid +
d

dt
Ldid − ωeLqiq
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Vq = Rsiq +
d

dt
Lqiq − ωe(Ldid + ϕ)

where Vd, Vq: the d-q axis voltages [V]; id, iq: the direct and quadrature axis currents [A];
Rs: the stator resistance [Ω]; Ld, Lq: the dq axis inductances [mH]; ϕ: the permanent
magnetic flux [Wb]; ωe: the electrical rotor speed [rad/s].

The electrical rotor speed is related to the mechanical rotor speed by

ωe = PNωm (4)

where P is the number of pole pairs of the generator and N is the gear ratio. In this
work, it is assumed that the PMSG has a uniform air gap; therefore, Ld = Lq = L.
Furthermore, ignoring the viscous friction coefficient of the rotor, the drive train dynamics
can be expressed as

dωm

dt
=

1

J
(Tm − Te)

where J is the inertia of the turbine, and Te is the electrical torque. Finally, combining
the voltage equations with the drive-train dynamics and using Equation (4), the PMSG
model is given by

i̇d = −Rs

L
id + ωeiq +

1

L
Vd

i̇q = −Rs

L
iq − ωeid −

ωeϕ

L
+

1

L
Vq

ω̇e =
P

J

(
Tm

N
− Te

)
where the electromagnetic torque Te is given by

Te =
3

2
Pϕiq

For convenience, the state vector, x(t), is defined as x = [x1 x2 x3]
T = [id iq ωe]

T , and
the control vector [u1 u2]

T = [Vd Vq]
T . Furthermore, to simplify the subsequent analysis,

the following constant parameters are defined: a1 = Rs

L
, a2 = 1

L
, a3 = ϕ

L
, a4 = P

JN
, and

a5 =
3P 2ϕ
2J

. The new dynamics of the PMSG can be expressed as

ẋ1 = −a1x1 + x2x3 + a2u1

ẋ2 = −a1x2 − x1x3 − a3x3 + a2u2

ẋ3 = a4Tm − a5x2 (5)

2.3. The error dynamics. The error dynamics are obtained in this subsection. To this
end, let e(t) = x(t)− xd(t) be such that

e1 = x1 − x1d

e2 = x2 − x2d

e3 = x3 − x3d

where xd(t) = [x1d x2d x3d]
T is the vector of desired, steady-state trajectories, whose

dynamics are given by

ẋ1d = −a1x1d + x2dx3d + a2u1ss

ẋ2d = −a1x2d − x1dx3d − a3x3d + a2u2ss

ẋ3d = a4T
∗
m − a5x2d (6)
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where u1ss and u2ss represent the steady-state values of the control signals u1(t) and u2(t),
respectively, and T ∗

m is the mechanical torque at maximum power generation. Taking the
time-derivative of the error signals and using Equations (5) and (6), the error dynamics
can be expressed as

ė1 = −a1e1 + e2e3 + x3de2 + x2de3 − a2u1ss + a2u1

ė2 = −a1e2 − a3e3 − e1e3 − x3de1 − x1de3 − a2u2ss + a2u2

ė3 = a4(Tm − T ∗
m)− a5e2 (7)

The steady-state expressions for the state and control variables are found as follows.
First, it is common to set the d-axis current id to zero to reduce the copper losses.
Therefore, the desired value of the d-axis current is x1d = 0. Next, using Equations (3)
and (4), the desired value of the electrical rotor speed is given by

x3d = PNω∗
m =

PNλ∗v

r
(8)

where λ∗ is the optimum tip speed ratio at which the power coefficient Cp attains its
maximum and ω∗

m is the optimal rotor speed. To find the desired value of the q-axis
current, x2d, we take the time-derivative of Equation (8) and substitute the result into
the ẋ3d dynamics in Equation (6). This yields

x2d =
a4
a5

T ∗
m − PNλ∗

a5r
v̇ (9)

where, from Equation (4), the mechanical torque at the optimum values can be expressed
as

T ∗
m =

QC∗
p(λ, β)v

3

x3d

where Q = 0.5ρπr2PN . Additionally, we have used Equation (4) and the area swept
by the turbine blades A = πr2. The steady-state expressions for the d-axis and q-axis
voltages, u1ss and u2ss, respectively, can be found as follows. First, using x1d = 0 from the
ẋ1d dynamics in Equation (6), the steady-state value of the d-axis voltage can be written
as

u1ss = −x2dx3d

a2
The expression for u2ss can be obtained by taking the time-derivative of x2d in Equation
(9), and substituting the result into the ẋ2d dynamics in Equation (6) to obtain

u2ss =
1

a2

(
a4
a5

Ṫ ∗
m − PNλ∗

a5r
v̈ + a1x2d + a3x3d

)
3. State Transformation. From dynamic Equation (7), it can be observed that with
an appropriate choice for the control signals u1(t) and u2(t), the errors e1 and e2 can be
driven to zero at t → ∞. However, the error signal e3, and therefore the state variable
x3(t) cannot be affected by the control signals. Therefore, we introduce a transformation
that transforms the error dynamics model into a companion form such that a variety of
control schemes can be applied. Furthermore, as the subsequent analysis shows, all error
signals can be driven to zero. To this end, we define the transformation z = T (e) as
follows:

z1 = e1

z2 = e3

z3 = a4(Tm − T ∗
m)− a5e2 (10)
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It can be observed that transformation (10) is a diffeomorphism. Taking the time-derivative
of the state vector z(t), and with the choice of the control signals,

u1 =
1

a2
(a1e1 − e2e3 − x3de2 − x2de3 + a2u1ss + e3)

u2 =
1

a2
(a1e2 + a3e3 + e1e3 + x3de1 + a2u2ss − u(t))

where u(t) is an auxiliary control variable, the dynamics of the transformed system become

ż1 = z2

ż2 = z3

ż3 = f + a5u (11)

where f = a4

(
Ṫm − Ṫ ∗

m

)
, and

Ṫm =
∂Tm

∂ωe

ω̇e +
∂Tm

∂β
β̇ +

∂Tm

∂v
v̇ (12)

Now, due to the fact that β = 0 in Region II, expression (2) reduces to

1

Γ
=

1

λ
− c7 (13)

Also, substituting Equation (4) into Equation (3), the tip speed ratio can be expressed as

λ =
ωer

PNv
(14)

Furthermore, from Equation (14) and Equation (13), expression (1) for the function of
the power coefficient can be written as

Cp (ωe, v) = c1

(
c2PN v

ωer
− c2c7 − c4

)
e−c5(PNv

ωer
−c7) (15)

Finally, using Equation (15) and the fact that Tm =
(
Qv3/ωe

)
Cp(ωe, v), expression (12)

can be written as

Ṫm =

(
−Qv3Cp

1

ω2
e

+
Qv3

ωe

∂Cp

∂ωe

)
ω̇e +

(
3Qv2Cp

ωe

+
Qv3

ωe

∂Cp

∂v

)
v̇

4. Design of a Feedback Linearization Controller. In this section, a control design
based on the feedback linearization methodology is proposed for the wind turbine system.
Note that transforming the wind turbine dynamics into the normal form given by (11)
makes feedback linearization design straightforward. The following propositions present
the main results.

Proposition 4.1. The nonlinear dynamics of the wind turbine system in (5) are asymp-
totically stable under the feedback linearizing controller:

u(t) = − 1

a5

(
a4

(
Ṫm − Ṫ ∗

m

)
+ α1z1 + α2z2 + α3z3

)
(16)

where α1, α2, and α3 are positive scalars to be designed.

Proof: We consider the dynamics of the transformed system (11). By substituting for
the control law in (16), the dynamics of the closed-loop system are expressed as

ż(t) = Ac1z(t)
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where Ac1 is given by

Ac1 =

 0 1 0
0 0 1

−α1 −α2 −α3


With an appropriate choice of the parameters αi (i = 1, 2, 3), the eigenvalues of the
closed-loop matrix Ac1 can be placed in the left-half plane, thus ensuring the asymptotic
stability of the transformed system dynamics such that zi(t) (i = 1, 2, 3) converge to the
origin as t tends to infinity.
From transformation (10), because z1, z2 → 0 as t → ∞, then e1, e3 → 0 as t →

∞. Therefore, both the d-axis current, x1, and the electrical rotor speed, x3, converge
to their desired values, x1d and x3d. Furthermore, because z3 → 0 as t → ∞, then
e2 → a4

a5
(Tm − T ∗

m). Now, from the expression of Tm (T ∗
m), because the wind speed, v, is

bounded, and because it was established that x3 → x3d (or ωe → ω∗
e), then we can show

that e2 → 0 if maximum power tracking is attained. Considering Region II (β = 0), from
the expression of the tip speed ratio, λ, in Equation (3), it was shown that ωe → ω∗

e (or
ωm → ω∗

m). Thus, λ → λ∗ and as a consequence Cp(λ, β) attains its maximum value.
Finally, we can conclude that e2 → 0 as t → ∞, that is, the q-axis current, x2, converges
to its desired value x2d as t → ∞.

5. Sliding Mode Control Design. This section develops a nonlinear controller for a
wind turbine system using the SMC approach. SMC is a control strategy that is well
known for its fast response and robustness against parameter uncertainties and external
disturbances. It consists of a reaching phase, where the state trajectories are forced to-
wards a predefined manifold (also known as a sliding surface), and a sliding phase, where
the state trajectories are forced to stay on the manifold once it is reached [20].
The derivation of the SMC is based on the following proposed sliding surface σ:

σ(t) = z3 + k1z1 + k2z2 (17)

where k1 and k2 are positive scalars chosen such that the polynomial P (s) = s2+k2s
3+k1

is Hurwitz. The advantage of using a linear sliding manifold is that the closed-loop dy-
namics are of reduced order.

Proposition 5.1. The nonlinear dynamics of the wind turbine system in (5) are asymp-
totically stable under the sliding mode controller:

u(t) = − 1

a5

(
a4

(
Ṫm − Ṫ ∗

m

)
+ k1z2 + k2z3 + ησ +Wsign(σ)

)
(18)

where η,W > 0 are scalars to be designed.

Proof: To ensure finite time convergence to the sliding manifold, the reachability
condition, that is, σσ̇ < 0, must be satisfied. This condition ensures that the sliding
surface is attractive so that the trajectories are driven towards the sliding manifold.
To this end, select the Lyapunov function candidate V (t) such that

V =
1

2
σ2

Taking the time-derivative of V (t) along the trajectories of (11) and substituting for the
control law in (18), it follows that

V̇ (t) = σσ̇

= σ{ż3 + k1ż1 + k2ż2}
= σ{f + a5u+ k1z2 + k2z3}
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= σ
{
f + k1z2 + k2z3 −

(
a4

(
Ṫm − Ṫ ∗

m

)
+ k1z2 + k2z3 + ησ +Wsign(σ)

)}
= −η|σ|2 −W |σ|

Because η and W are positive scalars, it follows that V̇ is negative definite when σ ̸= 0.
Consequently, the sliding manifold is attained in finite time. From Equation (17), once the
sliding manifold is reached, then σ = 0 such that z3 = −k1z1−k2z2. Thus, the closed-loop
dynamics can be expressed as

˙̄z = Aclz̄

where z̄ = [z1 z2]
T , and

Acl =

[
0 1

−k1 −k2

]
With the appropriate choice of the gain parameters k1 and k2, the eigenvalues of the

matrix Acl can be placed in the left-half plane, thereby ensuring the asymptotic stability
of the closed loop. Because z1, z2 → 0 as t → ∞, then z3 → 0 as t → ∞. Furthermore,
from the transformation (10), because z1, z2 → 0 as t → ∞, then e1, e3 → 0 as t → ∞.
The remainder of the proof follows steps similar to those in Section 4. Hence, the state
trajectories x1, x2, x3 tend toward their desired values as t tends to infinity.

6. Robust Sliding Mode Control Design. In this section, a robust SMC is designed
for a wind turbine system under a time-varying external disturbance as follows:

ẋ1 = −a1x1 + x2x3 + a2u1

ẋ2 = −a1x2 − x1x3 − a3x3 + a2u2 + d(t)

ẋ3 = a4Tm − a5x2

where the disturbance d(t) is bounded as follows:

|d(t)| ≤ M (19)

where M > 0 is a constant. After obtaining the error dynamics and invoking the trans-
formation (10), the transformed system dynamics are given by

ż1 = z2

ż2 = z3

ż3 = f + a5u− a5d(t) (20)

Proposition 6.1. The nonlinear dynamics of the wind turbine system in (19) are asymp-
totically stable under the robust sliding mode controller:

u(t) = − 1

a5

(
a4

(
Ṫm − Ṫ ∗

m

)
+ k1z2 + k2z3 + ησ +Wsign(σ)

)
(21)

where η > 0 and W > |a5M | are scalars to be designed.

Proof: Consider the sliding surface σ(t) = z3+k1z1+k2z2, and the Lyapunov function
candidate V (t) such that

V =
1

2
σ2

Taking the time-derivative of V (t) along the trajectories of (20) gives

V̇ (t) = σσ̇ = σ{f + a5u− a5d(t) + k1z2 + k2z3}
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Substituting for the control law in (21), it follows that

V̇ (t) = σ {−ησ −Wsign(σ)− a5d(t)}
Using the bound on the disturbance in (19), we have

V̇ (t) ≤ −η|σ|2 −W |σ|+ |a5M ||σ|
Choose W = |a5M |+ ζ, where ζ > 0, then

V̇ (t) = −η|σ|2 − ζ|σ|

Since V̇ (t) < 0, then finite time convergence is guaranteed. The rest of the proof follows
similar steps to those in the previous section.

7. Results and Discussions. Simulation studies are presented in this section to demon-
strate the usefulness of the suggested controllers in attaining maximum power tracking.
The nominal parameters of the PMSG-based wind turbine model are listed in Table 1 [4].
The parameters of the power coefficient function in Equations (1) and (2) ci (i = 1, . . . , 7)
are such that c1 = 0.39, c2 = 116, c3 = 0.4, c4 = 5, c5 = 16.5, c6 = 0.089, and c7 = 0.035.
The maximum power coefficient is C∗

p = 0.4953. The wind speed profile is shown in
Figure 4.
First, we discuss the simulation results obtained using the feedback linearization con-

troller (16). The controller gains were chosen such that α1 = 30, α2 = 29, α3 = 10. Hence,
the eigenvalues of the closed-loop matrix Ac1 are λ1 = −6, and λ2,3 = −2± j1. Figure 5

Table 1. Parameters of the wind turbine model

Parameter Description Value

r Radius of the rotor [m] 3

Rs Stator resistance [Ω] 3.5

L dq axis inductance [mH] 35

ρ Air density [kg/m3] 1.25

ϕ Permanent magnet flux [Wb] 0.3

P Number of pole pairs 6

J Inertia of the turbine [kg·m2] 1

Figure 4. The wind speed profile
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Figure 5. Error signals under the feedback linearization controller

Figure 6. Wind turbine’s state trajectories (solid line) vs desired trajec-
tories (dash-dot line) under the feedback linearization controller

shows the asymptotic convergence of the error signals to zero as t tends to infinity. The
convergence of the state trajectories towards their desired values is depicted in Figure
6, where the solid line represents the actual states, and the dash-dot line represents the
desired values. The control actions of inputs u1(t) = Vd and u2(t) = Vq are shown in
Figure 7. Finally, Figure 8 shows that the power coefficient attains its maximum value,
which demonstrates the effectiveness of the feedback linearizing controller.

Next, we present the simulation results for the developed sliding mode controller given
in Equation (18). The controller gains were chosen such that η = 18 and W = 2. The
gains of the sliding function, σ(t), were chosen as k1 = 5 and k2 = 4 so that closed-loop
matrix of the reduced-order dynamics, Acl, is stable with eigenvalues at λ = −2 ± j.
To eliminate chattering caused by the sliding mode controller, the simulation employs a
saturation function rather than the signum function. Figures 9-12 show the performance
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Figure 7. Direct-axis and quadrature-axis controllers

Figure 8. Power coefficient of the wind turbine under the feedback lin-
earization controller

of the sliding mode controller. Figure 9 shows that the error signals tend to zero as time
t tends to infinity. The convergence of the state trajectories towards their desired values
is depicted in Figure 10, where the solid line represents the actual states, and the dash-
dot line represents the desired values. The evolution of the control signals is shown in
Figure 11. Figure 12 shows the power coefficient function, Cp, attaining its maximum
value of 0.4953, which reveals the effectiveness of the sliding mode controller.
Finally, the robustness of the SMC was demonstrated by considering an uncertain

wind turbine model (19). The time-varying bounded disturbance has the form dt(t) =
0.5 sin(2πt). The controller gains are chosen as η = 18 and W = 9 > |a5M |. It is shown
in Figures 13 and 14 that the robust SMC achieves MPPT despite the existence of the
external disturbance. In particular, Figure 13 depicts the asymptotic convergence of the
state trajectories to their desired values, whereas Figure 14 shows the attainment of the
power coefficient function Cp, to its maximum value.

8. Conclusion. A control strategy based on feedback linearization and SMC was pro-
posed for tracking the maximum power point in Region II for a PMSG-based wind turbine.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.20, NO.1, 2024 325

Figure 9. Error signals under the sliding mode controller

Figure 10. Wind turbine’s state trajectories (solid line) vs desired trajec-
tories (dash-dot line) under the sliding mode controller

Figure 11. Direct-axis and quadrature-axis controllers
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Figure 12. Power coefficient of the wind turbine under the sliding mode controller

Figure 13. Wind turbine’s state trajectories (solid line) vs desired trajec-
tories (dash-dot line) under the robust sliding mode controller

Figure 14. Power coefficient of the wind turbine under the robust sliding
mode controller
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The control design procedure is facilitated by a nonlinear transformation that converts
the wind turbine system’s nonlinear dynamics into a normal form. The suggested trans-
formation enables the implementation of a wide range of control design techniques. The
proposed controllers have been shown to successfully achieve MPPT and drive system
trajectories toward their desired values. Furthermore, the robust SMC has been shown to
be effective in rejecting time-varying disturbances. The simulation outcomes validate the
efficiency of the proposed nonlinear controllers. One limitation of the design is that it is
based on the assumption that all states are measurable. Furthermore, the presence of the
signum function in the SMC limits its practical implementation. This limitation, howev-
er, can be overcome by using an approximation to the signum function. Future work will
focus on integrating an observer into the control design to estimate unmeasurable states.
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