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Abstract. In this paper, we apply the
(

G
′

G

)

-expansion and the Tanh methods to find-

ing exact traveling wave solutions of the space and time fractional Zakharov-Kuznetsov
(FZK) equation and the space and time fractional Zoomeron (FZZ) equation using the
conformable fractional derivatives. For the FZK equation, we obtain six solutions with

the Tanh method and three solutions with the
(

G
′

G

)

-expansion method. On the other hand,

for the FZZ equation, we find one solution with the Tanh method and three solutions with

the second method. From this study, we observe that the
(

G
′

G

)

-expansion method and

the Tanh method are not equivalent, it is shown that the Tanh method is more effective

than the
(

G
′

G

)

-expansion method, for solving fractional differential equation in special

conditions.

Keywords: Conformable fractional derivative, Tanh method,
(

G
′

G

)

-expansion method,

Traveling wave solution, FZK equation, FZZ equation

1. Introduction. Fractional differential equations (FDEs for short) have attracted sig-
nificant attention in recent years due to their applications in various fields such as physics,
engineering, and biology [1, 2, 6, 19, 20, 21, 28, 29]. These equations contain derivatives
of non-integer order, and therefore, they generalize the classical differential equations.
One of the most interesting aspects of FDEs is the existence of traveling wave solutions,
which play a crucial role in understanding of the dynamics of many physical phenomena
[30, 31, 32, 33, 34].
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Finding analytical solutions to FDEs is a challenging task due to the non-locality of
the fractional derivatives. Therefore, several methods have been proposed to solve these
equations.
In this paper, we consider the Tanh and

(

G′

G

)

-expansion numerical methods to solve
some classes of FDEs. The Tanh method is a powerful and efficient method for solving
nonlinear differential equations, including FDEs, see for instance [3, 12, 16, 24]. This
method is based on the assumption that the solution can be expressed in terms of hyper-
bolic functions. By substituting this ansatz into the FDE and solving, for the coefficients,
one can obtain analytical expressions for the traveling wave solutions.
The

(

G′

G

)

-expansion method is another technique for solving nonlinear differential equa-
tions, which has been widely applied to FDEs [9, 10, 11, 18, 25]. This method is based on
the idea of expanding the solution as a power series of a function G(x), which satisfies a
linear differential equation. By substituting the series into the associated FDE and solving,
for the coefficients, one can obtain analytical expressions for the traveling wave solutions.
In addition to the above two applied methods, we will also use the Khalil conformable

fractional derivatives in our proposed FDEs [8]. These derivatives are relatively new con-
cept in the field of FDEs and have been shown to have some advantages over other types
of fractional derivatives [26].
The main aim of this paper is to employ the Tanh method and the

(

G′

G

)

-expansion
method to find traveling wave solutions for the following two FDEs.
1) The conformable space-time fractional Zakharov-Kuznetsov (FZK) equation:

T α
t u(t, x, y, z) + Au(t, x, y, z)T β1

x u(t, x, y, z) + T 2β1
x u(t, x, y, z) + T 2β2

y u(t, x, y, z)

+ T 2β3
z u(t, x, y, z) = 0,

(1)

where, T β1
x , T β2

y , T β3
z , T α

t are the conformable fractional derivatives in the sense of Khalil
et al. [8], with α (0 < α ≤ 1) and β (0 < βi ≤ 1, i ∈ {1, 2, 3}) as parameters describing the
order of the conformable time fractional and the conformable space fractional, respectively,
andA is constant. When α = βi = 1, Equation (1) corresponds to the Zakharov-Kuznetsov
equation. The FZK equation describes the propagation of long-amplitude ion-acoustic
waves in a plasma with dispersion and dissipation [22].
2) The conformable space-time fractional Zoomeron (FZZ) equation:

T 2α
t u(t, x, y)

(

T β1
x T β2

y u(t, x, y)

u(t, x, y)

)

− T 2β1
x u(t, x, y)

(

T β1
x T β2

y u(t, x, y)

u(t, x, y)

)

+2T α
t u(t, x, y)

(

T β1
x u2(t, x, y)

)

= 0.

(2)

The FZZ equation models the propagation of light pulses in a nonlinear fiber-optic medium
with higher-order dispersion and nonlinearity [23].
As important connections between all the paragraphs of our paper, we shall present the

following three important comments.
Common Mathematical Methods: In our work, the

(

G′

G

)

-expansion method and
the Tanh method are applied to both the FZK and FZZ equations.
These methods are two different techniques used to find exact solutions to differential

equations. By using the same methods for both equations, one can potentially draw paral-
lels and compare the solutions that we obtain. This may lead to insight into the behavior
of these different physical systems modeled by the FZK and FZZ equations.
Fractional Calculus and Conformable Fractional Derivatives: Both the above

two equations involve fractional calculus and, in particular, conformable fractional deriva-
tives. So, we are interested in a branch of mathematics that extends traditional calculus
to non-integer orders, making it suitable for modeling complex physical phenomena. By
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applying these fractional calculus techniques to both the FZK and FZZ equations, the
interested reader is essentially using a common framework for his analysis.

Physical Phenomena: The FZK and FZZ equations likely model physical systems
with certain similarities or interrelated aspects. By studying these equations together,
researcher may be interested in understanding how similar mathematical methods and
techniques can be used to describe different physical phenomena. This can provide a
more comprehensive understanding of the underlying physics and the connection between
these systems.

In summary of the above three paragraphs and for a possible connection between the
parts of our paper, the study of the FZK and FZZ equations lies in the shared mathemat-
ical methods, fractional calculus techniques, and the potential for gaining insights into
related physical phenomena by applying similar approaches to their analysis.

At the end of this section, the remaining paper can be organized as follows. In Section
2, we will provide a brief review of conformable fractional derivatives. In Section 3, we will
introduce the Tanh method and the

(

G′

G

)

-expansion method. In Section 4, we will apply
these two methods for solving the space-time conformable FZK equation. The space-time
conformable FZZ equation will also be studied by the two methods in this section. Finally,
in Section 5, we will summarize our results and provide some concluding remarks.

2. Conformable Fractional Derivatives. In this section, we just recall two definitions
with small properties on Khalil conformable fractional derivatives, see [8].

Definition 2.1. Let f : (0,∞) → R. The conformable fractional derivative of order

0 < α < 1 is defined by

(T αf) (t) =
∂αf(t, x)

∂tα
= lim

ε→0

(

f
(

t+ εt1−α
)

− f(t)

ε

)

, t > 0, 0 < α ≤ 1. (3)

Definition 2.2. The conformable fractional integral of a function f : (0,∞) → R of

order 0 < α < 1 is defined as

(Iαf) (t) =

∫ t

0

τα−1f(τ)dτ, 0 < α ≤ 1. (4)

The following properties are needed.

T α(af(t) + bg(t)) = aT αf(t) + bT αg(t), ∀a, b ∈ R, (5)

IαT αf(t) = f(t)− f(0), (6)

(T αf) (t) = t1−αdf(t)

dt
. (7)

3. Tanh Method and
(

G
′

G

)

-Expansion Method. In this section, we present the Tanh

and the
(

G′

G

)

-expansion methods. For more details on the two methods, one can consult
[4, 5, 7, 13, 14, 15, 17, 18, 27].

We consider the following problem:

F
(

u, T α
t u, T

β1

x1
u, T β2

x2
u, T β3

x3
u, T 2β1

x1
u, . . . .

)

= 0, (8)

where, u is an unknown function of x1, x2, . . . , xn and t, F is a polynomial that depends
on u and its conformable partial fractional derivatives, T αu, T βiu (i = 1, 2, . . . , n) are
conformable partial fractional derivatives of u, with 0 < α, βi ≤ 1 and T 2αu = T α (T αu).

To search for traveling wave solutions for the above equation, we use the transformation:

u(x1, x2, . . . , xn, t) = U(ξ), (9)
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where,

ξ =
k1x

β1

1

β1
+

k2x
β2

2

β2
+ · · ·+ knx

βn
n

βn

− ctα

α
, (10)

such that, ki (i = 1, 2, . . . , n) and c are arbitrary constants.
So, we get the following ODE

G
(

U, U ′, U ′′, . . . .
)

= 0, (11)

which needs to be integrated.

3.1. Ideas of Tanh method. The main steps of the Tanh method for constructing the
solutions for Equation (8) can be given as follows.
Step 1: By means of the Tanh method, we can choose the following change of variable:

Y = tanh(µξ), µ ∈ R. (12)

Therefore, we obtain the following new expressions:

d

dξ
= µ

(

1− Y 2
) d

dY
, (13)

d2

dξ2
= µ2

(

1− Y 2
)

(

−2Y
d

dY
+
(

1− Y 2
) d2

dY 2

)

, (14)

d3

dξ3
= µ3

(

1− Y 2
)

(

2
(

3Y 2 − 1
) d

dY
− 6Y

(

1− Y 2
) d2

dY 2
+
(

1− Y 2
)2 d3

dY 3

)

. (15)

Then, we use the following finite expansion

U(ξ) = S(Y ) =

m
∑

k=0

akY
k +

m
∑

k=1

bkY
−k, (16)

where m is a positive integer that needs to be determined and ak, bk are constants to be
determined later.
The parameter m is usually obtained by balancing between the maximum order non-

linear term and the derivative of the maximum order appearing in Equation (11), and we
get

U r → rm U (r) → m+ r. (17)

Step 2: We substitute Equation (12) together with Equation (16) in Equation (11)
and using Maple, we find µ, ak (k = 0, 1, 2, . . . , m), bk (k = 1, 2, . . . , m).
Step 3: We insert the values that have been found in Step 2 into Equation (16) along

with Equation (12), and we construct closed-form traveling wave solutions of Equation
(11) from which we find the solutions of Equation (8).

3.2. Idea of
(

G
′

G

)

-expansion method. The main steps of
(

G′

G

)

-expansion method can

be given as follows.
Step 1: Suppose that the solutions of Equation (11) can be expressed by a polynomial

in
(

G′

G

)

as follows:

U(ξ) =

m
∑

i=0

ai

(

G′

G

)i

, am 6= 0, (18)

where, ai are constants, m is positive integer, and G = G(ξ) satisfies the following ODE:

G′′ + λG′ + µG = 0, (19)

where, λ and µ are constants to be determined later.
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Step 2: By substituting Equations (18) and (19) into Equation (11), and collecting all
terms with the same order of

(

G′

G

)

together, then by setting each coefficient to zero, we
obtained a set of algebraic equations for ai, c, k1, k2 and k3.

Step 3: We solve the system of algebraic equations obtained in Step 2, for ai, i =
0, 1, . . . , m, c, k1, k2 and k3. Then, we substitute ai (i = 0, 1, . . . , m), c, k1, k2, k3 and the
solutions of Equation (19) into Equation (18), and we can obtain the set of the solutions
of Equation (8).

4. New Traveling Waves Solutions. In this section, we apply the above proposed
method to finding traveling wave solutions for the FZK and FZZ equations.

4.1. Space-time conformable FZK equation. We consider the following version of
the space-time conformable FZK equation:

T α
t u(t, x, y, z) + Au(t, x, y, z)T β1

x u(t, x, y, z) + T 2β1
x u(t, x, y, z)

+ T 2β2
y u(t, x, y, z) + T 2β3

z u(t, x, y, z) = 0,
(20)

where, T β1
x , T β2

y , T β3
z , T α

t are the conformable fractional derivatives, with 0 < α, β1, β2, β3 ≤
1 and A is constant.

We take

u(t, x, y, z) = U(ξ), ξ =
k1x

β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
− ctα

α
, (21)

where, k1, k2, k3, c are constants.
Therefore,

T α
t u = −cUξ, T β1

x u = k1Uξ, T 2β1
x u = k2

1Uξξ, T 2β2
y u = k2

2Uξξ,

T 2β3
z u = k2

3Uξξ.
(22)

Substituting Equations (21) and (22) into Equation (20), we have

−cUξ + Ak1UUξ + k2
1Uξξ + k2

2Uξξ + k2
3Uξξ = 0;

therefore, we obtain

kUξ − cU + k′U2 = 0, (23)

where, k = k2
1 + k2

2 + k2
3 and k′ = 1

2
Ak1.

4.1.1. Traveling waves using Tanh method. For our equation, in the case of Tanh method,
we have m = 1.

This method admits the following expression:

U(ξ) = a0 + a1Y + b1Y
−1. (24)

Hence, by Equation (13), we have

Uξ = µ
(

1− Y 2
)dU

dY
= µa1 + µb1 − µb1Y

−2 − µa1Y
2. (25)

Putting Equation (25) in Equation (23), we obtain

kµa1 + kµb1 − ca0 + k′a20 + 2k′a1b1 +
(

2k′a0a1 − ca1
)

Y +
(

k′a21 − kµa1
)

Y 2

+
(

2k′a0b1 − cb1
)

Y −1 +
(

k′b21 − kµb1
)

Y −2 = 0.
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This gives
kµa1 + kµb1 − ca0 + k′a20 + 2k′a1b1 = 0

2k′a0a1 − ca1 = 0

k′a21 − kµa1 = 0

2k′a0b1 − cb1 = 0

k′b21 − kµb1 = 0.

(26)

By solving the above system, we can obtain the following set of solutions.
Case 1:

a0 =
2µk

Ak1
, a1 = 0, b1 =

2µk

Ak1
, c = 2µk.

Substituting these constants into Equation (24), we get the following exact solution:

u(t, x, y, z) =
2µk

Ak1
+

2µk

Ak1
cothµ

(

k1x
β1

β1

+
k2y

β2

β2

+
k3z

β3

β3

− 2µktα

α

)

. (27)

Figure 1 shows the graph of solution (27) for some particular values of the parameters.

A = ∓1, β1 =
4

5
, α = 1, k1 = 1, k2 =

1

2
, k3 =

1

4
, µ = 2.

(a) (b)

Figure 1. Graph of Equation (27) for y = z = 0

Case 2:

a0 = −2µk

Ak1
, a1 = 0, b1 =

2µk

Ak1
, c = −2µk.

By substitution into Equation (24), we obtain

u(t, x, y, z) = −2µk

Ak1
+

2µk

Ak1
cothµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

2µktα

α

)

. (28)

Case 3:

a0 =
2µk

Ak1
, a1 =

2µk

Ak1
, b1 = 0, c = 2µk.

Hence, we get

u(t, x, y, z) =
2µk

Ak1
+

2µk

Ak1
tanhµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
− 2µtα

α

)

. (29)

Figure 2 shows the graph of solution (29) under some particular values.

A = ∓1, β1 =
4

5
, α = 1, k1 = 1, k2 =

1

2
, k3 =

1

4
, µ = 2.
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(a) (b)

Figure 2. Graph of Equation (29) for y = z = 0

Case 4:

a0 = −2µk

Ak1
, a1 =

2µk

Ak1
, b1 = 0, c = −2µk.

Hence, we obtain

u(t, x, y, z) = −2µk

Ak1
+

2µk

Ak1
tanhµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

2µktα

α

)

. (30)

Case 5:

a0 =
4µk

Ak1
, a1 =

2µk

Ak1
, b1 =

2µk

Ak1
, c = 4µk.

So, we can write

u(t, x, y, z) =
4µk

Ak1
+

2µk

Ak1
tanhµ

(

k1x
β1

β1

+
k2y

β2

β2

+
k3z

β3

β3

− 4µktα

α

)

+
2µk

Ak1
cothµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
− 4µktα

α

)

.

(31)

Figure 3 shows the graph of Equation (31) for some values of the parameters.

A = ∓1, β1 =
4

5
, α = 1, k1 = 1, k2 =

1

2
, k3 =

1

4
, µ = 2.

Case 6:

a0 = −4µk

Ak1
, a1 =

2µk

Ak1
, b1 =

2µk

Ak1
, c = −4µk.

Substituting the results into Equation (24), we obtain

u(t, x, y, z) = −4µk

Ak1
+

2µk

Ak1
tanhµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

4µktα

α

)

+
2µk

Ak1
cothµ

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

4µktα

α

)

.

(32)



564 A. ANBER, I. JEBRIL, Z. DAHMANI, N. BEDJAOUI AND A. LAMAMRI

(a) (b)

Figure 3. Graph of Equation (31) for y = z = 0

4.1.2. Traveling waves using
(

G′

G

)

-expansion method. Suppose that the solutions of Equa-

tion (11) can be expressed using a polynomial in
(

G′

G

)

as follows:

U(ξ) = a0 + a1

(

G′

G

)

, (33)

such that a0 and a1 are constants to be determined later.
We have

U ′(ξ) = −a1µ− a1λ

(

G′

G

)

− a1

(

G′

G

)2

, (34)

and

U2(ξ) = a20 + 2a0a1

(

G′

G

)

+ a21

(

G′

G

)2

. (35)

Putting Equations (33), (34) and (35) in Equation (23), we have

−ka1µ− ka1λ

(

G′

G

)

− ka1

(

G′

G

)2

− ca0 − ca1

(

G′

G

)

+ k′a20

+2k′a0a1

(

G′

G

)

+ k′a21

(

G′

G

)2

= 0.

(36)

This allows us to get

−ka1µ− ca0 + k′a20 = 0

−ka1λ− ca1 + 2k′a0a1 = 0

k′a21 − ka1 = 0.

Hence, it yields that

a0 =
k

3Ak1

(

√

λ2 + 12µ− λ
)

, a1 =
2k

Ak1
, c = −2

3
λk − 1

3
k
√

λ2 + 12µ, (37)

where, λ and µ are arbitrary constants.
Substituting Equation (37) into Equation (33), we obtain

U(ξ) =
k

3Ak1

(

√

λ2 + 12µ− λ
)

−
(

2

3
λk +

1

3
k
√

λ2 + 12µ

)(

G′

G

)

. (38)

By substituting the general solution of Equation (19) into Equation (38), we have three
types of traveling wave solutions for the above conformable FZK equation as follows.
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When λ2 − 4µ > 0, we obtain the following traveling wave solution

U(ξ) =
k

3Ak1

(

√

λ2 + 12µ− λ
)

+

(

1

3
λ2k +

1

6
λk
√

λ2 + 12µ

)

− k
√

λ2 − 4µ

6

(

2λ+
√

λ2 + 12µ
)

C1 sinh

(√
λ2−4µ

2
ξ

)

+ C2 cosh

(√
λ2−4µ

2
ξ

)

C1 cosh

(√
λ2−4µ

2
ξ

)

+ C2 sinh

(√
λ2−4µ

2
ξ

) ,

(39)

where, ξ = k1x
β1

β1
+ k2y

β2

β2
+ k3z

β3

β3
+
(

2λ+
√

λ2 + 12µ
)

ktα

3α
and C1, C2 are arbitrary constants.

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0, then the traveling wave solution of
Equation (39) can be written as

U(ξ) =
1

2
λ2k

(

1− tanh

(

λk1x
β1

2β1
+

λk2y
β2

2β2
+

λk3z
β3

2β3
+

λ2ktα

2α

))

. (40a)

If C1 = 0, C2 6= 0, λ > 0, µ = 0, then the traveling wave solution of Equation (39) can be
written as

U(ξ) =
1

2
λ2k

(

1− coth

(

λk1x
β1

2β1

+
λk2y

β2

2β2

+
λk3z

β3

2β3

+
λ2ktα

2α

))

. (40b)

Figure 4 shows the graph of solution (40a) for some particular values.

A = ∓2, β1 =
1

2
, α =

3

4
, k1 = −1

2
, k2 =

3

2
, k3 =

3

4
, µ = 1.

(a) (b)

Figure 4. Graph of Equation (40a) for y = z = 0

Figure 5 shows the graph of solution Equation (40b) for some values of arbitrary constants.

A = ∓2, β1 =
1

2
, α =

3

4
, k1 = −1

2
, k2 =

3

2
, k3 =

3

4
, µ = 1.

When λ2 − 4µ = 0, we obtain

U(ξ) =
k

3Ak1

(

√

λ2 + 12µ− λ
)

+
λk

6

(

2λ+
√

λ2 + 12µ
)

−k

3

(

2λ+
√

λ2 + 12µ
) C2

C1 + C2ξ
.

(41)
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(a) (b)

Figure 5. Graph of solution (40b) for y = z = 0

When λ2 − 4µ < 0, we obtain

U(ξ) =
k

3Ak1

(

√

λ2 + 12µ− λ
)

+
λk

6

(

2λ+
√

λ2 + 12µ
)

−k

6

√

4µ− λ2
(

2λ+
√

λ2 + 12µ
)

−C1 sin

(√
4µ−λ2

2
ξ

)

+ C2 cos

(√
4µ−λ2

2
ξ

)

C1 cos

(√
4µ−λ2

2
ξ

)

+ C2 sin

(√
4µ−λ2

2
ξ

) .

(42)
In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0, then the traveling wave solution of

Equation (42) can be written as

U(ξ) =
1

2
λ2k − kλ2

2

(

tan
λ

2

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

λktα

α

))

. (43a)

Taking C1 = 0, C2 6= 0, λ > 0, µ = 0, then the traveling wave solution of Equation (42)
can be written as

U(ξ) =
1

2
λ2k − kλ2

2

(

cot
λ

2

(

k1x
β1

β1
+

k2y
β2

β2
+

k3z
β3

β3
+

λktα

α

))

. (43b)

Figure 6 shows the graph of solution (43a) for some values.

A = ∓2, β1 =
1

2
, α =

3

4
, k1 = −1

2
, k2 =

3

2
, k3 =

3

4
, µ = 1.

Figure 7 shows the graph of solution Equation (43b) for some values.

A = ∓2, β1 =
1

2
, α =

3

4
, k1 = −1

2
, k2 =

3

2
, k3 =

3

4
, µ = 1.

4.2. Space-time conformable FZZ equation. We consider the space-time conformable
FZZ equation:

T 2α
t u(t, x, y)

(

T β1
x T β2

y u(t, x, y)

u(t, x, y)

)

− T 2β1
x u(t, x, y)

(

T β1
x T β2

y u(t, x, y)

u(t, x, y)

)

+2T α
t u(t, x, y)

(

T β1
x u2 (t, x, y)

)

= 0,

(44)

where, T β1
x , T β2

y , T α
t are the conformable fractional derivative, with 0 < α, β1, β2 ≤ 1.
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(a) (b)

Figure 6. Graphic of Equation (43a) for y = z = 0

(a) (b)

Figure 7. Graph of solution (43b) for y = z = 0

We introduce the following transformation:

u(t, x, y) = U(ξ), ξ =
k1x

β1

β1
+

k2y
β2

β2
− ctα

α
, (45)

where k1, k2, c are constants.
We have

T α
t u = −cUξ, T 2α

t u = c2Uξξ, T 2β1
x u = k2

1Uξξ, T β1
x T β2

y u = k1k2Uξξ,

T β1
x u2 = 2k1UUξ.

(46)

Substituting Equations (45) and (46) in Equation (44), we have

k (Uξξ)
2 − k′ (UUξ)

2 = 0, (47)

where k = µ4k1k2
(

c2 − k2
1

)

and k′ = µck1.

4.2.1. Traveling waves using Tanh method. We note that in this case, we have m = 1.
The Tanh method admits the use of the finite expansion

U(ξ) = a0 + a1Y + b1Y
−1. (48)

Thanks to Equations (13) and (14), we have

Uξ = µa1 + µb1 − µa1Y
2 − µb1Y

−2,

Uξξ = −2µ2a1Y + 2µ2b1Y
−3 + 2µ2a1Y

3 − 2µ2b1Y
−1.

(49)

Putting Equations (48) and (49) in Equation (47), we obtain
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4ka1b1 − k′ (a0a1 + a1b1)
2 − 4k′a21b

2
1 − 2k′a20a1b1

+
(

2k′a31 (a0 + b1)− 2k′a0a
2
1b1 + 2k′a0a1b

2
1

)

Y

+
(

2k′a1b
2
1 (a0 + b1)− 2k′a0a1b

2
1 + 2k′a0a

2
1b1
)

Y −1

+
(

k
(

a21 − 2a1b1
)

− k′a21
(

a21 − 2a20 − 2a0b1 − 2b21
))

Y 2

+
(

k
(

b21 − 2a1b1
)

− k′
(

b41 − 2a21b
2
1 − 2a20a1b1 − 2a0a1b

2
1

))

Y −2

+2k′a31 (2a0 + b1) Y
3 + 2k′b21 (a0a1 + a0b1 + a1b1) Y

−3

+
(

2k′a41 − k′a20a
2
1 − 2ka21

)

Y 4 +
(

2k′b41 − k′a20b
2
1 − 2kb21

)

Y −4

− 2k′a0a
3
1Y

5 − 2k′a0b
3
1Y

−5 +
(

ka21 − k′a41
)

Y 6 +
(

kb21 − k′b41
)

Y −6 = 0.

This allows us to obtain

4ka1b1 − k′ (a0a1 + a1b1)
2 − 4k′a21b

2
1 − 2k′a20a1b1 = 0

k′a31 (a0 + b1)− k′a0a
2
1b1 + k′a0a1b

2
1 = 0

k′a1b
2
1 (a0 + b1)− k′a0a1b

2
1 + k′a0a

2
1b1 = 0

k
(

a21 − 2a1b1
)

− k′a21
(

a21 − 2a20 − 2a0b1 − 2b21
)

= 0

k
(

b21 − 2a1b1
)

− k′
(

b41 − 2a21b
2
1 − 2a20a1b1 − 2a0a1b

2
1

)

= 0

2k′a31 (2a0 + b1) = 0

2k′b21 (a0a1 + a0b1 + a1b1) = 0

2k′a41 − k′a20a
2
1 − 2ka21 = 0

2k′b41 − k′a20b
2
1 − 2kb21 = 0

k′a0a
3
1 = 0

k′a0b
3
1 = 0

ka21 − k′a41 = 0

kb21 − k′b41 = 0.

(50)

Hence, we have

a0 = 0, a1 = a1 b1 = 0, k2 =
ca21

µ3
(

c2 − k2
1

) .

Substituting these results into Equation (48), we get the following exact solution:

u(t, x, y) = a1 tanhµ

(

k1x
β1

β1
+

ca21

µ3
(

c2 − k2
1

)

yβ2

β2
− ctα

α

)

. (51)

4.2.2. Traveling waves using
(

G′

G

)

-expansion method. Suppose that the solutions of (11)

can be expressed by a polynomial in
(

G′

G

)

as follows:

U(ξ) = a0 + a1

(

G′

G

)

, (52)

such that a0 and a1 are constants to be determined later.
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We have

U ′(ξ) = −a1µ− a1λ

(

G′

G

)

− a1

(

G′

G

)2

,

U
′′

(ξ) = a1λµ+
(

a1λ
2 + 2µa1

)

(

G′

G

)

+ 3a1λ

(

G′

G

)2

+ 2a1

(

G′

G

)3

,

(53)

and

U2(ξ) = a20 + 2a0a1

(

G′

G

)

+ a21

(

G′

G

)2

,

(U ′(ξ))2 = a21µ
2 + 2a21µλ

(

G′

G

)

+ a21 (λ
2 + 2µ)

(

G′

G

)2

+ 2a21λ

(

G′

G

)3

+ a21

(

G′

G

)4

.

(54)

Putting Equations (52), (53) and (54) in Equation (44), we have

−k′a20a
2
1µ

2 +
(

ka21λ
2µ2 + 2kλµa21

(

λ2 + 2µ
)

− 2k′a20a
2
1µλ− 2k′a0a

3
1µ

2
)

(

G′

G

)

+
(

ka21
(

λ2 + 2µ2 + 6λ2µ+ 6λ3 + 12λµ
)

− k′a20a
2
1

(

λ2 + 2µ
)

− 4k′a0a
3
1µλ− k′a41µ

2
)

(

G′

G

)2

+
(

4ka21
(

λµ+ λ2 + 2µ
)

− 2k′a20a
2
1λ− 2k′a0a

3
1

(

λ2 + 2µ
)

− 2k′a41µλ
)

(

G′

G

)3

+
(

9ka21λ
2 − k′a20a

2
1 − 4k′a0a

3
1λ− k′a41

(

λ2 + 2µ
))

(

G′

G

)4

+
(

12ka21λ− k′
(

a0a
3
1 + 2a41λ

))

(

G′

G

)5

+
(

4ka21 − k′a41
)

(

G′

G

)6

= 0.

Consequently,

k′a20a
2
1µ

2 = 0

ka21λ
2µ2 + 2kλµa21

(

λ2 + 2µ
)

− 2k′a20a
2
1µλ− 2k′a0a

3
1µ

2 = 0

ka21
(

λ2 + 2µ2 + 6λ2µ+ 6λ3 + 12λµ
)

− k′a20a
2
1

(

λ2 + 2µ
)

− 4k′a0a
3
1µλ− k′a41µ

2 = 0

4ka21
(

λµ+ λ2 + 2µ
)

− 2k′a20a
2
1λ− 2k′a0a

3
1

(

λ2 + 2µ
)

− 2k′a41µλ = 0

9ka21λ
2 − k′a20a

2
1 − 4k′a0a

3
1λ− k′a41

(

λ2 + 2µ
)

= 0

12ka21λ− k′
(

a0a
3
1 + 2a41λ

)

= 0

4ka21 − k′a41 = 0.

(55)

Therefore,
a0 = a0, a1 = a1, k1 = 0.

By substituting the general solution of Equation (19) into Equation (52), we obtain three
types of traveling wave solutions of the above space time conformable FZZ equation as
follows.
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When λ2 − 4µ > 0, we obtain the following traveling wave solution:

U(ξ) = a0 −
λa1

2
+

a1
√

λ2 − 4µ

2

C1 sinh

(√
λ2−4µ

2
ξ

)

+ C2 cosh

(√
λ2−4µ

2
ξ

)

C1 cosh

(√
λ2−4µ

2
ξ

)

+ C2 sinh

(√
λ2−4µ

2
ξ

) , (56)

where, ξ = k1x
β1

β1
+ k2y

β2

β2
− ctα

α
and C1, C2 are arbitrary constants.

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0, then the traveling wave solution of
Equation (56) can be written as

U(ξ) = a0 −
λa1

2
+

a1
√

λ2 − 4µ

2
tanh

(

√

λ2 − 4µ

2
ξ

)

. (57a)

If C1 = 0, C2 6= 0, λ > 0, µ = 0, then the traveling wave solution of (56) can be written
as

U(ξ) = a0 −
λa1

2
+

a1
√

λ2 − 4µ

2
coth

(

√

λ2 − 4µ

2
ξ

)

. (57b)

When λ2 − 4µ = 0, we obtain

U(ξ) = a0 −
λa1

2
+

a1C2

C1 + C2ξ
. (58)

When λ2 − 4µ < 0, we obtain

U(ξ) = a0 −
λa1

2
+

a1
√

4µ− λ2

2

−C1 sin

(√
4µ−λ2

2
ξ

)

+ C2 cos

(√
4µ−λ2

2
ξ

)

C1 cos

(√
4µ−λ2

2
ξ

)

+ C2 sin

(√
4µ−λ2

2
ξ

) . (59)

In particular, if C1 6= 0, C2 = 0, λ > 0, µ = 0, then the traveling wave solution of
Equation (59) can be written as

U(ξ) = a0 −
λa1

2
− a1

√

4µ− λ2

2
tan

(

√

4µ− λ2

2
ξ

)

. (60a)

If C1 = 0, C2 6= 0, λ > 0, µ = 0, then the traveling wave solution of Equation (59) can be
written as

U(ξ) = a0 −
λa1

2
+

a1
√

4µ− λ2

2
cot

(

√

4µ− λ2

2
ξ

)

. (60b)

5. Conclusion. In conclusion, our study has focused on the space-time FZK equation
and the space-time FZZ equation using conformable fractional derivatives. We have ap-
plied the Tanh and the

(

G′

G

)

-expansion methods to finding new sets of traveling wave
solutions for these two fractional evolution problems. In addition, we have plotted graphs
for some of the obtained new traveling waves. The obtained solutions are significant in
the study of the dynamics and behavior of these fractional equations. Our research con-
tributes to the development of conformable fractional calculus and also to the above two
space-time fractional evolution equations.
Further investigations could focus on exploring the properties of the obtained solutions

and their potential applications. Our results may have practical applications in the fields
of material science, optics, and acoustics.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.20, NO.2, 2024 571

REFERENCES

[1] A. Anber and Z. Dahmani, The SGEM method for solving some time and space-conformable frac-
tional evolution problems, International Journal of Open Problems in Computer Science and Math-
ematics, vol.16, no.1, pp.33-43, 2023.

[2] A. AlMamun, S. Ananna, P. P. Gharami, T. An and M. Asaduzzaman, The improved modified
extended Tanh-function method to develop the exact traveling wave solutions of a family of 3D
fractional WBBM equations, Results in Physics, vol.41, no.1, 105969, 2022.

[3] M. Alquran, M. Ali and O. Alshboul, Explicit solutions to the time-fractional generalized dissipative
Kawahara equation, Journal of Ocean Engineering and Science, DOI: 10.1016/j.joes.2022.02.013,
2022.

[4] F. Engui, Extended Tanh-function method and its applications to nonlinear equations, Physics
Letters A, vol.277, no.1, pp.212-218, 2000.

[5] Z. Dahmani, A. Anber and I. Jebril, Solving conformable evolution equations by an extended nu-
merical method, Jordan Journal of Mathematics and Statistics, vol.15, no.2, pp.363-380, 2022.

[6] Z. Dahmani and A. Anber, Two numerical methods for solving the fractional Thomas-Fermi equation,
Journal of Interdisciplinary Mathematics, vol.18, nos.1&2, pp.35-41, 2015.

[7] S. A. Elwakil, S. K. El-Labany, M. A. Zahran and R. Sabry, Modified extended Tanh-function method
and its applications to nonlinear equations, Applied Mathematics and Computation, vol.161, no.1,
pp.403-412, 2005.

[8] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative,
Journal of Computational and Applied Mathematics, vol.264, no.1, pp.65-70, 2014.

[9] F. M. Al-Askar, C. Cesarano andW. W. Mohammed, The analytical solutions of stochastic-fractional

Drinfel’d-Sokolov-Wilson equations via
(

G
′

G

)

-expansion method, Symmetry, vol.14, no.10, 2105,

2022.
[10] W. W. Mohammed, M. Alesemi, S. Albosaily, N. Iqbal and M. El-Morshedy, The exact solutions

of stochastic fractional-space Kuramoto-Sivashinsky equation by using
(

G
′

G

)

-expansion method,

Mathematics, vol.9, no.21, 2712, 2021.
[11] N. Shang and B. Zheng, Exact solutions for three fractional partial differential equations by the

(

G
′

G

)

method, IAENG International Journal of Applied Mathematics, vol.43, no.3, pp.1-6, 2013.

[12] A. M. Wazwaz, The Tanh method for travelling wave solutions of nonlinear equations, Applied
Mathematics and Computation, vol.154, no.1, pp.713-723, 2004.

[13] M. Willy, Solitary wave solutions of nonlinear wave equations, American Journal of Physics, vol.60,
no.1, pp.650-654, 1992.

[14] M. Willy and H. Willey, The Tanh method: I. Exact solutions of nonlinear evolution and wave
equations, Physica Scripta, vol.54, no.1, pp.563-568, 1996.

[15] M. Willy, The Tanh method: A tool for solving certain classes of nonlinear evolution and wave
equations, Journal of Computational and Applied Mathematics, vols.164-165, no.1, pp.529-541, 2004.

[16] E. Yusufoglu and A. Bekir, On the extended Tanh method applications of nonlinear equations,
International Journal of Nonlinear Science, vol.4, no.1, pp.10-16, 2007.

[17] M. Wang, X. Li and J. Zhang, The
(

G
′

G

)

-expansion method and traveling wave solutions of nonlinear

evolution equations in mathematical physics, Physics Letters A, vol.372, no.1, pp.417-423, 2008.

[18] B. Zheng,
(

G
′

G

)

-expansion method for solving fractional partial differential equations in the theory

of mathematical physics, Communications in Theoretical Physics, vol.58, no.5, pp.623-630, 2012.
[19] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential

Equations, Elsevier, Amsterdam, 2006.
[20] I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.
[21] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and

Applications, Gordon and Breach Science Publishers, Philadelphia, 1993.
[22] S. A. Elwakil, Nonlinear dynamics of the FZK equation in a plasma with dissipation, Journal of

Physics A: Mathematical and Theoretical, vol.40, no.1, 9637, 2007.
[23] E. Zerrad, A. Biswas and D. Baleanu, Analytical solution of the fractional Zoomeron equation by

homotopy analysis method, Results in Physics, vol.13, no.1, 102201, 2019.
[24] S. Zhang, Tanh method and its applications for nonlinear fractional partial differential equations,

Applied Mathematics and Computation, vol.257, no.1, 311, 2015.



572 A. ANBER, I. JEBRIL, Z. DAHMANI, N. BEDJAOUI AND A. LAMAMRI

[25] L. Ma, Z. Wang and L. Yang, G′/G expansion method for solving fractional partial differential
equations, Computers and Mathematics with Applications, vol.62, no.1, 855, 2011.

[26] D. Baleanu, S. I. Muslih and A. K. Golmankhaneh, Khalil’s fractional derivatives and applications:
A review, Journal of Computational and Applied Mathematics, vol.338, no.1, 57, 2018.

[27] H. C. Yaslana and A. Girgin, The extended Tanh method for solving conformable space-time frac-
tional KdV equations, International Journal of Nonlinear Analysis and Applications, vol.12, no.1,
pp.1181-1194, 2021.

[28] M. Rahimy, Applications of fractional differential equations, Applied Mathematical Sciences, vol.4,
no.50, pp.2453-2461, 2010.

[29] M. Topsakal and F. Tascan, Exact travelling wave solutions for space-time fractional Klein-Gordon
equation and (2+1)-dimensional time-fractional Zoomeron equation via auxiliary equation method,
Applied Mathematics and Nonlinear Sciences, vol.5, no.1, pp.437-446, 2020.

[30] R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat and A. K. Alomari, Numerical approach of
Riemann-Liouville fractional derivative operator, International Journal of Electrical and Computer
Engineering, vol.11, no.6, pp.5367-5378, 2021.

[31] R. B. Albadarneh, I. M. Batiha, N. Tahat and A. K. N. Alomari, Analytical solutions of linear
and non-linear incommensurate fractional-order coupled systems, Indonesian Journal of Electrical
Engineering and Computer Science, vol.21, no.2, pp.776-790, 2021.

[32] R. B. Albadarneh, I. Batiha, A. K. Alomari and N. Tahat, Numerical approach for approximating
the Caputo fractional-order derivative operator, AIMS Mathematics, vol.6, no.11, pp.12743-12756,
2021.

[33] R. B. Albadarneh, M. Zerqat and I. M. Batiha, Numerical solutions for linear and non-linear frac-
tional differential equations, International Journal of Pure and Applied Mathematics, vol.106, no.3,
pp.859-871, 2016.

[34] A. A. Al-Nana, I. M. Batiha and S. Momani, A numerical approach for dealing with fractional
boundary value problems, Mathematics, vol.11, no.19, 4082, 2023.

Author Biography

Ahmed Anber is an Associate Professor of Mathematics at the University of Sci-
ences and the Technology of Oran (USTO), Department of Mathematics, Faculty
of Mathematics and Informatic. His fields of interests include fractional differential
equations, integral inequalities and numerical methods for differential equations. He
has obtained his Ph.D. degree at UMAB University. He has taught mathematical
analysis, linear algebra and complex analysis.

Iqbal Jebril is a Professor at the Department of Mathematics, Al Zaytoonah Uni-
versity of Jordan, Amman, Jordan. He obtained his Ph.D. degree in 2005 from Na-
tional University of Malaysia (UKM). His fields of interest include functional analy-
sis, operator theory and fuzzy logic. He had several prestigious Journal/Conference
publications and was in various journals and conferences committees.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.20, NO.2, 2024 573

Zoubir Dahmani is a Professor of Mathematics at Saad Dahleb Blida 1 University
and a member of Laboratory of LPAM of the University of Mostaganem. His fields
of interests include differential equations and dynamical systems, inequality theo-
ry, fractional calculus, fixed point theory, numerical methods for fractional PDEs,
probability and statistics. He has obtained his Ph.D. degree at USTHB University
of Algiers and La Rochelle (France), 2009. He has published more than 250 research
papers on Pure and Applied Maths. In 2021, 2022, and 2023, he has been selected as
the best cited researcher at UMAB University. He has taught differential equations,
operator theory, numerical analysis and applied mathematics.

Nabil Bedjaoui is a Professor of Mathematics at the University of Picardie Jules
Vernes, France and a member of Laboratory of LAMFA. His fields of research are
differential equations and applied analysis. He has obtained his Ph.D. degree at Ecole
Polytechnique, Palaiseau (France), 1996. He is responsible of Applied Mathematics
at his university. Also, he has taught differential equations and applied analysis.

Abdelkader Lamamri is a Professor of Mathematics at the Saad Dahlab Blida 1
University. His research interests include discrete optimization, graph theory and
fractional calculus. He has obtained his Ph.D. degree at Saad Dahlab Blida 1 Univer-
sity. He has taught operational research, combinatory optimization and algorithmic
for optimization.


