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Abstract. Weathering steel is a steel material that can maintain its performance out-
doors for a long period of time by forming protective rust. Periodic inspection of the rust
condition is necessary to maintain this steel in good condition, and CNN-based methods
for evaluating the appearance of rust have been studied. One of the problems in improv-
ing the classification accuracy of the CNN is how to prepare the rust images for training.
The objectives of this paper are 1) to consider rust patch image size and 2) to improve
the diversity of the generated images in rust image generation using GAN. From 1), we
show that the accuracy can be improved by using large cropping images and shrinking
the image when training the model. From 2), we propose SSIM-target loss, which is an
improvement of the conventional SSIM loss, and show that it improves the CNN Score.
Using methods 1) and 2), we achieved an F1 score of 90.3% for the three-class classifi-
cation of the rust images, compared to the baseline method’s F1 score of 86.8%.
Keywords: Rust images, Generative adversarial network, Convolutional neural net-
work, Classification, Weathering steel

1. Introduction. Weathering steel is a steel material that produces a protective rust
layer on the surface of the steel that suppresses the propagation of corrosion [1]. Many
bridges have been constructed using this weather-resistant material. However, periodic
inspections are required to evaluate the rusting condition because protective rusting may
not be in good condition, depending on the environment. One of the used inspection
methods is the cellophane tape test, in which rust on the surface of the steel is collected
by adhering it to cellophane tapes and evaluated in terms of appearance [2]. Evaluation
of this test is usually performed visually by an inspector. However, in this case, there is
a problem that the evaluation depends on the subjectivity of the inspector. On the other
hand, non-human inspection methods using Convolutional Neural Networks (CNNs) have
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been studied [3, 4, 5]. In the methods, CNN models trained with labeled images rate the
rust condition from the target rust image.
In the previous studies [3, 4, 5], the rust image classification using CNN was trained by

extracting patch images from tape images. 1) However, since the rust images were labeled
by tape unit, there was a problem that the rust Scores were different within the same
image. In [3], the effect of the size of the patch image to be cropped has been investigated,
showing that the larger the patch image size, the better the accuracy. In [5], a decision
method combining judgement of multiple patch images has been proposed and shown to
be effective. On the other hand, to compensate for the lack of training data, generation of
rust images using Generative Adversarial Networks (GANs) [6] has also been considered
[7, 8]. 2) However, in order to use the generated rust images as training data for CNN,
it is necessary to improve the quality and diversity of the generated images. In [7], a
basic study on the generation of rust in GANs has been made. In [8], WGAN-GP and
SSIM-L-WGAN-GP have been proposed, obtaining an F1 score of 88.0%, but further
improvements are desired.
In this paper, we propose a method for 1) to suppress the variation of Scores of rusts

in the same image by cropping a larger patch image. We also show that the accuracy
of the CNN is improved by resizing the patch image to a smaller size when training the
model. For 2), we add a loss function to the generator of the GAN to promote diversity
in the generated images. We propose SSIM-target loss, which is an improvement of SSIM
loss [8], and show that the accuracy of CNN classification is improved by improving the
quality of the generated images.
This study has two objectives. First, to improve the accuracy of the CNN by training

rust patch images by cropping them large and then resizing them small; second, to gen-
erate rust images that are effective for training the CNN by introducing SSIM-target loss
into the GAN. The remainder of this paper is organized as follows. Section 2 describes
the cellophane tape test and appearance evaluation using CNNs. Section 3 describes data
augmentation using GANs and loss functions to improve the diversity of GANs. Section
4 proposes a method of cropping a patch image to a large size and then resizing it to a
smaller size in order to suppress the variation of rust Scores in the same image. We also
propose SSIM-target loss, which is an improvement of SSIM loss in the loss function of
GAN. Section 5 shows the effectiveness of the proposed method, since the F1 score of
the CNN classification accuracy reaches 90% by using the proposed method. Finally, in
Section 6, we present our conclusions.

2. Rust Appearance Evaluation and CNN.

2.1. Cellophane tape test. The cellophane tape test is one of the methods to evaluate
the rusting condition of weathering steel. Rust formed on the steel surface is collected by
adhering it to a cellophane tape, and an expert evaluates the adhered rust’s condition
visually. Table 1 shows the evaluation categories and evaluation criteria for the current
weathering steel products in Japan [9]. The higher the Score, the better the rust condition;
the lower the Score, the worse the rust condition. The rust with a Score of 3 or higher
does not require any action, while the rust with a Score of 2 or lower needs to be treated
or observed and disposed of. It is especially important to distinguish between Scores 2
and 3. In this study, we examine three classifications of images: Scores 2 and 3, which are
important to identify, and Score 4, which considers the presence or absence of damage.

2.2. Convolutional Neural Network (CNN). This paper uses CNN as a classifier for
identifying the grade of rust conditions, as in [3, 4, 5, 8]. The input to the CNN model is a
patch image shown in Figure 1, and the output of the model is the Score (2, 3, or 4) of the
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Table 1. Rust evaluation categories

Score Appearance Sample patch

5
The amount of rust is small, and the color is relatively bright.
No damage.

−

4
Rust is fine and uniform, with a size of less than 1 mm.
No damage.

3 Rust size is 1-5 mm and coarse.

2 Rust is scaly, 5-25 mm in size.

1 Rust has a layered exfoliation. −

Training data (Real rust images)

Learning with real and fake images

Generated images

(Fake rust images)

ProposedConventional

GAN

CNN

Shrink

Figure 1. Data augmentation with GAN and its processing flow [8]

rust in the patch image. The CNN used is a general model consisting of convolutional,
pooling, dropout, fully connected, and output layers. The Score corresponding to the
maximum output unit in the output layer is selected as the decision result. The details
will be presented in Section 5.2.

3. Data Augmentation with GANs.

3.1. Generative Adversarial Networks (GANs). GANs are deep learning models
consisting of two networks: a generator and a discriminator. The two networks learn by
competing with each other. The generator G(z) tries to generate images that resemble
the training data, and the discriminator D(x) tries to detect that the images generated
by the generator are not real. There are many variations of GANs. [7] used Deep Convo-
lutional Generative Adversarial Networks (DCGANs) and our previous study used Con-
ditional Generative Adversarial Nets (CGANs) and Wasserstein GAN-Gradient Penalty
(WGAN-GP). Since WGAN-GP performs better than DCGAN and CGAN, this study
uses WGAN-GP.
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WGAN-GP [11] is an improved GANmodel fromWasserstein GAN (WGAN) [12]. Con-
ventional GANs are difficult to learn and have problems of gradient vanishing and mode
collapse. WGAN is based on the Wasserstein distance to design the loss function. WG-
AN has the advantage that the gradient does not disappear near the optimal point of
the parameters, thus stabilizing the learning process. WGAN-GP is an improvement of
WGAN by adding a gradient penalty to the WGAN loss function. This is a constraint for
the discriminator D(x) to be a Lipschitz function. The objective function of WGAN-GP,
with the gradient penalty added, is expressed as follows:

L = E
x̃∼Pg

[D(x̂)]− E
x∼Pr

[D(x)] + λ E
x̂∼P

x̂

[

(‖∆x̂D(x̂)‖2 − 1)2
]

, (1)

where Pr is the data distribution, Pg is the generator distribution, x̂ ∼ Px̂ means random
samples between sampled pairs x̃ and x, the second term is the gradient penalty, and λ

is the coefficient for the gradient penalty term.
For data augmentation using GAN, the process flow is shown in Figure 1. In order to

apply the generated rust images as training data for the CNN, it is necessary to promote
diversity of the generated images. Our previous study [8] proposed to use L1, L2, and
LBP loss in order to promote diversity in the generated images. By applying these loss
functions to the CGAN and the WGAN-GP, the diversity of the generated images can be
improved.
The L1 loss L1 and the L2 loss L2 are defined as follows:

Ll = 1−
1

bsC2

∑

i 6=j

|G(zi)−G(zj)|
l, (2)

where l ∈ {1, 2}, bsC2 is the total combination of two generated images from within the
batch with size bs, and G(zi) is the i-th generated image by the generator. The loss
function of the generator with L1 and L2 losses is as follows:

LL1·L2−g = Lg + λ1L1 + λ2L2, (3)

where Lg is the generator loss, such as Lg = −
∑

log(D(x)), and λ1 and λ2 are the weights
of the L1 and L2 loss terms.

3.2. LBP loss function. In [8], it has been proposed to use the texture feature Local
Binary Pattern (LBP) [13] in loss functions in order to promote diversity in the generated
images of GANs. The LBP is used to calculate the similarity of the textures of the rust
images, and the diversity is improved by learning to reduce the similarity between the
generated images. LBP is calculated as follows:

LBPP,R =
P−1
∑

p=0

s(gp − gc)2
p, (4)

where gc is the value of the center pixel, gp is the value of the p-th pixel in the neighborhood
of gc, s(x) = 1 for x ≥ 0 otherwise s(x) = 0, P is the number of pixels in the neighborhood,
and R is the radius of the neighborhood of the center pixel.
The LBP loss function is calculated as follows.

Step 1: LBP is calculated for all images in the batch using Equation (4).
Step 2: Make a histogram of the number of occurrences of each LBP value.
Step 3: For all pairs of images in a batch, the similarity of histograms is calculated using
Euclidean distance.
Step 4: Normalize the similarity calculated in Step 3 and compute the average LBPhist.
Step 5: Calculate the LBP loss LLBP = 1− LBPhist. �
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The loss function of the generator with the LBP loss is LLBPg
= (1 − wLBP)Lg +

wLBPLLBP, and wLBP is the weight of LLBP.

4. Proposed Methods.

4.1. Expansion of image cropping size. In [5] and [8], the scanned images of cello-
phane tape are not used directly. Instead, cropped patch images are used as inputs for
CNN. One reason for this is that increasing the size of the CNN input image tends to
degrade the accuracy. On the other hand, since the rust condition is not uniform across
the entire tape, there is a problem that the image does not always reflect the grade of the
rust depending on the crop position of the patch image.

To solve the problem, we propose to expand the cropping image size and to use from
100× 75 px to 150× 75 px for 50 dpi. As shown in Figure 2, the height will be increased
from 100 px to 150 px. Even when the cropping size is increased, it is desirable to crop
as many images as possible. Therefore, the image is cropped by shifting the cropping
position at regular intervals in the horizontal direction while overlapping. By increasing
the size of the patch image, it can be expected that the correct label is applied to the
patch image. In addition, by combining the proposed method with the image generation
of GAN, the generated image size of GAN can be increased. The quality of the generated
images is also expected to be improved by the GAN learning important features of rust.

Figure 2. Expanded cropping from tape image to patch image

4.2. Asymmetric reduction of CNN input image resolution. In [5], the input
image of CNN is 100× 75 px in 50 dpi. On the other hand, in [8], the image of 100× 75
px is reduced to 28 × 28 px and used as the input image. As a result, the resolution
of the resulting reduced image is different in the horizontal and vertical directions. The
horizontal and vertical DPIs are 18.7 dpi and 14.0 dpi, respectively, and their resolutions
per pixel are 1.36 mm and 1.81 mm, respectively. The resolution of the reduced image
is low resolution and asymmetric in the horizontal and vertical directions, but it has
achieved a good classification accuracy in the upper 80% range.

We again explicitly propose this lower resolution of asymmetric input images as an
effective method for improving CNN accuracy. Specifically, we propose to downscale a
150× 75 patch image at 50 dpi to 28× 28 and input it to the CNN. Our observations on
why this approach works well are as follows. When labeling rusts, experts focus on the
shape of large rusts in the tape and label them, so it is necessary for the CNN to capture
the shape of large rusts. If the CNN is trained on large patch images, even small rust
shapes will stand out and become noise, and the CNN may miss important rust features.
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On the other hand, by downscaling the patch image it is expected that small rust features
are suppressed and large rust features are emphasized.

4.3. SSIM-target loss function. In rust images generation, SSIM loss has been pro-
posed in [8] to promote diversity in the generated images of GANs. SSIM loss calculates
the similarity of images based on the mean and variance of pixel values, and trains GAN
generators to reduce the similarity. SSIM loss is defined by the following equation:

LSSIM =
1

bsC2

∑

i 6=j

SSIM(G(zi), G(zj)) (5)

LSSIMg
= (1− wSSIM)Lg + wSSIMLSSIM, (6)

where the wSSIM is the weight of LSSIM and

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(

µ2
x + µ2

y + C1

) (

σ2
x + σ2

y + C2

) . (7)

x and y are small regions centered on pixels at the same position in the two images to be
compared. µx and µy are means of pixel values in the small region of x and y, σx and σy are
standard deviations, and σxy is covariance. C1 and C2 are constants, C1 = (0.01× 255)2

and C2 = (0.03×255)2 in the case of grayscale. This small area is calculated for all pixels,
and the average value is SSIM. SSIM takes values between 0 and 1, and the closer the
value is to 1, the higher the similarity.
SSIM loss is a learning method such that the value of LSSIM in Equation (5) is close to

0. However, a fake image with too low SSIM may not be suitable as a rust image because
it loses its realness.
To solve this problem, we propose a learning method such that the value of LSSIM is

close to the average value of SSIM of the real image in a batch. The difference between
the average SSIM of the real image in the batch and the average SSIM of the generated
image in the batch is defined as LSSIMT, and the learning is performed such that LSSIMT

becomes 0. The average value of SSIM of the real image SSIM real is calculated by the
following equation:

SSIM real =
1

bsC2

∑

i 6=j

SSIM(xi,xj) (8)

Therefore, using Equations (5) and (8), the SSIM-target loss is as follows:

LSSIMT = |SSIM real − LSSIM| (9)

The loss function of the generator with the addition of SSIM-target loss is

LSSIMTg
= (1− wSSIMT)Lg + wSSIMTLSSIMT, (10)

where wSSIMT is the weight of LSSIMT.

5. Evaluation Results.

5.1. Experiment conditions. The tape image is about 300 × 90 px at 50 dpi. The
conventional patch image is 100 × 75 px, and the proposed patch image is 150 × 75 px.
The 100 × 75 px dataset is named w = 100, and the 150 × 75 px dataset is named
w = 150. When dividing the training data and the test data, for the comparison, the
division procedure is the same for w = 100 and w = 150. The training dataset consists of
87 items for Score 2, 189 for Score 3, and 366 for Score 4, totaling 642. The test dataset
consists of 24 items for Score 2, 51 for Score 3, and 97 for Score 4, totaling 172. The test
data are used to evaluate the classification accuracy of the CNN.
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The parameters for WGAN-GP are as follows: # of epochs is 5000, batch size is 16,
image size is 150×75 or 28×28, image is monochrome, latent dimension is 128, generator
learning rate is 2.0 × 10−4, and the discriminator learning rate is 2.0 × 10−6 for Score
4 and 2.0 × 10−4 for others. For the structure for WGAN-GP, we refer to the official
implementation of Keras [14]. Note that the parameters of the input layer are changed
according to the size of the input images.

The following 3 models are considered. We generate rust images with each GAN and
test which of the generated images contributes to improving the classification accuracy
of CNN. The weights of the loss function are as follows: wSSIM = 0.1, wSSIMT = 0.1,
λ1 = 0.001 and λ2 = 0.001.

1) WGAN-GP: Conventional WGAN-GP.
2) SSIM-L-WGAN-GP: WGAN-GP with SSIM loss and L1·L2 loss introduced.
3) SSIMT-L-WGAN-GP: WGAN-GP as proposed in Section 4.2.

5.2. Evaluation with CNN. We trained the WGAN-GP models described in Section
5.1 using the dataset w = 150 cropped by the proposed method, and generated rust
images. We trained the CNN by data augmentation using the generated rust images. The
following three types of the input image sizes are considered in the evaluation: 1) 150×75
px without resizing, 2) 56× 28 px that is a reduction preserving the aspect ratio, and 3)
28 × 28 px that is a reduction ignoring the aspect ratio, which is the proposed method.
The proposed image size 3) 28× 28 px is compared with the conventional image sizes 1)
150× 75 px and 2) 56× 28 px. The structure of the CNN is tuned according to the size
of each input image size. The structure of the CNN is shown in Table 2 for each input
image size. The accuracy of the CNN classification is shown in Table 3. For comparison,
Table 4 shows the Scores of the CNN when we trained the CNN on the conventional
dataset w = 100 [8]. Note that when the CNN was trained for dataset w = 100, the CNN
and GAN were trained at a size of 28 × 28 px. For comparison, we also show the Scores
when the CNN is trained on the real images only and when the CNN is trained on the
real images with the conventional online data augmentation using ImageDataGenerator
in Keras. The processing contents of the online data augmentation are horizontal and
vertical flipping and shifting ±0.3.

Table 2. CNN structure

For 150× 75 px For 56× 28 px For 28× 28 px
Layer# Layer type Param Layer type Param Layer type Param

1 Input Layer 75× 150× 1 Input Layer 56× 28× 1 Input Layer 28× 28× 1
2 Conv2D 16, 3× 3, ReLU Conv2D 16, 3× 3, ReLU Conv2D 16, 3× 3, ReLU
3 Maxpooling2D 2× 2 Maxpooling2D 2× 2 Maxpooling2D 2× 2
4 Dropout 0.4 Dropout 0.4 Dropout 0.4
5 Conv2D 32, 3× 3, ReLU Conv2D 32, 3× 3, ReLU Conv2D 32, 3× 3, ReLU
6 Maxpooling2D 2× 2 Maxpooling2D 2× 2 Maxpooling2D 2× 2
7 Conv2D 64, 3× 3, ReLU Conv2D 64, 3× 3, ReLU Conv2D 64, 3× 3, ReLU
8 Maxpooling2D 2× 2 Maxpooling2D 2× 2 Maxpooling2D 2× 2
9 Conv2D 128, 3× 3, ReLU Dropout 0.4 Dropout 0.4
10 Maxpooling2D 2× 2 Flatten 1344 Flatten 576
11 Conv2D 256, 3× 3, ReLU Dense 640, ReLU Dense 512, ReLU
12 Maxpooling2D 2× 2 Dense 512, ReLU Dense 3, SoftMax
13 Dropout 0.4 Dense 3, SoftMax
14 Flatten 2048
15 Dense 640, ReLU
16 Dense 512, ReLU
17 Dense 3, SoftMax
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Table 3. Accuracy and F1 of CNN trained for dataset w = 150

Training data for CNN Model Score 2 Score 3 Score 4 Accuracy MacroF1

Real images only* − 0.770 0.752 0.927 0.857 0.816

Real images only** − 0.892 0.822 0.935 0.897 0.883

Real images only*** − 0.899 0.836 0.933 0.901 0.889

Online Data Augmentation* − 0.852 0.82 0.932 0.890 0.868

Online Data Augmentation** − 0.908 0.808 0.924 0.890 0.880

Online Data Augmentation*** − 0.853 0.855 0.946 0.907 0.885

Real images+Generate 200 ∗ 3

WGAN-GP* 0.762 0.728 0.938 0.855 0.809

WGAN-GP** 0.804 0.776 0.938 0.874 0.839

WGAN-GP*** 0.846 0.812 0.944 0.893 0.868

SSIM-L-WGAN-GP* 0.782 0.804 0.954 0.886 0.847

SSIM-L-WGAN-GP** 0.88 0.830 0.942 0.901 0.884

SSIM-L-WGAN-GP*** 0.896 0.828 0.931 0.897 0.885

SSIMT-L-WGAN-GP* 0.798 0.769 0.936 0.870 0.834

SSIMT-L-WGAN-GP** 0.86 0.799 0.936 0.888 0.865

SSIMT-L-WGAN-GP*** 0.905 0.858 0.946 0.915 0.903

CNN trained on 150× 75 px for ‘*’, 56× 28 px for ‘**’, 28× 28 px for ‘***’

Table 4. Accuracy and F1 of CNN trained on dataset w = 100 [8]

Training data for CNN Model Score 2 Score 3 Score 4 Accuracy MacroF1
Real images only − 0.796 0.748 0.930 0.860 0.825

Online Data Augmentation − 0.790 0.797 0.928 0.872 0.839

Real images+Generate 100 ∗ 3
WGAN-GP 0.840 0.766 0.923 0.868 0.843

SSIM-L-WGAN-GP 0.904 0.811 0.925 0.890 0.880

Real images+Generate 200 ∗ 3
WGAN-GP 0.845 0.810 0.933 0.884 0.863

SSIM-L-WGAN-GP 0.889 0.812 0.929 0.890 0.877

Real images+Generate 300 ∗ 3
WGAN-GP 0.876 0.821 0.935 0.893 0.877

SSIM-L-WGAN-GP 0.850 0.796 0.932 0.882 0.859

Table 3 shows that the classification accuracy of the rust images is higher when the
input size of the patched images is smaller during the training of the CNN. In all cases,
3) 28 × 28 px, 2) 56 × 28 px, and 1) 150 × 75 px, in that order, show higher Scores.
The result shows that the asymmetric reduced image of 28 × 28 px is a more effective
data augmentation. By resizing the training image to a smaller size, the features of large
rusts are emphasized, and the CNN Score is improved because the CNN has captured the
features of large rusts. We consider that the effect of background and noise is relatively
reduced by the resizing, and that the CNN was able to learn the rust images effectively. We
also consider that the reason for the improved accuracy even when the aspect is ignored is
that the shape and size of the rusts are diversified by the asymmetric downsizing, and the
CNN is able to learn various features of the rusts. From these results, it can be said that
resizing the training image to a smaller size has a significant effect on the improvement
of accuracy in the classification problem of rust images.
On the other hand, SSIM-L-WGAN-GP is not as effective as WGAN-GP or SSIMT-L-

WGAN-GP in 28× 28 px. We guess that the reason for this is due to the nature of SSIM
loss. SSIM loss has the property of focusing on the diversity of the generated image, and
the generated image is expected to be less like the real rust images. SSIMT loss improves
this nature.
Comparing the ‘***’ of the dataset w = 150 with the results of the dataset w = 100

(Table 3 and Table 4), we find that the accuracy is generally improved by training on the
dataset w = 150. We consider that this is because the larger size of the patches reduces
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the variation of the Scores of rusts in the same image. Even in the case of training with
only real images without data augmentation of GAN, the Macro F1 of 100×75 was 0.825,
while that of 150× 75 was 0.889, an improvement of 6.4% pt. It is shown that the larger
size of the patch image when cropping the patch image from the tape image is better to
effectively train the CNN, since the correct labels are reflected in the patch image.

Compare the real rust images with the generated rust images. Figure 3 shows the real
patch image with dataset w = 150, Figure 4 shows the generated SSIM-L-WGAN-GP

(a) Score 2 (b) Score 3

(c) Score 4

Figure 3. Real images with dataset w = 150 and image size 150× 75 px

(a) Score 2 (b) Score 3

(c) Score 4

Figure 4. Generated images with dataset w = 150 and image size 150× 75 px
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(a) Score 2 (b) Score 3 (c) Score 4

Figure 5. Generated images with dataset w = 100 and image size 28× 28 px

(a) Score 2 (b) Score 3

(c) Score 4

Figure 6. Generated images of SSIMT-L-WGAN-GP with the best F1 score

image trained with dataset w = 150, and Figure 5 shows the generated SSIM-L-WGAN-
GP image trained with dataset w = 100. The image sizes of Figure 3 and Figure 4 are
150×75 px and Figure 5 is 28×28 px. From Figure 4, a high-quality rust image similar to
the real image is successfully generated. This indicates that using the data with w = 150,
the size of the input image to GAN and the size of the generated image are increased, and
the rust images containing the important features of the rusts are generated. Comparing
the generated images in Figure 4 and Figure 5, we can see that the generated image in
Figure 4, in which the GAN is trained and generated with a larger size, has a better visual
quality. Therefore, it is shown that the proposed method of training GANs with large size
patch images is more effective as training data for CNNs, since it improves the quality of
the generated images.
Figure 6 shows the generated images of SSIMT-L-WGAN-GP, which obtained the best

F1 score of 0.903 in this paper. Visually, we can confirm the diversity of the generated
images at each Score.
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Regarding the effect of the proposed loss function, it can be seen that the generated
images of SSIM-L-WGAN-GP and SSIMT-L-WGAN-GP are more improved in the accu-
racy of CNN than those of the conventional WGAN-GP. In addition, comparing SSIM-
L-WGAN-GP and SSIMT-L-WGAN-GP, the latter tends to have higher Scores; thus, we
consider that the quality of the generated images is improved by the proposed SSIM-target
loss.

Finally, we show all 14 misclassified patch images for the best Score of 0.903 in Table
5. Compared to the actual images in Figure 3, the eight patch images (1)∼(3), (8) and
(11)∼(14) appear to show that the evaluated Scores are not wrong1. Therefore, it is
considered that the proposed method can achieve an F1 score higher than 0.903.

Table 5. Misclassfied patch images for the best F1 score of 0.903

Label Evaluation Patch images

Score 2 Score 3 (1)

Score 3 Score 2 (2) (3)

Score 3 Score 4 (4) (5) (6)

(7) (8) (9)

Score 4 Score 2 (10)

Score 4 Score 3 (11) (12) (13)

(14)

6. Conclusion. In this paper, we propose 1) a method to cropping a patch image to
a large size in order to correctly reflect the labels of the patch image, 2) a method to
train a CNN by resizing it to a small size in order for the CNN to capture important rust
features, and 3) SSIM-target loss, an improved SSIM loss to improve the diversity of the
generated images. The evaluation results showed that 1) increasing the size of the patch
image improves the accuracy of the CNN by reducing the variability of the rust Scores in

1Note that the discrepancy between these labels and estimation is thought to depend on the position
from which the patch image is cropped.
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the same image, 2) increasing the size of the patch image enables the GAN to generate
larger rust images and improves the quality of the GAN generated images, 3) training the
CNN on resized and smaller patch images allowed the CNN to learn the important features
of rust and greatly improved the accuracy of the CNN, and 4) the WGAN-GP generated
images with SSIM-target loss introduced were effective in improving the accuracy of the
CNN. Future work includes developing more effective GAN models and loss functions.
One of the considerations is the application of Auxiliary Classifier Wasserstein GAN
(ACWGAN) [15], which improves the quality of a small class of generated samples by
introducing an auxiliary classifier.
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