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Abstract. The cost of the experimental setup during the assembly process development
of a chipset, particularly the under-fill process, can often result in insufficient data sam-
ples. In INTEL Malaysia, for example, the historical chipset data from an under-fill
process consist of only a few samples. As a result, existing machine learning algorithms
for predictive modeling cannot be applied in this setting. Despite this challenge, the use
of data-driven decisions remains critical for further optimization of this engineering pro-
cess. In this study, a weighted kernel regression with artificial samples (WKRAS) is
introduced to improve the predictive modeling in a setting with limited data samples. In
the proposed framework, the original weighted kernel regression (WKR) is strengthened
by incorporating artificial samples to fill the information gaps between available training
samples. The artificial samples generation is based on the dependency measurement be-
tween every independent variable and dependent variable with subject to the calculated
correlation coefficients. Even though only four samples are used during the training stage
of the setup experiment, the proposed technique is able to provide an accurate prediction
within the engineer’s requirements as compared with other existing predictive modeling
systems, including the WKR and the artificial neural networks with back-propagation al-
gorithm (ANNBP).
Keywords: Recipe generation, Predictive modeling, Weighted kernel regression, Small
samples, Artificial samples

1. Introduction. Recipe generation provides the key references needed by engineers to
set up a new experiment for a new product and plays an important role in determining the
success of product development. Currently, the ingredients chosen for the recipe mainly
depend on the engineer’s knowledge. Optimizing the input parameters will facilitate the
engineering decisions needed to fulfill certain requirements. As the assembly process for
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chipsets is rapidly progressing towards smaller scales and greater complexity, the accuracy
and efficiency requirements are more vital. For example, a semiconductor process flow
requires hundreds of fabrication operations steps with a lead-time of a few months. In
addition, device fabrication and manufacturing costs continue to escalate. In addition to
the usual strategy of increasing the wafer size and shrinking devices to reduce the cost per
transistor, automation and modeling are becoming more important. Fowler [1] revealed
that the productivity improvement strategy of semiconductor manufacturing is based on
operational improvement at the front-end of wafer fabrication; this strategy accounts for
almost half of the total annual productivity improvement target.
The use of artificial intelligence techniques for process modeling during the downstream

assembly and all the involved tests is expected to reduce the overall manufacturing cost.
As artificial intelligence techniques have been successfully applied in various engineering
applications [2], introducing intelligent modeling to the assembly process promises to ac-
celerate the engineering decisions even at early stages when very few collected samples
are available. Inherently, intelligent modeling can improve equipment and resource uti-
lization. In general, the development of recipe generation for assembly processes has only
limited samples. However, most of the current machines learning algorithms are hindered
by the limited number of available samples. In other words, the performance of existing
algorithms degrades because the sample size is insufficient [3].
In INTEL Malaysia, the under-fill process shown in Figure 1, which consists of six input

parameters with a small and sparse data set, is considered. Those input parameters are
die size (dimension of die), gap height, the number of bumps, dispense distance, dispense
weight, and the output is the dispense tongue length. In practice, it is difficult to define the
input-output relationship, and improperly determined input setting parameters frequently
cause the yield to be ‘excess epoxy’, ‘epoxy on die’, or ‘insufficient epoxy’. Notably, the
experiment usually involves large samples, and it is rather expensive to determine the
recipe that prevents the tongue generated during the under-fill process from touching the
keep out zone (KOZ), as illustrated in Figure 2. Hence, it is important to develop a
cost-effective method to arrive at the optimal setting.
The problem being solved can be categorized as of learning from small samples which

has gained increasing attention in many fields, such as in assembly process for sparse
prediction modeling [4,5], engine control modeling [6], medical problem [7], and pulp
and paper industry [8]. In general, most of the existing techniques rely on the pre-data
processing technique, utilizing bias data points, and artificial samples generation in solving
the problem. Generating artificial samples is also known as a technique to incorporate
prior knowledge in machine learning [9] which gives better generalization. However, only
few works have been reported in literature particularly for regression problem [10,11].

Figure 1. Illustration of an under-fill process in an assembly
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Figure 2. Illustration of an epoxy tongue that touches the keep out zone

Therefore, the main objective of this study is to propose a new technique for gener-
ating artificial samples by using the Weighted Kernel Regression (WKR) in solving the
recipe generation problem. With this idea, correlation factor offers a feasible solution
in generating artificial sample which based on the dependency coefficients between each
independent variable and dependent variable. Also, the study aims to incorporate the
generated artificial samples together with the available training samples to the WKR.
By assuming that the generated artificial samples are relevant, with enough samples,
the WKRAS will improve the prediction performance of the WKR. Previously, WKR
has proved to solve small sample with good accuracy for theoretical functions [12] and
application in semiconductor problem [5].

The remainder of this paper is organized as follows. A brief review of the WKR is
given in Section 2. The proposed WKRAS is presented in Section 3. Section 4 includes
the implementation of the proposed technique and the experimental results. Finally, the
conclusions are provided in Section 5.

2. Weighted Kernel Regression Review. In this section, we first review the basic
algorithm of the WKR. The concept of the WKR is introduced in the following. Given
training samples, {xi, yi}ni=1, where n is the number of training samples, xi ∈ <d is the
input and yi ∈ < is the target output. WKR is the technique to regress the output space by
mapping the input space <d to <. In general WKR is a modified Nadaraya-Watson kernel
regression (NWKR) by expressing the weight based on the observed samples through a
kernel function. The existing WKR relies on the Gaussian kernel function as given in
Equation (1).

K(X,Xi) =
1√
2π

exp

(
−‖X −Xi‖2

)
h

(1)

where h is the smoothing parameter. As in NWKR, the selection of smoothing parameter,
h, is important to compromise between smoothness and fitness [13]. As in existing WKR,
Equation (2) is employed to determine the value of h.

h =
n∑

i=1

(
‖Xi‖2 − ‖X‖

2
)2

(2)

The kernel matrix K = [Kij], where i = j = 1, . . ., n, with a generalised kernel matrix
based on the Gaussian kernel, is given in Equation (3). The matrixK transforms the linear
observed samples to non-linear problems by mapping the data into a higher dimensional
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feature space.

Kij =
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In WKR, the most popular function for regression problems is used which to minimize
the sum of squared error (SSE) to estimate the weight parameters, W .

min f (W ) ⇔ min ‖Kw − y‖2 (4)

Once the optimum weight is estimated, the model is ready to predict any unseen samples
(test samples). The test samples can be predicted by using Equation (5)

ŷ
(
X, Ŵ

)
=

n∑
i=1

ŵi

(
d∏

p=1

K (Xp, Xp
i )

)
n∑

i=1

(
d∏

p=1

K (Xp, Xp
i )

) (5)

3. The Proposed Weighted Kernel Regression with Artificial Samples. The
proposed technique relies on WKR to predict the unseen data. However, instead of
relying on the limited samples, a considerable quantity of artificial samples is generated
based on the correlation factor. The entire working procedure of the proposed technique
is shown in Figure 3.
Step 1. Calculating the correlation coefficient for each independent variable against

the output based on Equation (6).

rxpy =
cov (xp, y)

σxpσy

=
E
[(
xp − µxp

)
(y − µy)

]
σxpσy

(6)

where rxpy is the correlation coefficient between the independent variable p, p = 1, 2, . . ., d,
and the dependent variable, y. xp is n observed independent variables of p and µxp is
the corresponding mean value of xp. y is n observed dependent variables and µy is the
corresponding mean value of y. σxp and σy are the standard deviations of xp and y
respectively. A highly correlated independent variable, xc = {x1

c , x
2
c , . . ., x

n
c }, is defined as

an independent variable with the highest correlation coefficient, which is subjected to a
two-dimensional WKR in the next step.
Step 2. The highly correlated independent variable, xc = {x1

c , x
2
c , . . ., x

n
c }, and the

corresponding outputs (Y1, Y2, . . ., Yn) are used as training samples for a two-dimensional
WKR and the smoothing parameter, h, is set to be the variance of the original outputs
{Y1, Y2, . . ., Yn}. With n samples of xc, n − 1 regression intervals, Ir, are defined where
r = 1, 2, . . ., (n− 1). The range of the entire interval is defined from the minimum value
of xc, min(xc), and the maximum value of xc, max(xc). Within the entire interval, m new
independent variables are generated as the test sample, Xs, where s = 1, 2, . . .,m, based
on Equation (7).

Xs = min (xc) +

(
s× (max (xc)−min (xc))

m

)
(7)

Xs is then used as the input for regressing m corresponding outputs, Os, by applying
Equation (5) based on the estimated weight. Because Ss = (Xs, Os), and Tr ∈ Ss, where
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Figure 3. A series of steps for the WKR with artificial samples

Tr are generated samples in each regression interval and the chosen m value must satisfy
Tr, there must be at least 3 samples (Tr ≥ 3) in each regression interval condition.

Step 3. For each regression interval, only three samples, which are the minimum,
median, and maximum values of Tr, are chosen; they correspond to

{
Tmin
r , Tmed

r , Tmax
r

}
,

respectively. Notably, in Step 1, among the d independent variables, only the highest
correlated independent variable is chosen for artificial sample generation based on a two-
dimensional WKR. The other d−1 independent variables that correspond to the particular
xc = {x1

c , x
2
c , . . ., x

n
c } (only the first xn−1

c ’s are applicable due to the n−1 interval) are then
simply concatenated to each of Tmin

r , Tmed
r and Tmax

r to generate artificial samples. This
step is implemented in each regression interval. The total number of artificial samples is
given by {AS1, AS2, . . ., ASk}, where k = 3× (n− 1).

Step 4. WKR is applied to the artificial samples obtained in Step 3 and the original
samples. Again, h has to be calculated using Equation (2) for model prediction

Step 5. Evaluate and test the WKRAS using the test samples (unseen samples).
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4. Experiments and Results.

4.1. Experimental setup. The historical DOE data set obtained from INTELMalaysia,
shown in Table 1, was employed in the experiment. The total number of available samples
was ten, and four training samples from the first four rows were chosen because those
training samples covered the minimum and the maximum range of the input and output
values. This was a relevant assumption because the problem became an interpolation
problem based on the observed samples.
Several existing techniques are considered in the conducted experiment including WKR

[5] and ANNBP. The main purpose of employing other techniques is to highlight the
capability of the proposed technique in term of the performance quality. Initially, all the
parameter settings for each predictive modeling algorithm are predefined. The parameter
settings are summarized in Table 2.

4.2. Performance measure. A simple but useful concept from [4] is used to evaluate
the performance of the prediction based on the error of the acceptance rate, E, within
the accuracy of the guard band, A, as shown in Equation (8).

E =

∣∣∣∣predict− actual

predict

∣∣∣∣× 100% ≤ A (8)

Table 1. The historical DOE data set: a and b are the dimension sizes;
gh, the gap height; nb, the number of bumps; dd, the distance dispense;
sw, the amount of epoxy; the output, the length of the tongue

a b gh nb dd sw output
14795.66 13475.28 3035.64 6782064 67870 61700 256305.3
17238.98 17238.98 3134.36 6782064 80210 49360 166709.3
6170 6170 3072.66 662658 49360 17276 114980.7

16671.34 16362.84 3356.48 6415566 74040 61700 250800.1
14795.66 13475.28 3035.64 6782064 67870 49360 237581.9
17238.98 17238.98 3134.36 6782064 80210 55530 243672.4
16671.34 16362.84 3356.48 6415566 74040 49360 215971.4
16671.34 16362.84 3356.48 6415566 67870 61700 246692
14795.66 13475.28 3035.64 6782064 67870 40722 199574.8
14795.66 13475.28 3035.64 6782064 67870 57998 251815.5

Table 2. Parameter settings for each of the predictive modeling algorithms

Technique Parameter Settings

WKRAS
σ =

n∑
i=1

(
‖Xi‖2 − ‖X‖

2
)2

, iteration = 1000 (whichever is reached

first), artificial samples generation

WKR [5]
σ =

n∑
i=1

(
‖Xi‖2 − ‖X‖

2
)2

, iteration = 1000 (whichever is reached

first),

ANNBP

Input Layer (6 nodes), One Hidden Layer (15 nodes with sigmoid
function), Output Layer (1 node with linear function), momentum
rate = 0.9, learning rate = 0.7 and stopping criteria either training
error MSE < 10e-6 or iteration = 1000 (whichever is reached first)
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Within a specified acceptance rate, the coverage accuracy, as shown in Equation (9), is
calculated to determine how many samples fulfill the setting guard band value.

C =
total number of accepts

total number of predictions
× 100% (9)

4.3. Results. The presented results in Table 3 show the coverage accuracy of all em-
ployed techniques for three different guard band values. The WKRAS achieves a high
accuracy even dealing with a very small and sparse dataset, as compared with the WKR
and ANNBP. Also, the ANNBP tended to produce inconsistent predictions when dealing
with small samples due to the non-deterministic nature of the ANNBP [14]. As a result,
ANNBP had the worst prediction quality. Hence, we only reported the average coverage
accuracy for ANNBP in this study.

Table 3. The coverage accuracy of all predictive modeling algorithms

Technique
Sample Size Coverage Accuracy, C (%)
Train Test A = 8% A = 12% A = 15%

WKRAS 4 6 66.67 100 100
WKR [5] 4 6 50 83.33 83.33
ANNBP 4 6 50 50 50

Table 4. Calculated correlation coefficients of the intel dataset using
Equation (6)

c1 c2 c3 c4 c5 c6
Correlation Factor 0.6966 0.6208 0.3777 0.7839 0.5394 0.9352

The introduction of artificial samples based on the correlation factor reflected the par-
ticular input relationship against the output and successfully filled the information gaps of
the original training samples. Theoretically, the introduction of these samples agreed with
the nature of the dataset, in which the length of the tongue from the under-fill process
was highly correlated with the amount of dispensed epoxy. In other words, the ‘sw’ input
contributed substantially to the length of the tongue, as shown in Table 4. Explicitly,
the calculated coverage accuracy also agrees with the assumption of the correlation factor
in generating the artificial samples. However, if the generated artificial samples are not
well represented the actual distribution of the training samples, the performance of the
WKRAS may degrade and causes a large error.

The chosen guard band values provide an indicator for the engineer and facilitate the
establishment of a new experiment for a new product at a certain confidence level. As
a result, the experiment conducted here to model the under-fill process will allow the
full use of resources and indirectly reduce costs by creating a recipe from the proposed
technique.

5. Conclusions. Because of limited information, learning from small samples is ex-
tremely difficult, especially during the under-fill process of the assembly process. This
study shows that the modified version of kernel regression with artificial samples, namely
WKRAS, is superior to the existing technique, WKR and ANNBP. The WKRAS requires
a training process that incorporates artificial samples during the learning stages to find
the optimum weight before the model is ready to use for the recipe generation process
development. The artificial sample generation successfully signifies the dependencies of
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the highly correlated input parameter to the output and provides necessary information
when there is no training sample available. In the future, a technique to systematically
generate artificial samples will be investigated to increase the number of relevant samples
and thereby improve the prediction of the model and avoid irrelevant artificial samples
generation.
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