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Abstract. Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic in-
formation used in the development and functioning of all known existing organisms. In
DNA computing, a set of DNA sequences is involved in solving an optimisation problem.
The design of those sequences is difficult because of the frequency of DNA sequence mis-
match hybridisations. In this paper, an Ant Colony System approach for DNA sequence
design is proposed to solve this DNA sequence design problem. A 4-node state transition
machine was used in this study as the computation model. During the implementation,
each ant was placed randomly at a start node and then moved according to the state tran-
sition rule. Once all of the ants completed the tour, the objective function was computed.
This process was repeated until the maximum iteration was obtained. Seven ants were
used to design seven sequences that were 20 nucleobases in length. The results showed
that a set of usable DNA sequences can be produced using this method, which is better
than previous approaches using the Genetic Algorithm and Multi-Objective Evolutionary
Algorithm.
Keywords: DNA sequence design, DNA computing, Ant colony system

1. Introduction. DNA has certain unique properties, such as self-assembly and self-
complementary, which makes it capable of saving an enormous amount of data and per-
forming massive parallel reactions. DNA is a polymer of nucleic acids that is assembled
from a series of monomers. Monomers, which form the building blocks of nucleic acids, are
called nucleotides. Each nucleotide contains a sugar (deoxyribose), a phosphate group,
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and one nucleobase. There are four types of nucleobases that can be classified as ei-
ther purines or pyrimidines. Adenine (A) and guanine (G) nucleobases are classified as
purines, and thymine (T) and cytosine (C) nucleobases are classified as pyrimidines. DNA
computing is an unconventional computational process that requires data from in vitro
experiments to be completed successfully [1]. DNA computing has shown potential by
solving several mathematical problems, such as graph and statistics problems [2]. In vitro
experiments are not error-free, and analogously, error can occur in computational exper-
iments. Hence, many researchers have focused on the design of DNA sequences in order
to minimise error in DNA computation.
The main objective of DNA sequence design is to prevent mismatch hybridisation among

sequences in the data set. Avoidance of mismatch hybridisation ensures that the generated
DNA sequences are unique and cannot be hybridised with other sequences. Previous
studies have proposed a variety of DNA sequence design approaches [3-8] and applications
of DNA sequence design can be seen in several areas [9-11].

2. DNA Sequence Design Problem. DNA sequence design requires the following four
parameters: Hmeasure; similarity; hairpin; continuity. GCcontent and melting temperature
are used as constraints and are defined by the user [12]. In general, the DNA sequence
design can be formulated as:

min fDNA =
∑
i

ωifi = fHmeasure + fsimilarity + fcontinuity + fhairpin (1)

where fi is the objective function for each i ∈ {Hmeasure, similarity, hairpin, continuity}
and ωi is the weight for each fi. In this study, weights are set to one. For convenience,
basic notations used for the objectives and constraints formulation are shown in Table 1.
In addition, the following notations are used.

bp(a, b) =

{
1 a = b̄
0 otherwise

(2)

eq(a, b) =

{
1 a = b
0 otherwise

(3)

T (i, j) =

{
i i > j
0 otherwise

(4)

For a given sequence x ∈ Λ∗, the number of non-blank nucleotides is defined as

length(x) =

|x|∑
i=1

n(xi) (5)

Table 1. Basic notations

Notation Description
Λ {A, C, G, T}

x, y ∈ Λ x, y = {A, C, G, T}
|x| length of x

xi (1 ≤ i ≤ |x|) ith nucleotide from 5’end of sequence x
Σ A set of n sequences with the same length l
Σi ith member of Σ
ā complementary base of a
l length of sequence
n number of sequences
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where

n(a) =

{
1 a ∈ Λ
0 otherwise

(6)

A shift of sequence x by i bases is denoted as follows:

shift(x, i) =

{
(−)ix1 · · · xl−1 i ≥ 0
xi+1 · · · xl(−)i i < 0

(7)

2.1. Objective functions. In this paper, four objective functions are selected for DNA
sequences design. The Hmeasure term and similarity objectives are necessary to prevent
miss-hybridisation during any experiment using DNA-based technology. Miss-hybridisa-
tion reduces the reliability and efficiency of DNA computation. Alternatively, the hairpin
and continuity objectives are important in DNA-based technologies to prevent undesired
secondary structures that can which produce undesired DNA complexes.

2.1.1. Hmeasure. The Hmeasure term computes the number of complementary nucleotides
required to prevent cross-hybridisation of two sequences. Cross-hybridisation occurs when
bases of two sequences hybridise with their complements at the cross position. Hmeasure

is divided into two terms, Hdis and Hcon. The Hdis term is for the overall complemen-
tary and the Hcon term is the penalty for the continuous complementary region. For
Hmeasure calculations, two strands of sequences are placed in parallel. While one sequence
is stationary, the reverse complement of the second sequence is shifted from one end to
the other. For each position shift of the sequence, the complementarity between the two
sequences is calculated. The Hmeasure objective function, fHmeasure(Σ), is given as

fHmeasure(Σ) =
n∑

i=1

n∑
j=1

Hmeasure(Σi,Σj) (8)

where Σi and Σj are anti-parallel to one other. This means that the sequences have
different direction, such that the first sequence is in the 5’→3’ direction and the second
sequence is in the 3’→5’ direction. For a particular i and j, where i 6= j, the Hmeasure

between two sequences, x and y, is calculated using

Hmeasure(x, y) = max
|i|<l−1

(hdis(x, shift(rev(y), i)) + hcon(x, shift(rev(y), i))) (9)

where

hdis(x, y) = T

(
l∑

i=1

bp(xi, yi), Hdis × lengthnb(y)

)
(10)

hcon(x, y) =
l∑

i=1

T (cbp(x, y, i), Hcon) (11)

Hdis is a real value between 0 and 1, and Hcon is an integer between 1 and l. Both values
are set by the user and T is determined using Equation (4). In Equation (12),

cbp(x, y, i) =


c if ∃c, s.t. bp(xi, y) = 0, bp(xi+j, yi+j) = 1 for 1 ≤ j ≤ c,

bp(xi+c+1, yi+c+1) = 0

0 otherwise

(12)
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2.1.2. Similarity. The similarity objective function computes the similarity between two
given sequences that are in the same direction. The similarity term has to be minimised
in order to keep each sequence as unique as possible. The similarity fitness function,
fsimilarity(Σ), is formulated as

fsimilarity(Σ) =
n∑

i=1

n∑
j=1,j 6=i

similarity(Σi,Σj) (13)

where Σi and Σj are parallel to each other. Similarity (x, y) also consists of two terms, i.e.,
sdis and scon. The sdis term represents the overall complementary similarity calculation
and the scon term represents the penalty for the continuous complementary region. The
calculation for similarity between two sequences is shown in Equation (14).

similarity(x, y) = max
|i|<l−1

(sdis(x, shift(y, i)) + scon(x, shift(y, i))) (14)

Note that Sdis is a real value between 0 and 1, and Scon is an integer between 1 and l.
Both values are set by the user. In Equation (14),

sdis(x, y) = T

(
l∑

i=1

eq(xi, yi), Sdis × lengthnb(y)

)
(15)

scon(x, y) =
l∑

i=1

T (ceq(x, y, i), Scon) (16)

ceq(x, y, i) =


c if ∃c, s.t. eq(xi, yi) = 0, eq(xi+j, yi+j) = 1

for 1 ≤ j ≤ c, eq(xi+c+1, yi+c+1) = 0

0 otherwise

(17)

2.1.3. Hairpin. The hairpin objective function calculates the probability of a single-stran-
ded DNA to form a secondary structure, particularly a hairpin structure. The hairpin
term can be formulated as

fhairpin(Σ) =
n∑

i=1

hairpin(Σi) (18)

where the calculation of hairpin for a sequence is given as

hairpin(x) =

l−2∗Pmin∑
r=Rmin

l−Pmin−r∑
p=Pmin

T

pinlen(p,r)∑
i=1

bp(xp+1−i, xp+r+i),
pinlen(p, r, i)

2

 (19)

with pinlen(p, r, i) = min(p+ i, l − r − i− p), where p is a pair and r is a ring.

2.1.4. Continuity. The continuity objective function computes the number of continuous
bases that are the same in a single-strand of DNA. Continuity for a set of sequences, Σ,
is defined as

fcontinuity(Σ) =
n∑

i=1

continuity(Σi) (20)

where

continuity(x) =
∑
1≤i≤l

(∑
a∈Λnb

T (c(a, i), t)2

)
(21)
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Here, t is a threshold parameter, which denotes the minimum number of base repetitions
in a sequence, l is the length of the sequence, and

c(a, i) =


n if ∃n, s.t. eq(ai, ai+j) = 1 for 1 ≤ j < n,

eq(ai, ai+n) = 0

0 otherwise

(22)

2.2. Constraints in DNA sequence design. Generally, it is preferable to have DNA
sequences which behave uniformly in fundamental chemical reactions during the in vitro
computation. Two constraints, namely GCcontent and melting temperature, Tm, can be
employed to ensure uniform chemical characteristics. These constraints are discussed in
more as follows.

2.2.1. GCcontent. The GCcontent term is the percentage of G and C in a sequence. Since GC
content can affect the chemical properties of DNA sequences, it is an important constraint
in DNA sequence design. The GCcontent constraints of a sequence is expressed as

GCmin ≤ GCcontent = (yG+ zC)/(wA+ xT + yG+ zC) ≤ GCmax (23)

where wA, xT, yG, and zC are the numbers of A, T, G, and C in the sequence, respectively,
and the GCmin and GCmax values are determined by the user.

2.2.2. Melting temperature. Melting temperature, Tm, is the temperature where half of
the double-stranded DNA starts to break into its single-stranded form [13]. Tm can be
calculated using the following equation, which is based on Nearest-neighbour formulation:

Tm(min) ≤ Tm(x) =
∆H

∆S +R lnCT

+ 16.6 log(Na+) ≤ Tm(max) (24)

where ∆H and ∆S are the enthalpy and entropy changes of the annealing reaction,
respectively. The universal gas constant (Boltzmann’s constant), R, is

(
1.987cal
mol◦C

)
. CT is

the total oligonucleotide strand concentration. For non-self-complementary molecules, CT

is replaced by CT/4. Na
+ is the salt concentration, which is used for salt adjustment. In

this paper, Santa Lucia Unified [14] is used in the calculation of Tm.

3. The Proposed Ant Colony System for DNA Sequence. Ant colony optimisation
(ACO) is a population-based metaheuristics model that can be used to find solutions for
optimisation problems [15]. In ACO, a set of software agents, called artificial ants, search
for solutions to a given optimisation problem. Ant colony system (ACS) is a variant
of ACO algorithms. ACS includes different mechanisms that are related to pheromone
communication and the state transition rule.

The computation of the DNA sequence design problem is modelled by a 4-node state
machine, as shown in Figure 1 [12]. The 4 nodes represent each of the four DNA bases:
A, C, T, and G. Note that a similar computation model has been employed by Ibrahim et
al. [8]. In this study, each solution consisted of seven ants, and each ant represented one
DNA sequence. The length for each sequence was 20 nucleobases. Algorithm 1 shows the
proposed ACS algorithm used in this study. The algorithm begins with the initialisation
of τ0, ε, ρ, Hcon, Hdis, Scon, and Sdis. The formulation of τ0 is shown in Equation (25).

τ0 =
1

Q/n
(25)

whereQ is the sum of objectives calculated for a set of randomly generated DNA sequences
and n is the number of sequences. The initialised values of other parameters are shown
in Table 2 and Table 3.
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Figure 1. A computational model for DNA sequence design

Algorithm 1. Ant colony system for DNA sequence design
//- - Initialisation
Initialise parameters τ0, ε, ρ, Hcon, Hdis, Scon, Sdis

Loop /* each loop is called an iteration
Loop /* each loop is called an ant

Each ant is positioned randomly on the start node
Loop
//- - State transition rule

Each ant applies state transition rule to incrementally build a solution
//- - Local pheromone updating

Local pheromone updating rules is applied
Until ant build a complete DNA sequence
If GCcontent and Tm constraints passed then

Proceed with the next ant
Else

Repeat the DNA sequence generation using the current ant
End if

Until all ants have built a complete solution
For each DNA sequences do

Calculate objective functions
Next

If the objective functions of the sequences better than previous then store the
sequences as the best found sequences

End if
//- - Global pheromone updating for the best DNA sequence produced by ants

A global pheromone updating rule is applied
Until Stopping Condition Meet

During the construction of a new set of DNA sequences, a state transition rule, as
shown in Equation (26), was employed to determine the next state (base) for each ant.

pk(r, s)ACS =

{
argmax{[τ(r, S)]} if q ≤ q0
random otherwise

(26)

where τ is the pheromone information, s ∈ S, and S = {A, C, G, T}. The probability,
pk, of an ant moving from one state, r, to another state, s, depends on random variables
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Table 2. DNA parameters

Parameter Value

Hmeasure
Hcon 6
Hdis 0.17

Similarity
Scon 6
Sdis 0.17

Continuity threshold t 2

Hairpin
Rmin 6
Pmin 6

GC%
Min 15
Max 85

Tm
Min 0 ◦C
Max 150 ◦C

Na+ 1 Mol

Table 3. ACS parameters

Parameter Value
B 1
Z 0.05
P 0.1
q0 0.5
N half of ants

Number of Sequences = 7 (no. of ants − n)
Length of DNA Sequences = 20 (no. of tours)
Maximum Number of Iteration (tmax) = 300

q and q0, where q is a uniformly distributed random variable [0, 1] and q0 is between 0
and 1. In this study, if q > q0, random bases are chosen, as shown in Equation (26). This
is due to the observation that if the actual equation for the state transition rule in ACS
is used, it will increase the tendency to choose the same base repeatedly.

The sequence generated by ants must satisfy the GCcontent and melting temperature
constraints. For any invalid sequence generated by the ant, the algorithm will require the
ant to generate a new solution by random walk. This simple change in the ACS algorithm
not only ensures the result obtained is valid but also reduces computation time. An invalid
DNA sequence will affect other DNA sequences generated and thus requires additional
computation time to generate a new solution. Then, each sequence constructed by ants
is subjected to local pheromone updating, shown in Equation (27).

τ(r, s)t+1 = (1− ζ) · τ(r, s)t + τ0 (27)

where ζ = [0, 1] is the pheromone decay coefficient and τ0 is the initial value of the
pheromone. After, the total fitness is calculated according to Equation (1). The ant with
the lowest total fitness performs the global updating, according to Equation (28).

τ(r, s)t+1 = (1− ρ) · τ(r, s)t +∆τ(r, s) (28)

where ρ (0 ≥ ρ ≥ 1) is the evaporation rate and ∆τ(r, s) is the quantity of pheromone
laid on edge (r, s) by ant k at iteration t, which is given by:

∆τ(r, s) =

{
1/Q if (r, s) ∈ tour done by ant k
0 otherwise

(29)
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This process is repeated until the maximum number of iterations is reached.

4. Results and Discussion. The experiments were conducted for 100 runs, and the
experimental results were collected for further analysis. In this experiment, the value
of weight ωi for each fi is equal to one and the length of each sequence is fixed to 20
nucleobases. The experimental results obtained from the proposed method were compared
with the existing methods, namely ACS with archive [8], Genetic Algorithm (GA) [6],
and Multi-Objective Evolutionary Algorithm (MOEA) [7]. Tables 4-7 show the best set
of sequences based on the proposed method, ACS with archive [8], GA [6], and MOEA
[7], respectively. Figure 2 shows the best results for all methods and the average value of
the proposed ACS for 100 runs. In this paper, the melting temperature formulation was
calculated based on the Nearest Neighbour (NN) method, with 1 M salt concentration and
10 nM DNA concentrations. Table 8 shows the average value for each objective functions
for 100 runs.
Smaller values for each objective function as well as the total fitness showed that the

proposed ACS provided better results than GA [10] and MOEA [7]. However, the existing
ACS with archive [5] performed better than the proposed approach. This is due to the
fact that the archive stored the best sequences during the optimisation process.
In terms of computation time, as shown in Table 9, a run averages 15.64s. Additionally,

the average iteration number with global convergence for 100 runs is 175 iterations. A
large average iteration number with global convergence might suggest that the algorithm
has no convergence, while a small value might suggest that the algorithm convergence
prematurely. Here, the average iteration with global convergence is 2/3 of the maximum

Table 4. Results obtained based on the proposed ACS

Sequences Hmeasure Similarity Continuity Hairpin
GGAGTGAGAGAGAGGAAGAG 25 73 0 0
AGAGAGAATGAGTTCAGATG 43 67 0 0
CGAGGAGATCCGCGATACCG 53 60 0 0
AGATGAGGAGCGCAGAGGCG 39 69 0 0
AGAGCGATGAGAAGAGAGAT 28 72 0 0
TGAGAGAGAGATGAGAGAGT 23 74 0 0
AAGAGAAGAGAGAGAGAGAG 22 71 0 0

Average 33.285 69.428 0 0
Total 102.714

Table 5. Results obtained based on ACS with archive [8]

Sequences Hmeasure Similarity Continuity Hairpin
ACGTGTGTCGTGTGTGTGTC 23 77 0 0
CTCTCCTCTCCTCTCCTCTC 49 35 0 0
TGTGTGTGTGTGTGTGCGTG 21 68 0 0
ACGTGTGTGTGTGGTGTGTG 25 74 0 0
GTTGTGTGTGTCTGTGGTGT 20 81 0 0
TGATTGATGATGATGATGAT 39 46 0 0
TTGTGTGTGTGGTCGTGTGT 21 69 0 0

Average 28.285 64.285 0 0
Total 92.571
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Table 6. Results obtained based on GA [6]

Sequences Hmeasure Similarity Continuity Hairpin
ATAGAGTGGATAGTTCTGGG 66 55 9 0
CATTGGCGGCGCGTAGGCTT 62 44 0 0
CTTGTGACCGCTTCTGGGGA 70 60 16 0
GAAAAAGGACCAAAAGAGAG 69 40 41 0
GATGGTGCTTAGAGAAGTGG 61 51 0 0
TGTATCTCGTTTTAACATCC 74 41 16 4
TTGTAAGCCTACTGCGTGAC 64 47 0 0

Average 66.571 48.285 11.714 0.57143
Total 127.1428571

Table 7. Results obtained based on MOEA [7]

Sequences Hmeasure Similarity Continuity Hairpin
CTCTTCATCCACCTCTTCTC 52 60 0 0
CTCTCATCTCTCCGTTCTTC 48 58 0 0
TATCCTGTGGTGTCCTTCCT 56 54 0 0
ATTCTGTTCCGTTGCGTGTC 59 56 0 0
TCTCTTACGTTGGTTGGCTG 64 51 0 0
GTATTCCAAGCGTCCGTGTT 66 47 0 0
AAACCTCCACCAACACACCA 71 41 9 0

Average 59.428 52.428 1.285 0
Total 113.142

Figure 2. The best results for each method and the average value of the
proposed ACS obtained based on 100 runs

Table 8. Average values for each objective functions for 100 runs

Objective Functions Hmeasure Similarity Continuity Hairpin Total
Average (100 runs) 51.89 60.1 3.25 0.65 115.23
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iteration value, which is reasonable justification for the algorithm convergence performing
properly.
Practical use of this work can be seen in several areas, such as DNA nanotechnology

and DNA computing. DNA nanotechnology uses branched DNA structures to create
DNA complexes with useful properties. One of the important steps in producing DNA
structures is the sequence design, where poor design will produce undesired structures.
In DNA computing, a well-designed DNA sequence will ensure the reliability of the DNA
computation. Reliability of DNA computing is the ability of the single-stranded DNAs
to hybridise correctly and produce identical results, ceteris paribus. This can be achieved
by creating a large collection DNA sequence pairs that are unique.

Table 9. Computation time for 100 runs

The average time taken for 300 iterations using 7 ants 15.64 s
The least iteration number with global convergence 65 iterations

The maximum iteration number with global convergence 259 iterations
The average iteration number with global convergence 175 iterations

5. Conclusions. This paper presented an Ant Colony System (ACS) algorithm that
was implemented to solve a DNA sequence design problem. This problem consists of four
objectives (Hmeasure, Similarity, Continuity, and Hairpin) and two constraints (GCcontent

and melting temperature). The obtained results obtained were compared to other existing
methods, including the ACS with archive, GA, and MOEAmethods. It was expected that,
even though the proposed approach was applied to solve a DNA sequence design problem,
similar approaches can be used to design DNA sequences for any application, such as
primer design for polymerase chain reaction and DNA-based nanotechnology. Finally, a
multi-objective ant colony optimisation algorithm can be developed to effectively solve
the DNA sequence design problem because the problem is a multi-objective optimisation
problem.
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