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ABSTRACT. Model structure selection is an important step in system identification which
involves the selection of variables and terms of a model. The important issue is choosing
a compact model representation where only significant terms are selected among all the
possible ones beside good performance. This research explores the use of multi-objective
optimization to minimize the complexity of a model structure and its predictive error
simultaneously. The model structure representation is a polynomial non-linear auto-
regressive with exogenous input model. A mew modified elitist non-dominated sorting
genetic algorithm using clustered crowding distance (CCD) is proposed to find the exact
model among non-dominated solutions, using some simulated examples which generate
data set by mathematical equations. Simulation results demonstrated that the proposed
algorithm can find the correct model with exact terms and values in all cases of problem.
Furthermore, the effectiveness of the proposed algorithm is also studied by applying to
the real process data sets, and the final model can be chosen from a set of non-dominated
solutions referred as Pareto optimal front. The results show that the proposed clustered
CD has better performance compared with the basic CD method.

Keywords: NARX, Multi-objective genetic algorithm, NSGA-II, System identification,
Model structure selection, Clustered crowding distance

1. Introduction. The main task in model structure selection is to determine and select
the significant terms to be included in the final model. Selecting a model with a large
number of terms increases the complexity of a model and computation time. Meanwhile,
it may cause over-fitting of data. On the other hand, simplifying a model structure too
much will give inferior performance even for training data, thus the need for structural
optimization. Forward regression orthogonal least square (OLS) is one of the successful
methods for model structure selection [1-5]. OLS selects significant terms based on Error
Reduction Ratio (ERR). There are two disadvantages for this method. The estimator
yields different orthogonalization paths and the number of possible paths (M!) increases
as the number of possible terms M increases. The second is the difficulty in deciding the
ERR value to stop regression especially when these values reduce gradually.

Another method for model structure selection is genetic programming (GP) which has
been studied by some researchers [6-8]. In genetic programming, a population of model
structures is represented as trees and evolves through many generations towards solution
using evolutionary operators such as crossover, mutation and selection. One of the initial
steps in GP is the definition of a set of terminals and a set of functions appropriate to the
specific problem. The terminal set refers to the nodes in the tree and the set of function
refers to operation to generate mathematical expressions.
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Recently, genetic algorithm (GA) is extensively used for model structure selection. As
in GP, a simple GA (SGA) consists of three basic operators: reproduction, crossover and
mutation. The operations are systematically and repeatedly applied to the population
until an acceptable solution is found. Optimization algorithm using genetic algorithm
is based on the mechanics of natural selection and evolution. This algorithm evaluates
multiple points in the solution space simultaneously and therefore, it has potential to
converge to the global optimum solution [9,10]. Researchers such as Kristinsson and
Dumont [11], Zibo and Naghdy [12], Jeong and Lee [13], Sheta and De Jong [14], Hong
and Billings [15] gave related works concerning the application of genetic algorithms in
system identification. Most of the works assumed that the structures of the models were
known and GA was applied for estimating the parameters of those models [13,16].

An improved strategy for selecting and exploring potential regions in genetic algorithm
has been proposed and known as modified genetic algorithm (MGA) that provides better
searching mechanism in finding the correct model structure. Researchers have applied
genetic algorithm for various applications [17-22] and found ways to better improve its
performance. An MGA-based model structure selection algorithm has been developed by
[20], which has been tested on a variety of linear and non-linear systems with promising
results. Samad [21] explored the use of evolutionary computation in model structure
selection and found out that a suitable penalty function parameter can be achieved by
its relation to the smallest estimated and tolerable parameter value. These techniques
optimize the model structure based on minimization of the predictive error and some
strategies such as elitist and grouping of population to undergo further mutation and
crossover [23]. However, the proposed methods need to identify the mentioned terms
before starting the optimization process using trial and error.

The field of search and optimization has changed over the last years by the introduc-
tion of a number of non-classical, unconventional and stochastic search and optimization
algorithms. A number of stochastic optimization techniques such as simulated annealing,
tabu search and ant colony optimization, could be used to generate Pareto set [24]. The
solutions attempt to obtain good approximation but they do not guarantee to identify
optimal trade-offs. All these evolutionary algorithms (EAs) are characterized by a pop-
ulation of solution candidates and the reproduction process enables the combination of
existing solutions to generate new solutions [25,26]. Srinivas and Deb [27] presented the
non-dominated sorting GA (NSGA) as Pareto-based approach. The main advantage of
the algorithm is the assignment of fitness according to non-dominated sets. Nevertheless,
the performance is sensitive to the sharing parameter. To overcome the disadvantage, the
elitist non-dominated sorting genetic algorithm (NSGA-II) has been proposed [26].

In this paper, elitist non-dominated sorting genetic algorithm is modified to model the
non-linear dynamic system that is represented by NARX model. A new method that
is called clustered crowding distance (CCD) based on modification of crowding distance
(CD) is proposed. This approach categorizes all solutions in some subgroups, where each
subgroup must consist of non-repetitive solutions, and then CD is applied to the sub-
groups. This method is applicable for problems with discrete design variables. This study
will apply this method to optimizing the complexity of the structure of polynomial NARX
model. Firstly, the simulated data that are generated from dynamic NARX structures
model will be used. Since the structures are known, the final models can be validated.
After proving the effectiveness of the algorithm using simulated models with different
nonlinearity, the algorithm will be tested using real data of gas furnace. Model validity
tests will also be conducted to test the adequacy and the effectiveness of the developed
model.
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2. NARX Model. The first step in model structure selection is to choose the size of
model sets such as determining the order of the state for a state-space model, the polyno-
mial degree for a polynomial model and the number of hidden nodes for a neural network
model [28]. The advantage of NARX models consists in availability of various methods
for their approximation and simplicity of controls design as well as its simplicity and fast
convergence of identification. This type of model has broad applications such as predic-
tion, simulation and identification. The main issue in identification of these polynomial
models is finding the order of the polynomial and choosing the significant terms from a
large collection of combination sets that exist for this model representation. The NARX
model provides a unified representation of a wide class of non-linear systems. The model
is stated as (1).

y(t) = f"(u(t = 1), ult = na),y(t = 1),...,y(t —ny)) +e(t) (1)

where n,, and n, are the corresponding maximum lags for input and output, e(t) accounts
for possible noise and uncertainties and its inclusion to the equation is usually to avoid
bias in the parameters, n; is the degree of non-linearity and f™ can be assumed as a
variety of non-linear function forms based on n;. The identification of non-linear system
is more difficult compared with linear model since it involves more terms. The NARX
model can be expanded as the summation of terms with the degree of non-linearity in the
range of 1 < n; < L as follows:

L n; ny,nqy p ny
gy =2 > > com oy ) [ [yt —ni) 1] wlt—ny) (2)
=0 p=0 ni,n; i=1 i=p+1

where each n;th degree of non-linearity term consists of pth degree factor in y(t —n;) and
a (n,—p)th degree factor in u(t—n;), multiplied by ¢, ,,,—p(n1, - .., ;) the term coefficients.
The maximum number of terms in polynomial NARX model is given by

ny
M = Z n;, for n; = order of non-linearity (3)

=1

ni—1(ny +ny, +1i—1)

i 5 Ng = 1 (4)

and n; =

The maximum number of all possible model structures is (2" — 1). Increasing the
order of the dynamic terms, which are the values of n,, n, and the degree of non-linearity
ny, in order to get the desired prediction accuracy gives the full terms of the model
which will result in a complex model and heavy computation. For example, a first order
dynamic model for input and output with third degree of non-linearity will contain 9
terms and 2% — 1 = 511 possible models, while for fifth degree of non-linearity will contain
14 terms and 2! — 1 = 16, 383 possible models. This shows that in NARX model, the
number of terms is enormously large and some of these terms are unnecessary. Therefore,
it is important to select only the significant terms for the model that will produce a
parsimonious model that will sufficiently represent the data set.

In most reported works in modelling nonlinear systems, one-step-ahead prediction has
been used to verify the models. However, this is not a sufficient indicator of model
performance because at each step the past inputs, outputs and residuals are available and
used to predict just one increment forward. The one step-ahead prediction is given by

(5):

A

gOSA(t) = F[(y(t - 1)7 SR y(t - ny)a u(t - 1)? R u(t - nu))] (5)

where ' is the estimated model.



7344 S. M. R. LOGHMANTIAN, R. YUSOF, M. KHALID AND F. S. ISMAIL

Model validation such as correlation test is another validation technique that can detect
deficiency using the prediction errors or residuals. If a model of a system is adequate then
the residual or predictive error £(¢) should be unpredictable from all linear and nonlinear
combinations of past inputs and outputs. The derivation of simple tests which can detect
these conditions is complex but it can be shown that [29] the following conditions should
hold:

o) = o =) =

)= SRR T =0 v

P (euy () = E[g(i}ﬁg;(;]_m?;zg; (11%)]_ o >0 (6)
) = =P

bty = B 20—

- VE[®) - PIEE ]
where ® represents the standard correlation function, F' is the expectation operator, §(7)
is an impulse function and £(¢) represents the prediction errors or residual,

eE=y—y (7)
where ¢ is the predicted output, and
NP
== ) (8)
Np t=1

These tests are able to indicate the adequacy of the fitted model. Generally, if the
correlation functions are within the 95% confidence interval, i.e., 11.96/,/N,, the model
is regarded as adequate where N, is the number of data points.

3. Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II). Deb [26] pre-
sented the elitist non-dominated sorting genetic algorithm (NSGA-IT). This method uses
an explicit diversity preserving mechanism. For a multi-objective optimization problem,
any two solutions a and b can have one of two possibilities: one dominates the other
or none dominates the other. In a minimization problem, without loss of generality, a
solution ¢ dominates b if the following two conditions are satisfied:

Vm fm(a) < f(b) m=1,2,...,9 a,beR"
am fm(a) < fu(b) m=12,....9 abeR" (9)

If any of the above conditions are not violated, solution a dominates solution b. If there is
not a solution like @ which dominates solution b, b is called the non-dominated solution.
The solutions that are non-dominated within the entire search space are denoted as Pareto
optimal and constitute the Pareto optimal set or Pareto optimal front.

After creation of new population ) by using parent P of size N, two populations are
combined together and a new population R of size 2N is constructed. Then the process
of finding the non-dominated sorting, sorts the population in R. After non-dominated
sorting, the new population is constructed by different non-dominated front. It starts
with the best one (rank one or first front) and continues with second non-dominated front
and so forth. Since the size of R is 2N and new population needs N individuals, in the
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case of equality in their front level they will be selected according to crowding distance.
The crowding distance is used by NSGA-IT to maintain the diversity among solutions in
a front. The crowding distance for an individual is calculated using hypercube [26].

For selection between two solutions with the same rank, the method chooses the one
with larger distance. The advantages of NSGA-II are that an elite-preservation strategy
and an explicit diversity-preserving mechanism are used simultaneously. These mecha-
nisms do not allow an already found Pareto-optimal solution to be deleted and keep the
diversity of solution. The implementation steps of NSGA-II can be summarized as follows.

Step 1. Generate binary initial population P° of size N according to the number and
length of the decision variables.

Step 2. Calculate the objective functions for each chromosome (individual).

Step 3. Assign number of rank as the fitness function to each chromosome by the non-
dominated sorting procedure and classify them into distinct Pareto fronts.

Step 4. Create offspring population P! (t+ = 1) from initial population P° by GA oper-
ators namely selection, crossover and mutation.

Step 5. Compute the objective functions for each chromosome in P?.

Step 6. Create a combine population of size 2N consisting of old and new generations,
Rt = Pty Pl

Step 7. Perform non-dominated sorting and compute crowding distance for all chromo-
somes.

Step 8. Select lower ranked solutions and put them in the new population of size NV,
Pt+1.

Step 9. In the case of equality of front number among the solutions, choose the chro-
mosomes with a higher crowding distance.

Step 10. A new population is ready, P!, go to Step 4 and repeat until Pareto optimal

front is obtained.

4. Clustered Crowding Distance. To estimate the density of the solutions surround-
ing a particular solution ¢ in the population, the average distance of two solutions on
either side of solution ¢ along each of the objectives must be calculated. The quantity d;
serves as an estimate of the perimeter of the cuboid formed by using the nearest neigh-
bours as the vertices and is called crowding distance. In Figure 1, the crowding distance
of the ith solution in its front is the average side length of the cuboid (dashed box). The
following algorithm is applied to calculate crowding distance as presented by Deb [26] of
each point (i) in a particular set F'.

Step 1. For all solution in the set, assign d; = 0.

Step 2. For each objective function m = 1,2,..., M, sort the set in worse order of f,,
or find the sorted indices vector: I™ = sort(fy,)-
Step 3. For m = 1,2,..., M, assign a large distance to the boundary solutions, or

drp = dpr, and for all other solutions j =2 to (I —1), assign:

A L

fmax _ fmin
m m

The index I; denotes the solution index of the jth member in the sorted list. Thus, for
any objective, Iy and I; denote the lowest and highest objective function value indices,
respectively (I = number of solution in F'). The second term on the right side in Equation
(10) is the difference in objective function values between two neighboring solutions on
either side of solution ;. Thus, this metric denotes half of the perimeter of the enclosing
cuboid with the nearest neighboring solutions placed on the vertices of the cuboid. The

d]Jm = d[]m + (10)
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parameter fM% and f™i" can be set as the population maximum and minimum values of
the mth objective function. This method is referred as CD algorithm.

In problems with discrete design variables especially at the last generations some repet-
itive solutions will be appeared. Using the CD algorithm, all repetitive solutions are as-
signed the same crowding distance values and there is no criterion for selection among
solutions with the same crowding distance. Thus, some solutions will be chosen several
times while the rest not. Consequently the Pareto optimal front does not have density
preservation. One way to overcome this problem may be the use of only non-repetitive
solutions. However, the number of non-repetitive solutions is not sufficient to complete
the empty slots in the population.

A new method called clustered crowding distance (CDD) was proposed and employed to
overcome this problem for some mathematical benchmark problems with discrete design
variables. The new method is applied for optimization of NARX model structure as its
design variables such as number of required, number of input-output lags and nonlinearity
order are discrete. This method classifies all solutions to some subsets, so that there are
only non-repetitive solutions in each subset. Then the crowding distance of solutions is
calculated for each batch and finally, the required number of solutions is selected from
the first subset, followed by second subset and so forth. The following steps show the
procedure of CCD.

Step 1. Classify all solutions into different fronts, F;, where i is the number of fronts.

Step 2. In each set of F; identify repetitive solutions.

Step 3. Form F?, where j is the number of subset including non-repetitive solutions.
For example, if F; = {a,b,a,b,¢,d,d,d, c,d, e}, then

F11 ={a,b,c,d, e}

F12 ={a,b,c,d}
F} = {d}
F ={d}

Step 4. Calculate crowding distance for every subset Fij based on Equation (10).
Step 5. Select solution to fill up the population from the first subset.
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5. Experimental Simulation. Two objective functions can be formulated mathemati-
cally as follows:
1 &
Predictive error, min: MSE = — (1) — 9:(1))?
N ;(yz() 9i(t)) a1
Complexity, min : CX = n, + ny + 1 + Ngerm

where N is number of samples, y(t) and ¢(t) are the desired and predicted system output
respectively and n,,, n, and n; are the number of input and output lags and non-linearity
order respectively and nep, is the number of sufficient term in NARX model. The limits
of the variables are

Lny < Ty < Uny

lgnterm§2M_1

where L,, and L,, are the minimum number of input and output lags respectively and
Unu, Uny and Uy, are the maximum number of input and output lags and nonlinearity
order respectively and M is maximum number of term calculated by (3) and (4).

It is important to note that more precise models need higher upper limits of lags and
order, but computational load will be increased. First step of initialization is associated
with multi-objective optimization. That is, the number of input and output lags and
nonlinearity order. When the chromosomes formed in the initial population of size N, to
minimize the number of require terms (ne,m) in NARX structure, another optimization
process (sub-optimization) is carried out and gives the predictive error, MSE, as the first
objective function. Then, the complexity for the second objective function is calculated
using the summation of n,, ny, n; and nepm.-

Crossover and mutation operators create a new population from the previous population
and both populations are placed in the mating pool with the size of 2N. Based on
NSGA-II regulations, non-dominated sorting and crowding distance are computed for all
individuals in the mating pool for fitness functions evaluation. Selection process chooses
N chromosomes among the 2N for the next generation according to lower rank, and if
necessary for higher crowding distance. The above procedures are performed until end
of iteration and the Pareto optimal front based on convergence and diversity metrics are
obtained. The implementation can be summarized as in Figure 2.

5.1. Case studies. To show the effectiveness of the proposed algorithm, three simulated
model with polynomial NARX structure referred as S1 to S3 were used. In this case,
structures and parameters are known. These examples are used to investigate the capa-
bility of the algorithm to detect and select the correct terms and parameter. System S1
and S2 present second and third order polynomial NARX model, respectively and S3 has
been used by Mao and Billings [30].

(S1) : y(t) =0.95y(t — 1) + 0.7u(t — 1) — 0.5u(t — 3) — 0.37y(t — 3)u(t — 3) (13)

(S2) : y(t) = 0.5y(t — 1) +0.3u(t — 2) + 0.3y(t — Du(t — 1) + 0.5u*(t — 1) (14)

(53) : y(t) =0.20°(t — 1) + 0.7y (t — Vu(t — 1) + 0.6u*(t — 2)
— 0.5y(t — 2) — 0.7y (t — 2)u*(t — 2)

The corresponding coefficients and lags are summarized in Table 1. Thus, the expected

results are at least one among the final solutions of Pareto optimal front equivalent to the
structure of S1, S2 and S3.

(15)
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FIGURE 2. Flow chart of the process

TABLE 1. The expected results for S1 to S3

Systems Input Lags Output Lags Cross lags n(gflgil;leeea;)ii ,

0.7u(t — 1)

SU iu ) 09u(t=1) 037yt = 3u(t - 3) )
0.3u(t — 2

52 0.5u3((t - 1)) 0.5y(t —1) 0.3y(t — Du(t — 1) 3

—0.5y(t — 2) 0.7y(t — Du(t — 1)
2 J—
S3 06wt =2) 4oyt —9) 0.7yt — 2)ud(t — 1) 3
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To show the application of the proposed algorithm on real process data set, the Box-
Jenkins gas furnace data (S4) has been used [31]. For S1 to S3, the input u(t) is a
zero mean uniformly distributed white noise sequence. Five hundred data points were
generated between —1 and +1. Then the desired output, y(t), is calculated using (13) till
(15) as well as for S1 to S4 the number of training and test data is shown in Table 2.

TABLE 2. Data division of case studies

No. of Data No. of Training set No. of Test set
S1-S3 500 400 100
S4, Gas furnace data 296 200 96

5.2. Parameters in genetic algorithm. The control parameters of CCD GA include
population size, crossover and mutation probability, crossover and selection strategy. The
choice of these parameters can affect the behavior and performance of GA whether in
single or multi-objectives cases, [32,33].

The GA parameters used in the study were:

(i) Population size: population size of 20, 50 and 100.

(ii) Crossover probabilities: probabilities of 0.05, 0.3, 0.6, 0.9.

(iii) Mutation probabilities: probabilities of 0.001, 0.01, 0.1.

(iv) Crossover mechanism: single crossover and double crossover.

6. Results and Discussion.

6.1. CCD GA performance. This study has analyzed the effect of different population
sizes of CCD GA method as shown in Figure 3 for S3. The convergence for 20 population
size is faster than the others, while the diversity metrics indicate the roughly same results.
However, it will take longer time to converge to the correct solution. For a small number
of populations, most of the highly superior individuals dominate the population towards
later generation giving them the chance of being selected for the next operation. The
disadvantage is that there will be a chance of not selecting the better solution within the
whole population and will result in poor exploration. To investigate more, the algorithm
was applied 30 times for all three above population size and the solution at last generation
was investigated. In some attempts for population size of 20, the expected solution was
not within non-dominated solutions. While for sizes of 50 and 100 in all attempts there
were expected solutions. Thus, it seems that, the population size of 50 is the best choice
for this study and due to time comsumption increasing to 100 is not necessary.

By varying the crossover probability rate, P., and mutation probability rate, P, the
performance of the algorithms was observed and the results are shown in Figures 4 till
7. The results indicate that there are no specific rules for values of P, and P,, and these
values have to be chosen by trial and error. However, the P, = 0.1 have given better
result among the others. Although, the crossover probability of 0.9 shown acceptable
performances.

Figures 8(a) and 8(b) show the convergence and diversity metrics respectively for the
multi-objective optimization of NARX model structure using CCD NSGA-IT with these
two crossover strategies. The result shows that a double crossover strategy slightly gives
better diversity preservation. For comparison, all the results are summarized in Table 3.
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FIGURE 3. The effect of varied population size on (a) convergence and (b)
diversity of system S3

TABLE 3. The initial parameters and values used in the algorithm

p ¢ Value
arameter S1to S3 S4
Population size 50 50
No of Generation 50 50
Probability of crossover (P,) 0.9 0.8
Probability of mutation (P,,) 0.1 0.1
Max No of input lags 5 5
Max No of output lags 5 5
Max MNo hidden neurons 8 8
Error function MSE (test set) MSE (test set)
1
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FIGURE 4. The effect of varying mutation rate at P, = 0.05 for system S3,
(a) convergence metrics and (b) diversity metrics
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FiGURE 8. The effect of varying crossover point for system S3

6.2. Simulated NARX models. The obtained data sets were modelled as NARX model
and the proposed multi-objective optimization algorithm was applied to optimize the MSE
and complexity of the model structure using modified CCD NSGA-II. All initial values
and parameters for NARX model and CCD NSGA-II were set according to the presented
values in Table 3.

Two goals must be investigated in every multi-objective optimization problem. These
are convergence and diversity of solutions in Pareto optimal front. These two metrics
were investigated for all simulated systems S1 to S3. For instance, the graphs for S3
are shown in Figure 9. The convergence metrics moved to zero, thereby implying that
CCD NSGA-II solutions start from a random set of solutions and approach the Pareto
optimal front. A value of zero of the convergence metrics indicates that all non-dominated
solutions match the Pareto optimal points.

After about 25 generations, the CCD NSGA-II population comes very close to the
Pareto optimal front. As shown in Figure 9(b), the diversity increases until about 45,
after which the diversity remains the same.

The collections of all non-dominated solutions in Pareto optimal set are indicated in
Figures 10 to 12. It can be observed that, each Pareto optimal front contains less than
50 solutions. It happens due to two reasons: (a) some solutions in last generation do
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TABLE 4. Details of the solutions in Pareto optimal front for Figure 10 for S1
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not have rank one and consequently are not the Pareto optimal front members; (b) some
solutions have been repeated several times. To investigate that it is the latter, former
or both reason, the graphs of summation of ranks versus the number of generation are
plotted as in Figure 13. The figure clearly shows that in all cases the graphs tend to 50
(population size) after some generations indicating the existence of repetitive solutions in
the Pareto optimal front.

Table 4 shows the details of the solutions in Pareto optimal front given in Figure 10.
The number of repetition of the six solutions, A; to Fi, is indicated in the table.

All non-dominated solution A; to F; can be a solution for the generated data by 13.
Solution A; is better than F; in complexity, but is worst in MSE. Since the data set was
generated by a simulated model, and the model has been known, trade-off is not necessary.
Thus, the more important is presence of the expected solution (simulated model) among
non-dominated solutions in Pareto optimal front. This strategy is applied for another
simulated example S2 and S3. Solution F} with most complexity and MSE = 0, presents
the expected model of S1. It contains seven terms more as compared with S1, but the
coefficients are power of 1076, 10717 and 10~'%. Consequently, F} is the expected result
that represents S1.

In Table 4, the shaded cells indicate that the proposed solution with the given n,, n,
and n;, does not include the terms in column 1 and “----" shows that essentially the
model may include this term, but the sub-optimizer does not choose these due to the
selection of the best structure. This is also applicable to the tables in other case studies.

System S2 is a nonlinear polynomial NARX like S1, but with degree of non-linearity
of 3. Table 5 indicates the details of non-dominated solutions in Pareto optimal front for

TABLE 5. Details of the solutions in Pareto optimal front of Figure 11 for S2
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6.3. Real gas furnace process. The results for previous section for simulated examples
showed the effectiveness of the proposed algorithm. In this section, the algorithm is
applied to model a real process, Box-Jenkins Gas furnace process (S4). The evolution of
multi-objective optimization and convergence of two goals for both processes are shown
in Figure 14. The graphs of the convergence metric tends to zero as expected and the
diversity metric increases with the generation number to form the uniform Pareto optimal
front.

Figure 15 shows the summation of ranks in the last generation of both processes. Since
the graphs converge to the population size of 50 and the Pareto optimal front, as shown
in Figure 16 contains less than 50 points, thus there are some repetitive solutions. After
performing the multi-objective optimization, the Pareto optimal front of S4 presents
seven non-dominated solutions, as shown in Table 7, that are not superior or inferior to
each other. Trade-off among them can help designer to choose one as the final solution.
Repetitive solutions in the Pareto optimal front reduce the variety of solutions, and thus
designer can trade-off among fewer candidates.

Convergence Metrics
Diversity Metrics

| Wb

i i I 0 /VJ i i i i
0 10 20 30 40 50 1] 10 20 30 40 50
Generation Number Generation Number

(a) (b)

FIGURE 14. Two metrics for S4, (a) convergence (b) diversity
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FiGURE 15. The convergence process of summation of rank for S4
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FIGURE 16. Pareto optimal front (last generation) for S4

TABLE 7. Details of the solutions in the Pareto optimal front of Figure 16

Non-dominated solutions in Pareto optimal front
Ay By Cy Dy Ejy Fy Gy
[rey 1y mg) [111] [211] [121] [131] [141] [132] (1312
Complexity 5 6 7 9 10 13 18
MSE (test set) 0.629 0.579 0.236 0.169 0.158 0.141 0.140

Lags Coefficients
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Solution A4 has a simplest structure as compared with others, but the error is about
0.629 and is not acceptable. Anyway, mathematically this is the starting point of Pareto
optimal front since it has minimum complexity. Increasing the complexity from A, to G4
the MSE gets better. The number of terms in G4 is much more than F,, while MSE is
0.001 less than solution Fy. Thus, F} can be a better model for this system. Solution F} is
a polynomial with degree of nonlinearity of two and seven terms. For further investigation,
the correlation tests for F; are shown in Figure 17. The correlation tests show that all
functions fall within the 95% confidence bands.
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FIGUuRE 17. Correlation test for solution F} of S4

6.4. Comparison study. As mentioned earlier the clustered crowding distance was used
to improve the diversity preservation of non-dominated solutions in NSGA-II for identi-
fication of dynamic systems. To compare the performance of NSGA-II using crowding
distance to proposed CCD on multi-objective optimization of dynamic system structure,
three systems S1, S2 and S3 are considered. Figures 18 to 20 show the convergence and
diversity performance of both methods. In all cases the graphs for CD converge to the
low values, while using CCD gives better diversity.

Figures 21 illustrate the Pareto optimal front and non-dominated solutions for S3.
As shown in Figure 21(b) some non-dominated solutions have not been selected by the
algorithm and only three solutions have been chosen.

The above results show the effectiveness of using CCD to maintain the diversity of non-
dominated solutions in multi-objective optimization of the problems with discrete design
variable. With reasonable number of extra solutions as obtained by CCD algorithm,
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designer would be able to have more choice in selecting the final model that fits rigorous
validation test such as correlation tests.

7. Conclusion. A new clustered crowding distance (CDD) has been developed based
on elitist non-dominated sorting genetic algorithm (NSGA-II) to optimize NARX model
structure. The proposed method has been shown to be effective in identifying the cor-
rect structure of the system using two objective functions for three simulated polynomial
NARX model with different nonlinearity and for a real process data set. There is more
than one possible solution in multi-objective optimization problems. Therefore, trade-off
among the possible solutions in Pareto optimal and correlation tests can help designer to
select the final solution. The results show that CCD method has better performance com-
pare with initial crowding distance algorithm. This multi-objective optimization method
finds the correct terms of NARZ model structure without any manual setting in the
number of input and output lags and non-linearity order. However, multi-objective opti-
mization needs large computational load to obtain the optimal solutions.
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