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Abstract. The enhancement of load forecasting has become one of the core research top-
ics in the energy field. Because power load has both time-variant and nonlinear character-
istics, different types of methods, neural networks (NN) in particular, have been applied
to power load forecasting. This study proposes a real-valued genetic algorithm (RGA)-
based neural network with support vector machine (NN-SVM) model to predict the power
load in both short-term and mid-term forecasting by using a radial-basis-function neural
network (RBFNN), SVM and RGA. The model consists of two stages. In short-term load
forecasting (STLF), the first stage applies the RBFNN to predict monthly variations, and
the second stage trains the SVM through hourly data to obtain the final forecast. Similar
operations are used in mid-term load forecasting (MTLF). In the process of SVM train-
ing and NN learning, RGA is used to find the optimal parameters. The results of several
experiments show that this new model performs more accurately and stably than some
conventional models including RBFNN, RGA-SVM, Karman filter in STLF. Also it is
able to function well in MTLF.
Keywords: Radial-basis-function neural network (RBFNN), Support vector machine
(SVM), Real-valued genetic algorithm (RGA), Short-term load forecasting (STLF), Mid-
term load forecasting (MTLF)

1. Introduction. Load forecasting, such as short-term load forecasting (STLF) and mid-
term load forecasting (MTLF), plays a pivotal role in running power systems in the power
industry. A high precision is required in STLF and MTLF [8] because many strategies,
such as unit commitment, fuel scheduling economic dispatch and unit maintenance are
based on predicted values. Additionally, with the increased demand for energy, it is crucial
to comprehend how power load changes due to outer features and factors such as social
and economic structures, weather conditions and seasonal fluctuation trends.

Many algorithms have been proposed to deal with STLF and MTLF. For STLF, Palalex-
opoulos and Heserberg proposed a regression-based approach [19] twenty years ago. Soon,
other techniques were developed including the autoregressive model (AR) [16], Kalman
filter [25] and neural networks (NN) [14]. Though the AR algorithms give good per-
formances, which adapt seasonal factors, the method loses reliability in variable model.
Kalman filter (Brown, 1983) was another technique which requires long-period historical
data to analyze periodic and independent components of the power load model. In order
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to deal with load forecasting under different conditions, Barbosa and Sadownik (1999)
offered a dynamic multivariate time series model with Bayesian sequential estimation [3].
Research focus began to change from refining and adding the factors of model to the elab-
orating of meta-heuristic, especially NN. Comparisons show that fuzzy logic (FL) and
artificial neural networks (ANN) can be good candidates for STLF [15]. Recent research
studies are limited in providing flexible approaches for time-series data and influential fac-
tors. Additionally, computation methods are mainly focused on ANN [13, 20]. For MTLF,
the general goal is to predict the daily load demand in a month. The general concern is
how to adjust predictions based on the error propagation of the models. Bhattacharya
and Basu (1993) have also applied the Kalman filter to this problem by combining it with
the Walsh transform [4]. Ghiassi et al. [10] and Misasgedis et al. [17] proposed prediction
of monthly energy consumption using dynamic NN model and dynamic regression model,
respectively. Also Amjady and Keynia [2] proposed a hybrid prediction model consisting
of pre-forecast mechanism, neural algorithm and evolutionary algorithm.
Support vector machine (SVM) theory is based on the statistic learning theory raised

by Vapnik [7]. This theory employs the criterion of minimizing the structure risk while
lowering the global error of the model. Recently SVMs have been introduced into load
forecasting problem [23]. It is believed that SVMs can perform well in some prediction
and classification problems, but the outcome shows reluctance or chaotic character if the
data exceeds its historical scope. It is promising to reinforce most widely used NNs by
combining SVM approaches [1, 26].
The optimization theory has been flourishing thanks to the dedication toward seeking

suitable methods for unique optimization problems. Meta-heuristic solutions such as tabu
search (TS) (1989), particle swarm optimization (PSO) (1995) and genetic algorithms
(GA) (1997) have shown abundant results for optimal searching problems. The simplest
genetic algorithm represents each chromosome as a bit string. There are also many vari-
ants of GA, among which real-valued genetic algorithm (RGA) is effective, which was
proved by Su and Chang [22].
Through the above review, this paper presents a combination of the radial basis function

neural network (RBFNN) and SVMwith the RGA optimization to mitigate the limitations
of the existing method while enhancing the accuracy and reliability of the forecasting. It is
named the RGA-based NN-SVM model. Here, in the process of RBFNN and SVM, RGA
supplies a framework to find the optimal parameters for the final prediction. Compared
with some conventional algorithms that can only deal with specific problems, RGA-based
NN-SVM is capable of functioning well for both STLF and MTLF problems.
The rest of this paper is organized as follows. Section 2 introduces the basic knowledge

of RBFNN and SVM. Section 3 describes the structure of the problem. Section 4 explains
how the RGA-based NN-SVM model forecasts power loads. Section 5 analyzes and dis-
cusses three experiments using some data from France, and finally, Section 6 presents the
conclusions.

2. Background Knowledge.

2.1. Radial basis functionneural network (RBFNN). As one particular type of feed
forward neural networks with supervised learning [9], RBFNN consists of input layer,
hidden layer and output layer. The input layer is used as a sensing unit containing r
neurons. The hidden layer has p radial basis function (RBF) type hidden neurons and
the output layer contains k neurons. Input information is assigned to a node in the input
layer, which links to the hidden layer directly. RBF is defined by a center position and a
spread parameter. This function gives larger value output when input variables are closer
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to the center, and smaller value output monotonically as their distances from the center
increase. After the process in the hidden layer, it is delivered to the output layer, forming
an analytical mapping. The performance of the RBFNN depends critically on the choice
of the nonlinear activation function, center ci and spread parameter σi. If we observe an
r-dimension input vector with components: x1, x2, . . . , xr, the output hi can be obtained
as the following formulation:

hi = e
−‖xi−ci‖2

2σ2
i (1)

where ci is the neuron’s center and σi the spread parameter.
Finally, a linear mapping is executed from the hidden layer to the output layer as

follows:

yk =

p∑
j=1

wjkhj (2)

where wjk is the synaptic weight connecting hidden neuron j with output neuron k.

2.2. Support vector machine. Vapnik first proposed a version of SVM for regression
(SVR) in 1997 [21]. SVR algorithms have been proved to be able to solve large-scale
regression problems efficiently [5] after various fields were studied, such as smoothing
technique, hyper plane thinking, and considerations concerned with kernels.

Here in the SVM computation, the input X is first mapped onto an m-dimensional
feature space using some fixed (nonlinear) mapping gi(x), and then a linear model is
constructed in this feature space. The linear model (in the feature space) f(x, $) is given
by

f(x, $) =
m∑
i=1

$igi(x) + b (3)

where gi(x), i = 1, . . . ,m denotes a set of nonlinear transformations, and b is the bias
term.

The SVM computation here uses the following loss function ε-insensitive loss proposed
by Vapnik:

L(y, f(x, $)) =

{
0, if |y − f(x, $)| ≤ ε
|y − f(x, $)| − ε, otherwise

(4)

It performs linear regression in the high dimension feature space using ε-insensitive
loss and at the same time, reduces model’s complexity by minimizing ||$||2. This can
be described by introducing non-negative slack variables ξi, ξj, i = 1, · · · , n, to measure
the deviation of training samples outside ε-insensitive zone. Thus, the SVM computation
here is formulated in the following:

min 1
2
||$||2 +

n∑
i=1

(ξi + ξ∗i )

s.t.

{
yi − f(xi, $) ≤ ε+ ξ∗i
f(xi, $)− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0, i = 1, · · · , n

(5)

This optimization problem can be transformed into the dual problem and its solution
is given by:

f(x) =

nSV∑
i=1

(ai − a∗i )K(xi, x)

s.t. 0 ≤ a∗i ≤ C, 0 ≤ ai ≤ C

(6)

where nSV is the number of Support Vectors and the kernel function K(xi, x) = e
−‖xi−x‖2

2σ2
i .
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In lib-SVM, the value of ε is not necessary to find; the key point is to find the optimal
values for C and σ.

3. Problem Formulation. Before extending the forecasting problem, the variables and
functions should be first defined for the problem as shown in Table 1.

Table 1. Notation of data

Attributes Attribure meaning
t Time, which counts half hourly in a day as 1, 2, · · · , 48.
y Year
m Monbth(1, 2, · · · , 12)
day Day(1, 2, · · · , 31)
E(m, y) Economic factor of year y
da(m, y) Returns the count of days (= 28, 29, 30, 31) in month m, year y
T (m, y) Average templerature in year y
T (day,m, y) Average emperature on day day, month m in year y
Pc(m, y) Power consumption in month m, year y
Pc(day,m, y) Power consumption in day day, month m, year y
L(t, day,m, y) Actual power load at time t, on day day, month m in year y
Lf (t, day,m, y) Forecating power load at time t, on day day, month m in year y
Lp(day,m, y) Peak load on day day, month m in year y
Daytype(day,m, y) Day type on day day, month m, in year y, later explained in Table 2

Table 2. Definition of Daytype

(day,m.y) Sun. Mon. Tue. Wed. Thu. Fri. Sat. Holiday
Daytype(day,m, y) 1 2 3 4 5 6 7 8

Remark 3.1. Monthly and daily consumption can be approximately computed by:

Pc(day,m, y) = 0.5
48∑
i=1

L(t, day,m, y)

Pc(m, y) =
∑

day(m,y)

Pc(day,m, y)

(7)

The problem is to find the load condition Lf (t, day,mf , yf ), Lp(day,mf , yf ), Pc(day,m,
y) and Pc(m, y) in future target time (month mf , year yf) using the given historical data
including E(m, y), T (m, y), T (day,m, y), Lc(m, y), L(t, day,m, y) and Daytype(day,m,
y).

4. RGA Based NN-SVM. Aiming at an adaptive integrative model with high reliabil-
ity, the algorithm consists of two parallel procedures called NN thread and SVM thread,
where both are optimized by RGA. NN thread deals with the general yearly variation
of power load concerning with basic influential factors. The output offers a standard
medium value for target month called growth index here. Meantime, SVM thread obtains
the moment-specified forecast with an output as a monthly deviation value from monthly
standard explained in thread two. Both the parameter selection procedures will be solved
by RGA, searching the optimal values of center C, width σ in RBFNN and SVM. Through
output combination, we are able to arrive at the final forecast for the target.
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Thread I:

Step 1: Assume the objective month is mf , yf , for y < yf , train RBFNN using the his-
torical data. The network contains two dimensional input T (m, y) and E(m, y)
as fundamental influential factor while Pc(m, y) is output growth index.

Step 2: Train RBFNN model by RGA optimization. Table 3 shows the type of param-
eters (chromosome) coding for RBFNN.

Table 3. Definition of parameters for RGA-NN

No. C1 · · · Cp σ1 · · · σp

Step 3: Predict pc(m, y) through the constructed model. Figure 1 shows the flow chart
of Thread I.

Figure 1. Flow chart of thread one

Thread II:

Step 1: Scale the data referring to monthly average Lavg(t,m, y) into L
′

f (t, day,m, y)
according to the periodic characteristic of power load and prevent the overflow.

Lavg(t,m, y) =
∑

day(m,y)

L(t, day,m, y)

day(m, y)

L
′

f (t, day,m, y) =
L(t, day,m, y)− Lavg(t,m, y)

Lavg(t,m, y)
(8)

The new values illustrate the variance from standard amount. This makes
the SVM more effective because the load condition has resemblances in the
same duration of different years.

Step 2: For y < yf construct SVM model with four dimension input T (day,m, y),
Daytype(day,m, y), m and t as subtle factors and one dimension output L

′

f (t,
day,m, y).

Step 3: Train SVM model by RGA optimization. Table 4 shows the type of parameters
(chromosome) coding for SVM.

Table 4. Definition of parameters for RGA-SVM

No. C σ

Step 4: Predict L
′

f (t, day,mf , yf ) through the constructed model. Figure 2 shows the
flow chart of Thread II.
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Figure 2. Flow chart of thread two

Figure 3. Flow chart of RGA optimization

RGA Optimization:
Genetic algorithms (GAs) are widely applied to various optimization problems since

they can search non-linear solution spaces without requiring gradient information or a
priori knowledge about the characteristics of the model [1, 11]. Among GAs, the real-
valued genetic algorithm (RGA) uses only real values for parameters of the chromosome
in populations without endless encoding (Y. P. Huang and C. H. Huang, 1997) [12].
RGA is faster and more efficient than binary-coding genetic algorithm (BGA) in our
optimization case. Therefore, RGA is adopted to perform the optimization process to
search for unknown parameters, shown in Figure 3. RGA uses selection, crossover and
mutation to generate new offsprings. Tournament selection and non-uniform mutation
[5, 18] are used for genetic operators. After that, MAPE (mean absolute percentage
error) is examined in the fitness function

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (9)

where At is the actual value at time t, while Ft is the forecast value at time t.
After these two parallel threads, we come to an integration process. The final output

of forecast is computed through combining two output pc(mf , yf ) and L
′

f (t, day,mf , yf ).

The final result: Lf (t, day,mf , yf = pc(mf , yf )× (L
′

f (t, day,mf , yf ) + 1). The whole flow
chart is shown in Figure 4.
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Figure 4. Whole flow chart of RGA based NN-SVM

5. Experiment Results. We performed several experiments including a one-week daily
curve forecast, one-month peak load and consumption forecast to test the new model.
In first scenario, three other methods were compared. RBFNN was chosen as one coun-
terpart to stand for hybrid ANNs which are mostly widely researched for power system
forecasting as was stated in the introduction. Also RGA-SVM, one type of hybrid SVM,
is applied into comparison due to the good results from SVMs recently piloted for load
forecasting problems. The second and third scenarios give a good example for MTLF.
The experiments used historical load data from year 1996 to 2009 given half-hourly by
RTE institution in France. Since the data was amply given with comparatively long time
series, Kalman Filter is also a good candidate in this case. The data from year 1996 to
2008 was used for training, and year 2009 was for testing. The scenario was assumed on
the end of June of 2009 to obtain forecast result for later days.

5.1. First week daily curve analysis. The load curves are depicted by a minimum
timescale of 30 minutes. The evaluation criteria for the correctness of this experiment are
MAPE and RMSE (root mean square error) which is the main result evaluating index:

RMSE =

√√√√1/n
n∑

t=1

(At − Ft)2 (10)

where At is the actual value at time t, while Ft is the forecast value at time t.
The experiment result and the comparison with RGA-SVM, Kalman Filter and RBFNN

are listed in Table 5. Also a brief comparison is showed in Figure 5 which gives a clear
interpretation that the RGA based NN-SVM model has more satisfactory forecasting in
each day than the other three methods. Solely using RGA-SVM is not suitable for this
hourly forecasting due to the high MAPE. The reason is that SVM shows hesitation

Table 5. Result of four algorithms

July July July July July July July
1st 2nd 3rd 4th 5th 6th 7th week
Tue. Wed. Thu. Fri. Sat. Sun. Mon.

RGA-SVM 8.83 10.88 17.20 16.00 22.55 16.93 7.44 14.26
MAPE KF 4.82 6.73 6.02 5.35 8.31 9.57 5.60 6.63
(%) RBFNN 5.39 7.57 7.88 2.96 8.89 10.45 1.60 6.39

RGA based NN-SVM 5.01 4.88 4.06 1.99 3.51 2.22 0.75 3.20
RGA-SVM 10.80 11.78 19.63 17.82 25.23 20.47 8.59 17.27

RMSE KF 4.89 7.02 6.53 5.61 9.72 10.73 5.93 7.20
(%) RBFNN 5.76 7.95 8.36 3.22 10.56 11.68 1.89 7.82

RGA based NN-SVM 5.22 4.96 4.21 2.12 3.64 2.28 0.89 3.65



7388 J. XUE, Z. XU AND J. WATADA

Figure 5. Forecasting and actual daily load curve

Figure 6. Forecasting and actual daily peak load curve

when dealing with both the growth of time series load and the different influential labels
at the same time. RBFNN and Kalman filter obtain close results with MAPE around
6.5. Both methods show weak points on July 5th and 6th which is Saturday and Sunday,
separately. This means both methods are not sensitive to the change of date, but focus
on the smoothness of the time-series curve. On the other hand, the new algorithm shows
significant improvement on July 5th and 6th which proves the correctness of labelling
step in thread two against the difficulty of forecasting weekends and holidays in RBFNN
and RGA-SVM. RGA based NN-SVM’s comparatively high stability through whole week
makes the forecasting model reliable for different period of a year.

5.2. Peak load analysis. This scenario gives an overlook of July’s peak load. From July
8th, it is beyond possibility to get the comparatively accurate weather information like
first week. The results in Figure 6 shows that it is still available to forecast the daily peak
using same RGA based NN-SVM model through training historical peak load among the
whole dataset and substituting correct weather information of future day with default
values such as the average temperature of first week. Forecasting errors are in terms of
MAPE and PAPE (peak absolute percentage error).
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Table 6. Peak moment estimation

TP TP TP
Date Forecast Actual Date Forecast Actual Date Forecast Actual

July 8th 12:00 12:00 July 16th 12:00 14:30 July 24th 13:00 13:00
July 9th 12:00 12:00 July 17th 13:00 13:00 July 25th 13:00 13:00
July 10th 13:00 13:00 July 18th 13:00 12:00 July 26th 23:00 23:00
July 11th 13:00 13:00 July 19th 23:00 23:00 July 27th 13:00 13:00
July 12th 23:00 23:00 July 20th 13:00 13:00 July 28th 12:00 12:00
July 13th 13:00 13:00 July 21st 12:00 14:30 July 29th 12:00 13:00
July 14th 23:00 23:00 July 22nd 12:00 12:00 July 30th 12:00 13:00
July 15th 13:00 13:00 July 23rd 12:00 12:00 July 31st 13:00 13:00

TP : Moment when peak load occurs

The MAPE and PAPE of this experiment is 2.59% and 6.31% separately, which explains
that accuracy remains high in peak load estimation. We can find out that except July 14th
(MAPE: 8.8) and last three days of July (MAPE: 4.5, 5.3, 6.1), the peak load estimation
is quite accurate for power industry. We believe that the difficulty on July 14th is due
to the uncertainty of the demand on National Day. It is beyond pure statistical model
to fix this special result though it may be possible through efforts on social study. As to
the last days of the months, our estimation is higher than actual data. This is because
of the weather condition is far beyond estimation after almost one month. In the real
case, the temperatures surprisingly dropped on these days which may be a big affect to
the error. In the meantime, we watch the moment peak load occurs and compare the
actual moment in Table 6. The hit rate of peak time is 91.7% according to one-hour time
deviation tolerance. This illustrates the success of catching peak load label with peak
time towards different day type.

5.3. One month consumption analysis. The last scenario tests the daily consumption
in July as shown in Figure 7. Instead of L, Pc is applied to RGA based NN-SVM to forecast
daily consumption. The MAPE is 2.54% and the RMSE is 3.11% in the test.

Figure 7. Forecasting and actual curve for daily consumption

6. Conclusions. STLF and MTLF are two important aspects of the power system that
have been studied recently. Various methods have been proposed to obtain good solutions
for these two types of load forecasting. In particular, ANN was widely investigated and
gives reasonable results for STLF. This paper presents an integrative algorithm for fore-
casting hourly load change in a short period and for forecasting the daily load peak and
the daily consumption in coming months with high accuracy and reliability using the NN-
SVM with RGA optimization. This algorithm not only benefits from the neural network
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structure for tendency prediction, but also uses the successful data labelling characteristic
of the SVM, which arranges the time series data in an efficient way. The experiment using
the load data from the RTE institution in France gives several application examples. The
results show that the new method gives a detailed illustration for daily and weekly load
change and offers a reliable prediction for next month consumption with high accuracy.
Research is under way to test the feasibility of the algorithm with information loss or

small sample data because historical information is not always complete. Additionally,
the application of forecasting results on real power systems is also being considered.
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