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Abstract. The purpose of this study was to apply a Bayesian procedure in the context
of fixed-length mastery tests. The Bayesian procedure was compared with two conven-
tional procedures (conventional-Proportion Correct and conventional-EAP) across dif-
ferent simulation conditions. Two loss functions, including linear and threshold loss
function were manipulated. The results show that the Bayesian procedure appeared to
effectively control false negative and false positive error rates. The differences in the
percentages of correct classifications and phi correlations between true and predicted sta-
tus for the Bayesian procedures and conventional procedures were quite small. However,
there was no consistent advantage for either the linear or threshold loss function.
Keywords: Bayesian, Mastery decisions, Loss functions

1. Introduction. Many test applications involve sorting examinees into two categories,
often called masters and non-masters, based on whether or not the examinees have suf-
ficient knowledge and understanding of a particular content domain [5]. Today, mastery
tests are applied widely in many fields.

A conventional procedure to determine an examinee’s mastery status is to compare the
examinee’s performance with the cut point. An examinee is declared a master if his/her
score on an achievement test is as high as or higher than the pre-specified cut point, or
an examinee is declared a non-master if his/her score on the test is lower than the cut
point. With the demands for more efficient and accurate decision making, new testing
procedures have been developed.

Bayesian approach has been applied widely in many fields [2,6,9,11]. In application to
mastery tests, Bayesian method is one of the newly developed procedures and it has drawn
some attention for its ability to take the relative costs of erroneous testing outcomes into
consideration explicitly. That is, the relative seriousness of false negative errors, false
positive errors or administering additional items can be considered in advance in the
Bayes procedure by specifying the appropriate values, which are called loss parameters
[15,17,18].

In some cases, the test users may desire to minimize a specific kind of classification
error. For example, when utilizing board exams to select medical specialists, it is possible
that the test user intends to avoid the risk of false positive errors, i.e., selecting examinees
whose actual ability levels are below the pass level but declared masters. In this specific
condition, the test user can set a higher weight for the loss parameter for false positive
errors and a smaller loss weight for false negative errors to decrease the chance of false
positive errors in the Bayes procedure.
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[3] proposed a Bayesian procedure (named Adaptive Sequential Mastery Testing) which
employed the Rasch model to make mastery decisions, which could potentially overcome
the drawbacks inherent in mastery decisions based on traditional, non-adaptive tests.
Based on [3]’s discussion, the most challenging part in implementing the Bayesian pro-
cedure for mastery testing is calculating the expected loss function from the posterior
distribution. The posterior distribution involves a prior multiplied by a likelihood func-
tion, with the prior typically assumed to follow the standard normal distribution for a
Bayesian model in achievement tests. If the likelihood is an exponential function, such as
the item response model, e.g., Rasch model, then integrating the posterior distribution
over a certain interval to obtain the expected loss function can be challenging.
When mastery testing involves many examinees and items, a larger number of possible

response patterns could make the posterior distribution function quite complicated. In
the Rasch model, the expected loss function of the posterior distribution can be explicitly
estimated since the number correct score is the minimum sufficient statistic for theta. [3]
derived a general form to estimate the probability of response patterns by incorporating
the sufficient statistics into the exponential function of the Rasch model. The general
form they derived could possibly extend to the 2-parameter (2PL) item response theory
model; however, their framework has some difficulties in applications of the 3-parameter
(3PL) IRT model because of the lack of sufficient statistics.
The purpose of this study is to extend [16]’s Bayesian procedure from the Rasch model

to the 3PL IRT model. In addition, the effectiveness of controlling the false positive errors
and false negative errors by setting threshold and linear loss function in the Bayesian
procedure is investigated. Conventional methods are used to serve as the baseline to
evaluate the performance of the Bayesian procedure.

2. Theoretical Background. Before illustrating the mastery procedures used in this
study, it is important to review the item response model first.

2.1. Item response model. The item responses used in this study were generated based
on the three-parameter logistic model (3PL), which is commonly used in the measurement
field. In this model, three item parameters are considered-discrimination, difficulty and
guessing. The probability function for the 3PL model can be expressed as follows:

Pij(Xij|ai, bi, ci, θj) = ci + (1− ci) ∗
1

1 + exp(−1.7 ∗ ai ∗ (θj − bi))

where Pij is the probability of a correct response on item i for a person j; ai, bi, ci are the
discrimination, difficulty and pseudo-guessing parameters, respectively for item i; θj is an
ability parameter for person j.

2.2. Mastery procedures.

2.2.1. Conventional procedure-proportion correct. In this context of mastery tests, it is
common to define the criterion for mastery using the percentage of the items on the
test correctly answered. After all items in the conventional test are administered, if the
examinee’s score is equal to or exceeds the proportion correct cut score, the examinee is
declared a master. Otherwise, the non-master decision is declared. In some cases, if IRT
is used, conversion of the latent trait score metric to the proportion correct score scale
may be necessary, and this can be done via the Test Characteristic Curve [8].
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2.2.2. Conventional-EAP. Some testing programs use the examinee’s ability estimate,
theta, to determine if the examinee passes or fails the test. Theta score are usually esti-
mated based on sophisticated statistical methods which better estimated examinee’s per-
formance status. There are many ability estimation methods available, such as maximum
likelihood estimation, maximum a posteriori estimation, Owen’s Bayesian estimation and
expected a posteriori estimation (EAP). The estimators from any of these methods could
be used to determine an examinee’s mastery status. However, EAP has been shown to
have significantly less bias than the other methods [18]. Thus, it is common to use EAP
to estimate examinees’ ability levels.

In EAP estimation, the weights are the probabilities at the corresponding points of a
discrete prior distribution. In some contexts of education, normal prior distributions for
the points and weights are usually assumed to improve the accuracy of the numerical
approximation of the integral [1]. In this Conventional-EAP procedure, the examinee’s
ability level is estimated by the EAP method after all items in the conventional test are
administered. The EAP estimator is compared with the cut theta. If the EAP estimator
is equal to or greater than the cut theta, then the examinee is classified as a master;
on the other hand, if the EAP estimator is smaller than the cut theta, the examinee is
classified as a non-master.

2.2.3. Bayesian procedures. There are two main components in the Bayesian procedure:
the construction of the loss structure and the decision rule. These two components were
implemented as described below together with an application of a Markov Chain Monte
Carlo (MCMC) procedure using WinBUGS, as described in the Method section.

Generally speaking, a loss function specifies the total costs for each possible decision
outcome. These costs usually incorporate all relevant psychological and social conse-
quences associated with decisions. There are two kinds of loss functions used in this
study: threshold loss function and linear loss function.

The specification of threshold loss functions follows [7] in which the expected losses
associated with making a false positive error and a false negative error are specified by
constants L and M, respectively (see Table 1).

Table 1. Threshold loss function defined for a fixed-length test

True theta level
Decision made

Theta < cut Theta ≥ cut

Non-master 0 M
Master L 0
Note: −∞ < θ < ∞. Theta: examinee’s true theta. L: the loss associated
with a false positive error. M: the loss associated with a false negative error

Although the threshold loss function is simple and has been frequently used in the
literature, it may be unrealistic in some situations [4]. A major criticism of threshold loss
is that no matter how far the examinee’s ability level is from the cut score, the loss is
assumed to be equal.

To overcome the limitation of threshold loss, [12] proposed a linear loss function for
fixed-length mastery tests, which assumes the loss to be a continuous function of the
examinee’s theta level. For a linear loss function, examinees with different theta levels
have different loss functions. If an examinee is declared a master but his/her true theta
level is below the cut score, then the linear loss function is a decreasing function of theta.
On the other hand, if an examinee is declared a non-master but his/her true theta level is
above the cut score, then the linear loss function is an increasing function of theta. The
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expected losses associated with making a false positive error and a false negative error
are specified as L (θcut − θ) and M (θ − θcut). Table 2 provides the linear loss functions
for four possible outcomes.

Table 2. Linear loss function defined for a fixed-length test

True theta level
Decision made

Theta < cut Theta ≥ cut

Non-master 0 M (θ − θcut)
Master L (θcut − θ) 0
Note: −∞ < θ < ∞. θcut: cut score. L and M are specified the same as in
threshold loss functions.

Decision Rule
The decision rule is the crux of the Bayesian master/non-master classification pro-

cedure. However, in order to render valid classifications it must also account for the
possibility of two kinds of errors: passing examinees who are true non-masters and failing
examinees who are true masters [12]. The probabilities of these two classification errors
are controlled through the use of loss functions. After administering a set of items, a
Bayesian decision rule for a fixed-length mastery test is used to minimize the posterior
expected loss associated with the two classification decisions. Suppose P (θ|Xn) represents
the posterior distribution of theta after n items are administered;

E [Loss (master, P (θ|Xn))] and E [Loss (non-master, P (θ|Xn))]
represent the posterior expected loss for making the mastery and non-mastery decisions,
respectively. Based on [17], the examinee is classified as a master when

E [Loss (master, P (θ|Xn))] < E [Loss (non-master, P (θ|Xn))].
Otherwise, the examinee is classified as a non-master.
Replacing these terms in the previous equations, under the threshold loss function, the

examinee is declared a master when

L ∗
θcut∫

−∞

P (θ|Xn)dθ < M ∗
∞∫

θcut

P (θ|Xn)dθ

And under the linear loss function, the examinee is declared a master when

L ∗
θcut∫

−∞

(θcut − θ)P (θ|Xn)dθ < M ∗
∞∫

θcut

(θ − θcut)P (θ|Xn)dθ

The posterior distribution, P (θ|Xn), is the product of the prior and the likelihood. For
this study, a vague prior for θ was used because it was desired that the prior distribution
plays a minimal role in the posterior distribution and inferences. The prior was set
for theta, and followed a normal distribution with mean equal to µ and the precision
equal to τ (the precision is the inverse of the variance). The hyperprior on µ was a
normal distribution with mean equal to 0 and the precision equal to 0.01. In order to
constitute a conjugate prior distribution, the hyperprior on τ was a gamma distribution
with parameters (0.01, 0.01).
The likelihood is the product of the probabilities associated with each examinee’s item

responses. Suppose there are a total of N examinees responding to n items. The likelihood
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function can be expressed as:

Likelihood =
N∏
j=1

n∏
i=1

P
xij

ij

(
1− P

1−xij

ij

)
where xij is the item response on item i for a person j, xij = 1 or 0; Pij is the probability
of a correct response on item i for a person j based on the 3PL IRT model.

For both the threshold loss function and the linear loss function, three conditions were
considered in this study: 2L = M, L = M, L = 2M, which represent the cost of making
a false negative error was twice as serious as making a false positive error; the costs of
making a false positive error and a false negative error were equal, and the cost of making
a false positive error was twice as serious as making a false negative error, respectively.
These ratios were utilized in the present study, as they are standard research conventions
in previous studies [7,17,20].

3. Method. Monte Carlo simulations were utilized to compare the Bayesian proce-
dure with different loss functions against two conventional procedures (Conventional-
Proportion Correct and Conventional-EAP). The test lengths were set as 20, 40 and 60,
which are common test lengths for most tests. For the item pool, the discrimination
parameters were generated from a normal distribution, but with mean equal to 1 and
standard deviation to 0.1. The difficulty parameters were generated from a normal distri-
bution with mean equal to 0 and standard deviation equal to 2. The guessing parameters
were set to be 0.15. These parameters were generated because the value is close to the
real item pools. The cut score on the theta scale was equal to 0.4 for this study, which is
the common cut theta level for many certification exams.

Sets of ability parameters for five thousand examinees were generated to fit a standard
normal distribution (mean = 0 and standard deviation = 1.0). The responses of five
thousand examinees to 20, 40, 60 items were then simulated. The probability of a correct
response (Pij) was compared with a random deviate (dij) which was drawn from a uniform
distribution in the range [0, 1]. If Pij > dij, the item was scored as correct (1); otherwise,
the item was scored as incorrect (0). Both the simulation and data generation were
conducted using the computer software program R.

4. Results. For each simulation, the outcomes of interest were (1) the percentages of
correct classifications, (2) false positive error rates, (3) false negative error rates, and (4)
phi correlations between the true classification status and observed classification status.
In order to calculate these indices, the true masters and true non-masters needed to be
defined first. The examinee’s true theta level was compared with the cut score. If his/her
true theta level was equal to or larger than the cut score, the examinee was truly a master;
otherwise, the examinee was truly a non-master. Figures 1 to 4 present the results based
on these four evaluation criteria.

Figures 1 to 4 showed that test length had an impact on the classification accuracy
for both conventional methods and Bayesian procedures. When test length increased,
the percentages of correct classifications and the corresponding phi correlations became
higher while the false negative error rates and the false positive error rates became lower.
For the percentages of correct classifications and phi correlations, the differences in these
values between Bayesian procedures and the conventional procedures were quite small
(approximately 5 to 8%). In addition, for the two types of loss functions-threshold loss
functions and linear loss functions, there was no clear advantage for either loss function.
For example, under the same simulation conditions, the Bayesian threshold L = 2M
yielded the smallest false positive error rates but higher false negative error rates than
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the Bayesian linear L = 2M. The threshold loss function seemed to control the false
positive errors better, but in terms of controlling both false negative errors and false
positive errors simultaneously, the linear loss function performed somewhat better than
the threshold loss function.

Figure 1. Percentages of correct classifications at each level of test length

Figure 2. False negative error rates at each level of test length

Figure 3. False positive error rates at each level of test length
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Figure 4. Phi correlations between true and predicted mastery status at
each level of test length

5. Conclusion and Discussion. For the percentages of correct classifications and phi
correlations, the ranges of these values between different procedures were quite small.
However, based on an overall evaluation of the testing procedures, the loss function L
= 2M yielded better results than the conventional-EAP and the conventional-Proportion
correct procedures for all the test lengths in the high discrimination item pool and for
the test length of 40 and 60 in the moderate discrimination item pool. In addition, by
employing the appropriate loss parameters, the Bayesian procedure can effectively control
false positive error rates and false negative error rates. This study considered two types of
loss functions: threshold loss functions and linear loss functions. Generally, the threshold
loss function is less desirable since it assumes a constant loss for all examinees. Some
authors [12,16] noted that this assumption is probably unrealistic in some applications.
It seems more realistic to assume that loss is an increasing function of theta for non-
masters and a decreasing function of theta for masters [14,15]. Moreover, the threshold
loss function is discontinuous at the cutoff point. The loss for correct and incorrect
decisions should change smoothly rather than abruptly [13].

Theoretically, linear loss functions seem more desirable in real testing situations. How-
ever, the results from this study showed that the two loss functions performed similarly
which could imply that using the linear loss or threshold loss function does not have
much impact on making binary decisions, at least under the conditions manipulated in
this study. Such a conclusion is consistent with the study conducted by [16].

In this study, the Bayesian procedure with loss function L = 2M (the cost of making
a false positive error was twice as serious as making a false negative error) had higher
accuracy indices than other Bayesian procedures in this study. This could be an artifact
of the cut score used in this study. As stated previously, the cut score was set at a theta
level of 0.4. With this cut score, approximately 65% of the simulees were nonmasters and
35% were masters since the population was simulated using a normal distribution. Thus,
false positive errors can be considered less likely than false negative errors. It is quite
likely that if the cut score were changed, the results would also change.

This study uses WinBUGS for the MCMC sampling. WinBUGS is well-established
software used for Bayesian-related analyses. It is very easy to specify the models in
WinBUGS and get the MCMC outputs. However, using WinBUGS to do the MCMC
sampling was time-consuming and computer-intensive. For the conventional methods, it
only took few minutes to estimate the classification errors in R. However, with the same
computer, it took more than 4 hours to run the Bayesian decision-theoretic procedure with
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a test length equal to 60 for 5000 examinees. In a real testing situation, there could be a
very large number of students taking the exam. In addition, the score reports normally
need to be finished within one to two weeks after receiving students’ raw responses from
the scanning center. Using the MCMC method in WinBUGS may not be realistic in
operationally-based situations, since it could be difficult to meet the deadlines in some real
testing situations. Until advances in hardware and programming are achieved, it might
be more reasonable to use alternative numerical methods for making mastery decisions in
such situations.
This study investigated some features that influence Bayesian decision-theoretic proce-

dures in the context of fixed-format mastery testing using the 3PL IRT model. There were
some limitations of this study. First, this study only considered one cut score. Different
locations of cut scores on the theta scale should be considered to examine the impact
of the two types of loss functions on the classification accuracy. Second, in this study,
the b-parameters in the two simulated item pools were generated in a relatively broad
range. Different types of item pools, such as uniform item pools, b-variable item pools,
a- and b-variable item pools, a-, b-, c- variable item pools, should be investigated in the
future to examine the influence of discrimination, difficulty and guessing parameters on
the Bayesian procedure.
Third, this study only considered fixed-format mastery tests. It might be desirable to

develop a variable-length format procedure to enhance the efficiency of test administra-
tion. Also, [13] indicated that an optimal situation for the sequential rules would be to
choose an action (declaring pass, declaring fail, or continuing testing) that minimizes pos-
terior expected loss at each stage of testing, using dynamic programming. This technique
would consider the expected loss at the final stage of testing and then estimate backwards
to the first stage of testing. In doing so, the action chosen would be optimal with regards
to the entire sequential testing process. Currently, the implementation of this variable-
length procedure would not be realistic using WinBUGS, since the processing speed is
too slow.
Fourth, this study used four criteria (percentages of correct classifications, false positive

error rates, false negative error rates and phi correlations between the true and observed
classification status) to evaluate the results. Although these four indices are commonly
used to evaluate the performance of testing procedures in mastery tests, some other
criteria might reveal different trends. For example, [4] used the average of actual loss for
all examinees (mean loss) to evaluate the performance of different test procedures.
Finally, this study only considered linear and threshold loss functions for the Bayesian

decision-theoretic procedure. However, there are other types of loss structures that could
be applied. For example, [10] presented procedures for specifying nonlinear loss func-
tions for estimating examinees’ ability levels in terms of cumulative distribution functions
and using least square fitting techniques. This type of nonlinear loss function does not
only reflect realistic situations but also can be incorporated with the standard normal
distribution for the psychometric model.
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