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Abstract. Conventionally, we use a chi-square test of homogeneity to determine wheth-
er the cell probabilities of a multinomial are equal. However, this process of testing
hypotheses is based on the assumption of two-valued logic. If we collect questionnaire
data using fuzzy logic, i.e., we record the category data with memberships instead of with
a 0-1 type, then the conventional test of goodness-of-fit will not work. In this paper, we
present a new method, the fuzzy chi-square test, which will enable us to analyze those
fuzzy sample data. The new testing process will efficiently solve the problem for which
the category data are not integers. Some related properties of the fuzzy multinomial
distribution are also described.
Keywords: Fuzzy set theory, Fuzzy numbers, Membership functions, Sampling survey,
Chi-square test for goodness-of-fit

1. Introduction. Consider an l-dimensional multinomial vector n = {n1, n2, . . . , nl}
with the constraint

∑l
i=1 ni = N . The Pearson chi-squared statistic test [12] χ2 =∑

i

∑
j

(Oij − Eij)
2

Eij

is a well-known statistic used to test the significance between ex-

pected values and observed data. It is clear that large discrepancies between expected
and observed values correspond to large chi-square values. However, when values in a
sample are expressed as fuzzy numbers, can the data be considered categorical and thus
allow us to pursue the conventional chi-square test? For example, when we are asked “How
satisfied are you with your life?”, we may respond with a fuzzy number (e.g., approxi-
mately 70% satisfied and 30% dissatisfied). If we record fuzzy numbers in questionnaires,
then the sampling survey is no longer like the conventional one.

Wu and Chang [15] used a fuzzy chi-square test to identify significant differences, but
did not provide a theoretical proof. The literature provides various definitions of fuzzy
random variables and fuzzy expected values [6, 7, 8, 13]. Most of these definitions are
derived from the conventional concept of probability; as a result, it is difficult to derive
certain properties specific to fuzzy-numbers under these definitions. More research has
focused on fuzzy statistical analysis and its application in social science fields; Casalino et
al. [2], Esogbue and Song [4], and Wu and Sun [16] have described the concepts of fuzzy
statistics and applied them to social survey. Sun [14] applied fuzzy statistical analysis to
lexical semantics computation and Chang et al. [3] proposed a fuzzy inference criterion
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for assessing process lifetime performance. Moreover, Lin et al. [9] defined a new fuzzy-
number weight function that uses a central point and radius to more effectively observe
the original fuzzy data. Later, Lin et al. [10] also purposed a method that uses a central
point and radius to identify an underlying distribution function, again providing more
information about the original fuzzy data.
In this paper, we will show the properties of a certain fuzzy statistic distribution, which

is somewhat similar to the conventional statistic distribution. Moreover, we provide an
empirical study that uses the fuzzy chi-square test to test hypotheses.

2. Fuzzy Statistic Analysis.

2.1. Definitions. Fuzzy set theory, proposed by Zadeh in 1965 [17], deal with vagueness
in data. The following definitions will be used in next subsection and Section 3.

Definition 2.1. Let U be a universal set and A = {A1, A2, . . . , An} be the set of fo-
cal factors in U . For any term or statement X on U , the membership function of
{A1, A2, . . . , An} is {µ1(X), µ2(X), . . . , µn(X)}, where µ : U → [0, 1] is a real value func-
tion. If the domain of the universal set is discrete, then the fuzzy number x of X can be
written as

µU(X) =
n∑

i=1

µi(X)IAi
(X), (1)

where IAi
(X) = 1 if x ∈ Ai and IAi

(X) = 0 if x /∈ Ai.
If the domain of the universal set is continuous, then the fuzzy number x can be written

as

µU(X) =

∫
Ai⊆A

µi(X)IAi
(X). (2)

Note that, in the past, a fuzzy number was often written not as it is in Equation (1)
but instead as

µU(X) =
µ1(X)

A1

+
µ2(X)

A2

+ · · ·+ µn(X)

An

where “+” stands for “or” and “÷” denotes the membership µi(X) on Ai.

Definition 2.2. Expected value for fuzzy sample data (data with multiple values).
Let U be the universal set (a discussion domain), L = {L1, L2, . . . , Lk} be a set of

k-linguistic variables on U , and

{
Fxi

=
mi1

L1

+
mi2

L2

+ · · ·+ mik

Lk

, i = 1, 2, . . . , n

}
be a se-

quence of fuzzy random sample on U , mij (
∑k

j=1mij = 1) are the memberships with

respect to Lj [11] and have a fuzzy Bernoulli distribution. Then, the expected value for
fuzzy sample data is defined as

E(Fxi
) =

E(mi1)

L1

+
E(mi2)

L2

+ · · ·+ E(mik)

Lk

.

Definition 2.3. Variance for fuzzy sample data (data with multiple values).
As Definition 2.2, the variance for fuzzy sample data is written as follows:

V ar(Fxi
) =

V ar(mi1)

L1

+
V ar(mi2)

L2

+ · · ·+ V ar(mik)

Lk

.
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2.2. Fuzzy bernoulli and fuzzy binomial distribution. In this section, we introduce
several new distribution functions. A Bernoulli trial is an experiment that has only two
possible (and incompatible) outcomes: “success” and “failure” [5]. In general, let X = 1
if the outcome of Bernoulli trial is a success, and let X = 0 if it is a failure. Then, we say
that a fuzzy Bernoulli experiment is a random experiment, the outcome of which can be
classified in one of two mutually exclusive and exhaustive ways: success or failure (i.e.,
we let X ∈ [0.5, 1] if the outcome of fuzzy Bernoulli trial is a success and X ∈ [0, 0.5) if
it is a failure). Hence, a sequence of fuzzy Bernoulli trials occurs. In such a sequence we
let π denote the probability of success for each trial. In addition, we will frequently let
q = 1− π denote the probability of failure.

Next, let X be a continuous random variable associated with a fuzzy Bernoulli trial by
define as

X ∈ [0.5, 1] for a success and X ∈ [0, 0.5) for a failure;

that is, the two outcomes, success and failure, are denoted by mutually exclusive parts of
the partition set [0, 1].

The probability density function (p.d.f.) of X can be written as

f(x) =

{
2π, if x ∈ [0.5, 1]
2(1− π), if x ∈ [0, 0.5)

. (3)

In this scenario, we say that X has a fuzzy Bernoulli distribution which is denoted by
X ∼ FB(1, π).

We first derive some properties of the fuzzy Bernoulli distribution.

Theorem 2.1. The fuzzy Bernoulli density function given in (3) is a density function.

If X ∼ FB(1, π), then the expected value of X is µ = E(X) =
1 + 2π

4
, and the variance

of X is σ2 = V ar(X) =
1

48
+

1

4
π(1− π). Finally, the moment-generating function of X

is

M(t) = E(etX) =

 2

(
e

t
2 − 1

t

)[
πe

t
2 + (1− π)

]
, if t 6= 0

1, if t = 0

.

Proof: Note that f(x) ≥ 0. Also note that∫ 1

0

f(x)dx =

∫ 0.5

0

2(1− π)dx+

∫ 1

0.5

2πdx = 2(1− π) · x |0.50 +2π · x |10.5= 1.

Thus, f is a density function.

E(X) =

∫ 1

0.5

x · 2πdx+
∫ 0.5

0

x · 2(1− π)dx =
1 + 2π

4
,

V ar(X) = E(X2)− [E(X)]2

=

∫ 1

0.5

x2 · 2πdx+
∫ 0.5

0

x2 · 2(1− π)dx−
(
1 + 2π

4

)2

=
1

48
+

1

4
π(1− π),

and the moment-generating function of X is

M(t) = E(etX) =

∫ 1

0.5

etx2πdx+

∫ 0.5

0

etx2(1− π)dx = 2

(
e

t
2 − 1

t

)[
πe

t
2 + (1− π)

]
for

t 6= 0.
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The moment-generating function is not differentiable at zero, but can be calculated by
taking limt→0. We present these operations as follows:

M(0) = lim
t→0

M(t) = lim
t→0

2

(
e

t
2 − 1

t

)[
πe

t
2 + (1− π)

]
= lim

t→0
2

(
e

t
2 − 1

) [
πe

t
2 + (1− π)

]
t

= lim
t→0

{
2

(
e

t
2 · 1

2

)[
πe

t
2 + (1− π)

]
+ 2

(
e

t
2 − 1

)(
πe

t
2 · 1

2

)}
= 1

(by L’Hospital’s Rule).

In a sequence of fuzzy Bernoulli trials, we are often interested in the total number of
successes, and we do not consider the order of their occurrence. If we let the random
variable M be the number of observed successes in n fuzzy Bernoulli trials, M takes the
value of any nonnegative number. To easily denote the fuzzy Binomial distribution, let
k denote the number of observed successes, where 2m − n < k ≤ 2m for k ∈ N ∪ {0}
when m < n and for k = n when m = n, then let n − k denote the number of failures
occurred. We say that m is the observed value of M and N is defined as the natural
number. (The same definitions are used in the following analysis.) The number of ways

to select k positions for the k successes in the n trials is

(
n

k

)
. Note that, when we know

the value of m, the values of k are decided.
The p.d.f. of M can be written as

f(m) =
2

n

∑
k∈Ω

(
n

k

)
πk(1− π)n−k, (4)

where Ω = {k ∈ N ∪ {0} | 2m− n < k ≤ 2m for m < n and m = n for k = n}. Another
way to represent the p.d.f. is as either

f(m) =
2

n



(n
0

)
(1 − π)n, 0 ≤ m < 0.5, k = 0(n

0

)
(1 − π)n +

(n
1

)
π1(1 − π)n−1, 0.5 ≤ m < 1, k = 0, 1(n

0

)
(1 − π)n +

(n
1

)
π1(1 − π)n−1 +

(n
2

)
π2(1 − π)n−2, 1 ≤ m < 1.5, k = 0, 1, 2

.

.

.,
.
.
.,

.

.

.(n
0

)
(1 − π)n +

(n
1

)
π1(1 − π)n−1 + · · · +

( n
n−1

)
πn−1(1 − π)1, 0.5(n − 1) ≤ m < 0.5n, k = 0, 1, . . . , n − 1(n

1

)
π1(1 − π)n−1 +

(n
2

)
π2(1 − π)n−2 + · · · +

(n
n

)
πn, 0.5n ≤ m < 0.5(n + 1), k = 1, 2, . . . , n(n

2

)
π2(1 − π)n−2 +

(n
3

)
π3(1 − π)n−3 + · · · +

(n
n

)
πn, 0.5(n + 1) ≤ m < 0.5(n + 2), k = 2, 3, . . . , n

.

.

.,
.
.
.,

.

.

.(n
n

)
πn, 0.5(2n − 1) ≤ m ≤ 0.5(n + n), k = n

or

f(m) =
2

n


(
n
0

)
π0(1− π)n−0, 0 ≤ m < 0.5n, k = 0(

n
1

)
π1(1− π)n−1, 0.5 ≤ m < 0.5(n+ 1), k = 1

...,
...,

...(
n
n

)
πn(1− π)n−n, 0.5n ≤ m ≤ 0.5(n+ n), k = n

.

We say that M has a fuzzy Binomial distribution, which is denoted as M ∼ FB(n, π).
The constants n and π are called the parameters of the fuzzy binomial distribution; they
correspond to the number of trials and the probability of success for each trial, respectively.

Theorem 2.2. The fuzzy Binomial density function given in (4) is a density function. If
M ∼ FB(n, π), then the expected value of M is µ = E(M) = n · 1+2π

4
, and the variance

of M is V ar(M) = n2

48
+ n

4
π(1− π). Finally, the moment-generating function of M is

M(t) =


2

n

(
e

n
2
t − 1

t

)[
πe

t
2 + (1− π)

]n
, if t 6= 0

1, if t = 0
.
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Proof: Note that f(m) ≥ 0. Also, using the binomial theorem and integral operation,
we have the following:∫ n

0

f(m)dm =

∫ n

0

2

n

∑
k∈Ω

(
n

k

)
πk(1− π)n−kdm

=
2

n

[ ∫ 0.5n

0

(
n

0

)
π0(1− π)ndm+

∫ 0.5(n+1)

0.5

(
n

1

)
π1(1− π)n−1dm+ . . .

+

∫ 0.5(n+n)

0.5n

(
n

n

)
πn(1− π)0dm

]
=

2

n

n∑
k=0

∫ 0.5(n+k)

0.5k

(
n

k

)
πk(1− π)n−kdm =

2

n

n∑
k=0

(
n

k

)
πk(1− π)n−k · n

2

=
n∑

k=0

(
n

k

)
πk(1− π)n−k = [π + (1− π)]n = 1.

Thus, f is a density function.
Using the binomial theorem and integral operation again, we have the following:

M(t) = E(etM) =
2

n

n∑
k=0

∫ 0.5(n+k)

0.5k

etm ·
(
n

k

)
πk(1− π)n−kdm

=
2

n
· 1
t

(
e

n
2
t − 1

) n∑
k=0

(
n

k

)(
e

t
2π
)k

(1− π)n−k

=
2

n
· e

n
2
t − 1

t

[
πe

t
2 + (1− π)

]n
for t 6= 0.

In the case t = 0, we can take limt→0 and use L’Hospital’s Rule to complete the proof.
Now, we let

ψ(t) = logM(t) = log
2

n
+ log

e
n
2 − 1

t
+ n · log(πe

t
2 + 1− π),

we can get ψ(0) = logM(0) = log 1 = 0.

Moreover, let ψ′(t) =
t

e
n
2
t − 1

·
e

n
2
t n
2
· t− (e

n
2
t − 1) · 1

t2
+ n ·

πe
t
2
1
2

πe
t
2 + 1− π

and

ψ′′(t) =
1 ·
(
e

n
2
t − 1

)
− t · en

2
t n
2(

e
n
2
t − 1

)2 ·
e

n
2
t n
2
· t−

(
e

n
2
t − 1

)
t2

+
t

e
n
2
t − 1

·

[
e

n
2
t
(
n
2

)2 · t+ e
n
2
t n
2
· 1− e

n
2
t n
2

]
· t2 −

[
e

n
2
t n
2
· t−

(
e

n
2
t − 1

)]
· 2t

t4

+ n ·
πe

t
2

(
1
2

)2 (
πe

t
2 + 1− π

)
−
(
πe

t
2
1
2

)2
(
πe

t
2 + 1− π

)2 .

We can get that

µ = ψ′(0) = lim
t→0

ψ(t)− ψ(0)

t− 0
= lim

t→0

ψ(t)

t
= lim

t→0
ψ′(t) = n · 1 + 2π

4
(by L’Hospital’s Rule)
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and σ2 = ψ′′(0) = lim
t→0

ψ′(t)− ψ′(0)

t− 0
= lim

t→0

ψ′(t)− µ

t
= lim

t→0
ψ′′(t) =

n2

48
+
n

4
π(1− π).

In the next section, we will derive the fuzzy multinomial distribution which is expanded
from the fuzzy binomial distribution.

3. Fuzzy Multinomial Distribution.

3.1. Fuzzy trinomial distribution. Let M = (M1,M2) be a bivariate random vector
with range Sn = {(m1,m2) : m1 ≥ 0,m2 ≥ 0 and m1 +m2 ≤ n}. That is, m1 and m2 are
nonnegative real values, such that m1 + m2 ≤ n. Also, let Kn = {(k1, k2) : 2mi − n <
ki ≤ 2mi, ki ∈ N ∪ {0} for i = 1, 2 and k1 + k2 ≤ n} under the condition Sn. Then, we
have a relation between Kn and Sn. When m1 and m2 are fixed, k1 and k2 are decided.
Hence, M has a fuzzy trinomial distribution with parameters n and π = (π1, π2), written
as M = (M1,M2) ∼ FT (n, (π1, π2)) if M has joint density function

f(m1,m2) = 2



(
2

n

)2∑
k1

∑
k2

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2 ,

if (k1, k2) ∈ Kn(
2

n

)2∑
k1

∑
k2

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2 ,

if (k1, k2) ∈ K −Kn

(5)

where K = {(k1, k2) : k1 ≥ 0, k2 ≥ 0 and k1 + k2 ≤ n} and (m1,m2) ∈ Sn.
In the above equations, n is a positive integer and π1 and π2 are nonnegative numbers

such that π1 + π2 ≤ 1.
To prove that f is a p.d.f. under Sn, we must extend the set Sn to S̃n ∪ A, where

S̃n = {(m1,m2) : 0.5ki < mi ≤ 0.5(n+ ki), ki ∈ N ∪{0} for i = 1, 2 and k1 + k2 ≤ n} and
A = S − S̃n where A is measure zero. Note that, S is the set denoted by S = {(m1,m2) :
0 ≤ m1 ≤ n and 0 ≤ m2 ≤ n}.

Theorem 3.1. The fuzzy trinomial density function given in (5) is a density function.

If (M1,M2) ∼ FT (n, (π1, π2)), then E(Mi) = n · 1 + 2πi
4

, V ar(Mi) =
n2

48
+
n

4
πi(1− πi),

cov(M1,M2) = −n
4
π1π2, and the joint moment-generation function is

M(t1, t2) =


(
2

n

)2(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)[
π1e

t1
2 + π2e

t2
2 + (1− π1 − π2)

]n
,

if (t1, t2) 6= (0, 0)
1, if (t1, t2) = (0, 0)

.

Proof: Clearly, f(m1,m2) ≥ 0. Using the trinomial theorem and integral operation,
we have the following:∫∫

Sn

f(m1,m2)dm1dm2

=

∫ n

0

∫ n−m2

0

f(m1,m2)dm1dm2

=

∫ n

0

∫ n−m2

0

2

(
2

n

)2∑
k1

∑
k2

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2dm1dm2
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=

(
2

n

)2∑
k1

∑
k2

[ ∫∫
S̃n

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2dm1dm2

+

∫∫
A

0 dm1dm2

]
=

(
2

n

)2∑
k1

∑
k2

∫ 0.5(n+k2)

0.5k2

∫ 0.5(n+k1)

0.5k1

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1

− π2)
n−k1−k2dm1dm2

=
∑
k1

∑
k2

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2

= [π1 + π2 + (1− π1 − π2)]
n

=1.

Thus, f is a density function.
Using the trinomial theorem and integral operation again, for the joint moment-genera-

tion function, we have the following:

M(t1, t2)

=E(et1m1+t2m2)

=

(
2

n

)2∑
k1

∑
k2

∫ 0.5(n+k2)

0.5k2

∫ 0.5(n+k1)

0.5k1

et1m1et2m2
n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1

− π2)
n−k1−k2dm1dm2

=

(
2

n

)2(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)∑
k1

∑
k2

n!

k1!k2!(n− k1 − k2)!
πk1
1 π

k2
2 (1− π1 − π2)

n−k1−k2

=

(
2

n

)2(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)[
π1e

t1
2 + π2e

t2
2 + (1− π1 − π2)

]n
for (t1, t2) 6= (0, 0).

The moment-generating function is not differentiable at (t1, t2) = (0, 0), but can be
calculated by taking lim(t1,t2)→(0,0). We let t1 = r cos θ, t2 = r sin θ. If (t1, t2) → (0, 0),
then r → 0+.

Hence, we have

M(0, 0) = lim
(t1,t2)→(0,0)

M(t1, t2)

= lim
(t1,t2)→(0,0)

(
2

n

)2(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)[
π1e

t1
2 + π2e

t2
2 + (1− π1 − π2)

]n
= lim

r→0+

(
2

n

)2(
e

n
2
r cos θ − 1

r cos θ

)(
e

n
2
r sin θ − 1

r sin θ

)[
π1e

r cos θ
2 + π2e

r sin θ
2 + (1− π1 − π2)

]n
= 1.

Now, let ψ(t) = logM(t), where t = (t1, t2) is a vector.
We can get that

ψ(t) = 2 log

(
2

n

)
+ log

(
e

n
2
t1 − 1

t1

)
+ log

(
e

n
2
t2 − 1

t2

)
+ n log

[
π1e

t1
2 + π2e

t2
2 + (1− π1 − π2)

]
.
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It implies that ψ(0) = logM(0) = log 1 = 0.
Moreover, let

ψi(t) =
∂ψ(t)

∂ti
=

ti

e
n
2
ti − 1

·
e

n
2
ti n

2
· ti −

(
e

n
2
ti − 1

)
· 1

t2i
+ n ·

πie
ti
2
1
2

π1e
t1
2 + π2e

t2
2 + 1− π1 − π2

,

ψii(t) =
∂2ψ(t)

∂t2i
=

1 ·
(
e

n
2
ti − 1

)
− ti · e

n
2
ti n

2(
e

n
2
ti − 1

)2 ·
e

n
2
ti n

2
· ti −

(
e

n
2
ti − 1

)
t2i

+
ti

e
n
2
ti − 1

·
[
e

n
2
ti(n

2
)2 · ti + e

n
2
ti n

2
· 1− e

n
2
ti n

2

]
· t2i −

[
e

n
2
ti n

2
· ti −

(
e

n
2
ti − 1

)]
· 2ti

t4i

+ n ·
πie

ti
2

(
1
2

)2 (
π1e

t1
2 + π2e

t2
2 + 1− π1 − π2

)
−
(
πie

ti
2
1
2

)2
(
π1e

t1
2 + π2e

t2
2 + 1− π1 − π2

)2
and ψij(t) =

∂2ψ(t)

∂tj∂ti
=

∂

∂tj
ψi(t) = n ·

−πie
ti
2
1
2
· πje

tj
2

1
2(

π1e
t1
2 + π2e

t2
2 + 1− π1 − π2

)2 .
We can get that

µ = EMi = ψi(0) = lim
t→0

ψi(t) = n · 1 + 2πi
4

,

σ2 = V ar(Mi) = ψii(0) = lim
t→0

ψii(t) =
n2

48
+
n

4
πi(1− πi),

and cov(M1,M2) = ψ12(0) = limt→0 ψ12(t) = −n
4
π1π2.

Theorem 3.2. Let (M1,M2) ∼ FT (n, (π1, π2)) be a fuzzy trinomial distribution with
means π1 and π2. Then M1 ∼ FB(n, π1) and M2 ∼ B(n, π2).

Proof: The marginal moment-generating function of M1 is calculated as follows:

M1(t) =M(t, 0)

= lim
(t1,t2)→(t,0)

(
2

n

)2(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)[
π1e

t1
2 + π2e

t2
2 + (1− π1 − π2)

]n
=

(
2

n

)2(
e

n
2
t − 1

t

)[
π1e

t
2 + π2e

0 + (1− π1 − π2)
]n

lim
t2→0

(
e

n
2
t2 − 1

t2

)
=

(
2

n

)(
e

n
2
t − 1

t

)[
π1e

t
2 + (1− π1)

]n
.

This expression is the moment-generating function for FB(n, π1), so M1 ∼ FB(n, π1).
The proof for M2 can be done in a similar way.
Next, we discuss the fuzzy trinomial distribution that will lead to the notation used

in the fuzzy multinomial distribution. Let (M1,M2) ∼ FT (n, (π1, π2)), and let M3 =
n−M1−M2 and π = 1−π1−π2. Then M = (M1,M2,M3) has the joint density function

f(m1,m2,m3) = 2



(
2

n

)3∑
k1

∑
k2

∑
k3

n!

k1!k2!k3!
πk1
1 π

k2
2 π

k3
3 , if (k1, k2, k3) ∈ K∗

n(
2

n

)3∑
k1

∑
k2

∑
k3

n!

k1!k2!k3!
πk1
1 π

k2
2 π

k3
3 , if (k1, k2, k3) ∈ K −K∗

n

,
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where K = {(k1, k2, k3) : k1 ≥ 0, k2 ≥ 0, k3 ≥ 0 and k1 + k2 + k3 ≤ n} and where (m1,
m2,m3) ∈ S∗

n, S
∗
n is denoted as S∗

n = {(m1,m2,m3) : m1 ≥ 0,m2 ≥ 0,m3 ≥ 0 and m1

+m2 +m3 = n}.
Also, let K∗

n = {(k1, k2, k3) : 2mi − n < ki ≤ 2mi, ki ∈ N ∪ {0} for i = 1, 2, 3 and k1 +
k2 + k3 = n} under the condition (m1,m2,m3) ∈ S∗

n. Then we have a relation between
K∗

n and S∗
n. If m1, m2 and m3 decide, k1, k2 and k3 are decided. It is straightforward to

show that (M1,M2,M3) has a joint moment-generating function

M(t1, t2, t3) =


(
2

n

)3(
e

n
2
t1 − 1

t1

)(
e

n
2
t2 − 1

t2

)(
e

n
2
t3 − 1

t3

)(
π1e

t1
2 + π2e

t2
2 + π3e

t3
2

)n
,

if (t1, t2, t3) 6= (0, 0, 0)
1, if (t1, t2, t3) = (0, 0, 0)

Note that the joint density function and joint moment-generating function of (M1,M2,
M3) are somewhat nicer than those of (M1,M2). Also notice that the density functions of
(M1,M2) and (M1,M2,M3) represent the same model, in which we have n independent
replications of an experiment with three possible outcomes.

When (M1,M2) ∼ FT (n, (π1, π2)), the joint distribution of M1, M2 and M3 = n −
M1 −M2 is a special case of the fuzzy multinomial distribution discussed in the following
analysis. In this case, we often say that M = (M1,M2,M3) has a three-dimensional
fuzzy multinomial distribution and we write (M1,M2,M3) ∼ FM3(n, (π1, π2, π3)), where
π3 = 1− π1 − π2.

3.2. Fuzzy multinomial distribution. We have already considered the situations that
involve two and three random variables. Now, we want to extend it to k random variables.

Let M = (M1, . . . ,Mk) be a k-dimensional random vector with range Sn = {(m1, . . . ,
mk) : m1 ≥ 0, . . . ,mk ≥ 0 and m1 + · · · +mk = n}. That is, Mi are nonnegative fuzzy-
valued random variables whose sum is n. M = (M1, . . . ,Mk) has a k-dimensional fuzzy
multinomial distribution with parameters n and π = (π1, . . . , πk). We write (M1, . . . ,Mk)
∼ FMk(n, π) if M has joint density function

f(m1, . . . ,mk) = ζ



(
2

n

)k∑
k1

· · ·
∑
kk

n!

k1! . . . kk!
πk1
1 π

k2
2 . . . πkk

k ,

if (k1, k2, . . . , kk) ∈ Kn(
2

n

)k∑
k1

· · ·
∑
kk

n!

k1! . . . kk!
πk1
1 π

k2
2 . . . πkk

k ,

if (k1, k2, . . . , kk) ∈ K −Kn

(6)

where K = {(k1, . . . , kk) : ki ≥ 0 for i = 1, 2, . . . , k and
∑k

i=1 ki = n}, M ∈ Sn, and
ζ = dim(k − 1), and where n is a positive integer and πi are constants such that∑k

i=1 πk = 1. Moreover, Kn = {(k1, . . . , kk) : 2mi − n < ki ≤ 2mi, ki ∈ N ∪ {0} for i =

1, . . . , k and
∑k

i=1 ki = n}. Note that
∑k

i=1Mi = n and hence, Mk = n −
∑k−1

i=1 Mi and

πk = 1−
∑k−1

i=1 πi. Also note that

(M1,M2) ∼ FM2(n, (π1, π2)) ⇔M1 ∼ FB(n, π1), M2 = n−M1,

and (M1,M2,M3) ∼ FM3(n, (π1, π2, π3)) ⇔ (M1,M2) ∼ FT (n, (π1, π2), M3 = n −M1 −
M2.

The following theorems illustrate important properties of the fuzzy multinomial distri-
bution.
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Theorem 3.3. The fuzzy multinomial density function in (6) is a joint density function

for all positive integers n and for all values π1, . . . , πk such that πi ≥ 0 and
∑k

i=1 πi = 1.

Let M ∼ FMk(n, π), where M = (M1, . . . ,Mk), π = (π1, . . . , πk),
k∑

i=1

Mi = n and

k∑
i=1

πi = 1. Then, E(Mi) = n · 1 + 2πi
4

, V ar(Mi) =
n2

48
+
n

4
πi(1− πi), cov(Mi,Mj) =

−n
4
πiπj and the joint moment-generation function can be written as

M(t1, . . . , tk) =


(
2

n

)k (
e

n
2
t1 − 1

t1

)
. . .

(
e

n
2
tk − 1

tk

)(
π1e

t1
2 + π2e

t2
2 + · · ·+ πke

tk
2

)n
,

if (t1, . . . , tk) 6= (0, . . . , 0)
1, if (t1, . . . , tk) = (0, . . . , 0)

.

If M ∼ FMk(n, π), then Mi ∼ FB(n, πi) and (Mi,Mj) ∼ FT (n, (πi, πj)).

Proof: The proof is given in the same way as those for Theorems 3.1 and 3.2.
The next theorem gives a normal approximation, which has a widely range of uses.

Theorem 3.4. Let Xi ∼ FB(1, π) and X̄n =
n∑

i=1

xi
n

=
M

n
, where M ∼ FB(n, π) and

M =
n∑

i=1

xi. Suppose that µ = E(Xi) is finite and that σ2 = V ar(Xi) < ∞. Then

M − n · 1+2π
4[

n2

48
+ n

4
π(1− π)

] 1
2

d→ N(0, 1) as n→ ∞.

Proof: Because Xi ∼ FB(1, π), we have the following:

µ = E(Xi) =
1 + 2π

4
and σ2 = V ar(Xi) =

1

48
+

1

4
π(1− π).

Moreover, X̄n =
n∑

i=1

xi
n

=
M

n
, where M ∼ FB(n, π), µ = E(M) = n · 1 + 2π

4
and

V ar(M) =
n2

48
+
n

4
π(1− π).

Hence,

µ = E(X̄n) = E

(
M

n

)
=

1

n
E(M) =

1

n
·
(
n · 1 + 2π

4

)
=

1 + 2π

4
,

and V ar(X̄n) = V ar
(
M
n

)
= 1

n2V ar(M) = 1
n2

[
n2

48
+ n

4
π(1− π)

]
= 1

48
+ 1

4n
π(1− π).

Using the central limit theorem, we have the following

X̄n − µ[
1
48

+ 1
4n
π(1− π)

] 1
2

d→ N(0, 1) as n→ ∞.

Hence,
M − n · 1+2π

4[
n2

48
+ n

4
π(1− π)

] 1
2

d→ N(0, 1) as n→ ∞.

We have introduced some new distributions based on fuzzy theory. Now, we can use
these distributions to derive a fuzzy chi-square statistic for goodness-of-fit.
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3.3. Goodness-of-fit for membership functions with fuzzy data.
The l-sample fuzzy multinomial model

Let Mi be independent l-dimensional random vectors (Mi ∼ FMk(ni, πi)) where ni are
integers and πi are unknown parameter vectors. This model is called the l-sample fuzzy
multinomial model. The primary purpose of this model is to test the equality of all πi.
LetMij be the jth component of Mi, let πij be the jth component of πi and let Lj denote
linguistic variables for j = 1, 2, . . . , k. Table 1 shows these notations.

Table 1. The table of membership Mij in Lj

L1 L2 . . . Lk Total
M1 M11 M12 . . . M1k M1· = n1

M2 M21 M22 . . . M2k M2· = n2
...

...
...

...
...

...
Ml Ml1 Ml2 . . . Mlk Ml· = nl

Total M·1 M·2 . . . M·k N =
l∑

i=1

ni

Theorem 3.5. Aij is an unbiased estimator of πij for the l-sample fuzzy multinomial

model Mij, where Aij =
2Mij

ni

− 1

2
.

Proof: We know that Mi ∼ FMk(ni, πi) implies that Mij ∼ FB(ni, πij). Thus, we

have E(Mij) = ni ·
1 + 2πij

4
and V ar(Mij) =

n2
i

48
+
ni

4
πij(1− πij). We can then derive

E

(
1

2

(
4Mij

ni

− 1

))
= E

(
2Mij

ni

− 1

2

)
= E(Aij) = πij. Hence, Aij is an unbiased esti-

mation of πij.
Now, we test H0 : π1 = π2 = · · · = πl against H1: H0 not being true. Under the null

hypothesis H0, the πi values are all equal, so we let

π1 = π2 = · · · = πl = π0, where π0 = (π01, π02, . . . , π0k)
′.

Therefore, a sensible estimator for the expected frequency for the jth cell in the ith sample
is

Êij = ni ·
1 + 2π̂0j

4
= ni ·

1

4

[
1 + 2

(
2M·j

N
− 1

2

)]
= ni ·

M·j

N
,

where M·j =
∑

iMij and N =
∑

i ni.
Let

Ûk =
l∑

i=1

k−1∑
j=1

(Mij − Êij)
2

B̂ij

+
4
[∑k−1

j=1(Mij − Êij)
(
1− n2

i

48B̂ij

)]2
ni − 4

∑k−1
j=1 B̂ij

(
1− n2

i

48B̂ij

)2
,

where B̂ij =
1

2
Êij −

ni

8
+
n2
i

48
.

Here Ûk is a fuzzy chi-square distribution and has (l − 1)(k − 1) degrees of freedom.

Because the distribution of Ûk is approximately χ2(l − 1)(k − 1), we will reject H0 if

Ûk ≥ χ2
α(l − 1)(k − 1), where α is the desired significance level of the test.

Theorem 3.6. Ûk
d→ χ2(l − 1)(k − 1)
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Proof: It is enough for us to show that Ukn
d→ χ2(k − 1).

Let Mn = (Mn1,Mn2, . . . ,Mnk)
′, π = (π1, π2, . . . , πk)

′, En = (En1, En2, . . . , Enk)
′, and

V be the K×K matrix, whose ith diagonal element is Vii =
1
4
πi(1− π) and whose (i, j)th

off-diagonal element is Vij = −1
4
πiπj. So, V ar(Xi) =

1
48

+ 1
4
πi(1− πi), and cov(Xi, Xj) =

−1
4
πiπj, for i 6= j.

First, let us show that n−1(Mn−En) is approximately Nk

(
0, V

n
+ 1

48
Ik
)
. BecauseMn ∼

FMk(n, π), where π = (π1, π2, . . . , πk)
′ and Mn = nX̄n. We can get that E(X̄n) =

1+2π
4

and V ar(X̄n) = V
n
+ 1

48
Ik. Therefore, En = E(Mn) = n · 1+2π

4
and V ar(Mn) =

n · V + n2

48
Ik. Using the multinomial central limit theorem, X̄n − 1+2π

4
is approximately

Nk

(
0, V

n
+ 1

48
Ik
)
. We can get that

nX̄n−n 1+2π
4

n
is approximately Nk

(
0, V

n
+ 1

48
Ik
)
. Hence,

n−1(Mn − En) is approximately Nk

(
0, V

n
+ 1

48
Ik
)
.

Because V is not invertible, let M∗
n and E∗

n be the (k − 1)-dimensional vectors and let
V ∗ be the (k − 1) × (k − 1)-dimensional matrix. Then, n−1(M∗

n − E∗
n) is approximately

Nk−1

(
0, V

∗

n
+ 1

48
Ik−1

)
.

We know that [1]

Tn = [n−1(M∗
n − E∗

n)]
′
(
V ∗

n
+

1

48
Ik−1

)−1

[n−1(M∗
n − E∗

n)] ∼ χ2(k − 1),

which implies that

Tn = (M∗
n − E∗

n)
′
(
nV ∗ +

n2

48
Ik−1

)−1

(M∗
n − E∗

n) ∼ χ2(k − 1),

where nV ∗ +
n2

48
Ik−1 =

1

4
Dk−1 +

n2

48
Ik−1 −

1

4n
F ∗
nF

∗
n
′.

Let

Dk−1 =


nπ1 0 . . . 0
0 nπ2 . . . 0
...

...
. . .

...
0 0 . . . nπk−1


and Fn = (nπ1, nπ2, . . . , nπk)

′.
We also know the following [1]:
If A is a q×q invertible symmetric matrix, b and c are q-dimensional vectors, and d 6= 0

is a number, then c′(A− d−1bb′)−1c = c′A−1c+
(c′A−1b)2

d− b′A−1b
. Then, we let Cn =M∗

n −E∗
n,

A =
1

4
Dk−1 +

n2

48
Ik−1, b = F ∗

n and d = 4n. Hence, we can get that

Tn =(M∗
n − E∗

n)
′
(
nV ∗ +

n2

48
Ik−1

)−1

(M∗
n − E∗

n)

=(M∗
n − E∗

n)
′
(
1

4
Dk−1 +

n2

48
Ik−1

)−1

(M∗
n − E∗

n) +

[
(M∗

n − E∗
n)

′
(
1
4
Dk−1 +

n2

48
Ik−1

)−1

F ∗
n

]2
4n− F ∗

n
′ (1

4
Dk−1 +

n2

48
Ik−1

)−1
F ∗
n

=
k−1∑
i=1

(Mni − Eni)
2

Bni

+
4
[∑k−1

i=1 (Mni − Eni)
(
1− n2

48Bni

)]2
n− 4

∑k−1
i=1 Bni

(
1− n2

48Bni

)2
,

where Bni =
1

2
Eni −

n

8
+
n2

48
.
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Hence, Ukn = Tn
d→ χ2(k − 1).

To compute the degrees of freedom in Theorem 3.6, note that there are (l− 1) degrees
of freedom for each of the k populations. Thus, there are k(l − 1) degrees of freedom for
the whole model. Under the null hypothesis, we estimate (l−1) independent parameters,
the components of π0. (Note that

∑
π0j = 1.) Therefore, we would expect the degrees of

freedom for this hypothesis to be k(l − 1)− (l − 1) = (k − 1)(l − 1).

4. Empirical Studies.

Example 4.1. A manager wants to have a dinner party with his staffs at the end of
this year. He wants to know whether the different sexes will make difference choices about
dinner style. He conducts a sampling survey and randomly chooses 100 samples (50 males
and 50 females) from the company. During the answering process, people are asked to reply
via two methods: a conventional reply and a fuzzy response. In the conventional reply,
people can only choose one answer. In the fuzzy response, people can answer the question
with percentages (the total percentage is 100%). For instance, a staff could respond that
he has a preference 70% for Chinese style, 20% for Japanese style and 10% for Korean
style. The manager then sums up the percentages and the results are as follows:

Table 2. Respose in conventional way

Style Chinese Japanese Korean Thailande
others

Chi-square test
Voter Style Style Style Style of homogeneity
Male 27 12 2 3 6 χ2 = 3.46 >
Female 26 14 2 0 8 0.71 = χ2

0.95(4)

Table 3. Respose in fuzzy way

Style Chinese Japanese Korean Thailande
others

Chi-square test
Voter Style Style Style Style of homogeneity
Male 19.86 16.09 4.45 3.6 6 χ2 = 0.18 >
Female 18.7 13.5 6.82 4.29 6.69 0.71 = χ2

0.95(4)

The null hypothesis H0 is that there is no difference in dinner style choice against the
alternative hypothesis H1 is that H0 is not being true. With a significance level α = 0.95,
we can see the two results from the different responses are different. For the conventional
response, we reject the null hypothesis, while for the fuzzy reply, we accept the null
hypothesis. In other words, for the conventional reply, sex affects the response about
dinner style, while for the fuzzy reply, sex does not affect the response about dinner style.

Although we did not illustrate the feasibility of the test statistic in this paper, we
provided a method to evaluate fuzzy questionnaire which is more approaching to human
though. The statistic test we proposed in this paper is more flexible with fuzzy numbers
than a corresponding statistic test with real numbers.

5. Conclusions. We seldom use the fuzzy survey in the social sciences. One of the
reasons is that it is difficult to find an appropriate fuzzy testing process. In this paper,
we provided a formula, called fuzzy chi-square test to deal with fuzzy data. We used the
fuzzy binomial distribution to find expected value and variance. Hence, we could find the
estimator for πij in l-sample fuzzy multinomial model. Moreover, we used the central limit
theorem to obtain an approximately normal distribution. We used a proof similar to that
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of the conventional Pearson’s chi-square test to describe the fuzzy chi-square teat. We
also presented an example in Section 4 where we used two methods, the conventional chi-
square test and the fuzzy chi-square test, to test the hypothesis. Outstanding questions
that will lead to future improvements are as follows:

1. Does the size of sample affect the sensitivity of the result?
2. How can we prove that Aij is the best estimator for πij?
3. Although we proved the fuzzy chi-square test in this paper, the result is a little

complex and hard to calculate.
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