EVALUATING INTERTWINED EFFECTS OF TEAM INTERNAL FACTORS ON PROJECT SUCCESS: A HYBRID METHOD COMBINING EXPLORATORY FACTOR ANALYSIS AND THE DEMATEL TECHNIQUE

Don Jyh-Fu Jeng

Institute of International Management National Cheng Kung University No. 1, University Road, Tainan City 70101, Taiwan jeng@mail.ncku.edu.tw

Received April 2011; revised September 2011

ABSTRACT. Technology projects typically carry a high rate of failure. Project management refers to disciplines that enhance management of inherent strengths and weaknesses of a project. In contrast to external factors, project management frequently ignores internal factors. Such factors, involving internal services within the team, focus on working with people, ensuring customer satisfaction, and creating a conducive environment for the project team to deliver high quality products, which meet stakeholder expectations. This research investigated the intertwined effects of project team internal factors, and proposes a hybrid method that combines exploratory factor analysis and the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique to solve an empirical case. Exploratory factor analysis was applied for extracting the dimension and criteria structure of internal factors. The DEMATEL technique was then used to analyze the intertwined effect. This research found, in the dimensional level, attitude highly influences other internal factors towards project success, while work loading is a key factor in criteria level that greatly influences all others. The proposed method has proven to be effective for analyzing the complex interrelation of human psychological concerns. Keywords: Decision making trial and evaluation laboratory (DEMATEL), Exploratory factor analysis, Internal service, Project critical success factors, Project management

1. Introduction. Project management is important to control projects throughout the entire project life cycle for successful and enhanced project performance. Management can also have "strategic value when a clear connection is made between how efficiently and effectively a project is done and how the project's products and services provide business value" [26] (p.19). Understanding controllable factors and the intertwined effects that affect performance of the project team is necessary to properly manage a project.

A significant amount of research has been conducted on project success factors within Western cultural settings (e.g., [1, 6, 43, 44]). However, most of these researches have focused on external factors of the team and rarely discuss how internal factors may influence overall project success. External factors relate to factors which individual project group members cannot control, while internal factors relate to teamwork and interpersonal skills. Previous studies have frequently neglected internal factors; however, they play a significant role in project success.

Because of the effect of culture on values and norms [17, 22], research needs to consider the cultural setting when investigating impact factors in non-Western settings. Research has not investigated the effect of internal factors within a Chinese cultural setting on project performance, and the literature on internal factors of project management is rare. Understanding the intertwined effect of internal factors on project success is critical to managers conducting projects. These criteria affecting project success are numerous and exhibit mutual influence.

This paper first reviews and identifies the hierarchical structure of internal factors that influence project success and then analyzes intertwined effects between the criteria. Exploratory factor analysis is applied to extract the independent factors/criteria. Then, the DEMATEL technique [11, 12] is adopted to generate the impact relation map. The DE-MATEL technique is commonly used to illustrate the interrelations among criteria, which avoid "overfitting" in the Structural Equation Modeling (SEM) method of quantitative research [55]. The hybrid method proposed in this study uses a top-down approach that evades the mis-assumption of hypothesis development in social science studies.

The remainder of this paper is organized as follows. The research background and literature review on factors that affect project performance are presented in Section 2. Section 3 briefly introduces exploratory factor analysis and the DEMATEL technique. Section 4 presents an empirical study of internal factors on project success, and proposes a hierarchy structure with dimension and criteria and analyzes its intertwined effects by DEMATEL. Section 5 discusses the analysis result and draws implications. Finally, Section 6 presents concluding remarks.

2. Internal Factors Affecting Project Performance. Project performance metrics are key attributes and objectives which must be met or reached to consider a project successful [30]. Most researchers (i.e., [1, 6, 7, 30, 33, 43, 54]) agree that time, cost, and quality should be used as performance metrics and key determinants of project success. However, many scholars agree that success criteria should not be limited to time, cost, and quality [1, 30, 32, 54]. For instance, internal factors, cultural involved, highly influence the project performance of a team.

2.1. Cultural context. Culture, both national and corporate, can be defined as "the collective programming of the mind which distinguishes the members of one group or society from those of another" [18] (p.82). Each nation consists of dominant and non-dominant groups. All groups possess their own, and sometimes similar group-ideologies, beliefs, and values, but the national culture will resemble the largest or more influential dominant group. Therefore, understanding the underlying views of the dominant group is vital to understanding the views of people within that culture [51]. The findings of previous studies conducted in Western cultural settings have not been adequate when applied to the Chinese cultural context, which is highly influenced by the teachings of Confucius. "Confucian social theory is concerned with the question of how to establish a harmonious secular order in the man-centered world" [28] (p.65). The term guanxi (role-relationship) [21] is deeply embedded in Confucian social theory and King [28] uses the term architect to refer to Confucian individuals who build guanxi throughout their lifetime, creating their own social networks outside their family structure.

In terms of Taiwan, the study of Hofstede [17] found that Confucianism regarding unequal relationships ranked on the higher end of power distance, meaning hierarchal structures are common. For Confucianism concerning the importance of upholding 'he', or harmony, Hofstede [17] showed that the Taiwanese culture leans toward collectivism rather than individualism, meaning that individuals focus on group interest rather than their individual self. This is further supported by the findings of Gao [13], who conducted a study to understand Chinese speaking practices, and found that the self in Chinese culture, involves and is made up of multiple relationships. The last two dimensions (i.e., uncertainty avoidance and masculinity) in the Hofstede study [17] indicate that Taiwanese prefer to avoid uncertainty and demonstrate both masculine and feminine characteristics, as the masculinity score is modest. Further studies have confirmed that the work ethic of Taiwanese employees reflects both Confucian values and cultural dimensions [18, 19].

2.2. Internal impact factors. The project performance of a team depends heavily on how well the team works together. The factors that affect these dynamics are the relationships between team members, and the perceived quality of "internal services" between team members as workflows between them. The scope of internal-team factors for this study is limited to interactions and relationships between project group members.

In terms of workflow, the McGrath [37] paper on the theory of the group assumes groups to be "complex, intact social systems... that engage in purposeful activity at three partially nested levels: projects, tasks, and steps" (p.151). Work may flow from one team member to the next at the steps and tasks level. This workflow is an internal service between team members, and the interaction related to the work passed on to the next step is the service encounter. The service encounter is the "dyadic interaction between an internal customer and an internal service provider" [14] (p.35).

An internal customer evaluates the perceived quality of the service encounter by assessing individual internal service quality attributes to gain an overall perception of its quality [14]. Improving and managing perceived quality is important for organizations. Researchers have found connections between high levels of internal service quality and higher productivity, improved relationships between departments and groups, lower employee turnover, increased external customer satisfaction, and increased profits [14, 23, 41, 42, 45, 49].

Previous studies have mainly applied Western internal service quality attributes to the Taiwanese setting (e.g., [8, 9, 31, 36]), as organizational culture. However, culture, which is based largely on national culture, has a direct effect on internal service providers and internal customer values, norms, behavior, and thinking [4, 22, 47]. Applying Western attributes to an Eastern cultural setting could produce inadequate results, because cultural differences create unique workplaces with diverse views, values, and practices [18]. To overcome this limitation, Stanworth et al. [50] developed the Taiwanese based internal service quality (ISQ) attribute, derived from 29 service quality attributes.

Confucianism has shown to have an undisputable impact on the national and organizational culture of Taiwan, where it is important to maintain harmony within relationships [18]. Studies related to group project performance within the Chinese context have shown that focusing on creating friendly relationships within organizations and groups can positively affect project performance by increasing their odds of success [25, 27]. Bromiley and Cummings [2] found that a harmonious relationship based on trust lowers costs and shortens the time spent conducting business. Thus, relationships play a major role within Taiwan due to Confucian influence. Katz [27] found that high levels of internal communication between all project members lead to higher project performance.

Based on the above literature reviews, this research adopted and slightly modified the ISQ structure of Stanworth et al. [50] as follows. Two items were removed when changing attributes from negative to positive (Incomplete Professional Knowledge and Quarrel), because they were polar opposites of positives already present (Detailed Professional Knowledge and Consensus), and one item was expanded into two separate items (Work Loading to Work Loading and Accessible) to better capture attribute complexity. This left 26 remaining attributes. Two trouble-shooting attributes from Pinto and Prescott [43] (trouble-shooting and handle deviations), and seven relationship attributes from Jin and Ling [25] were added to our list. Thus, the final scale investigated in this study was composed of 35 team internal factors, including friendly (chin-chieh), polite (ke-chi), patient, positive/proactive (jiji), responsible, trouble-shooting, able to handle deviations, please supervisor, competent, effective, detailed and professional knowledge, consensus, show empathy, shared objective, considerate, reliable, internal efficiency, external efficiency, harmony, personnel connection, emotionally stable, internal communication, litigation, risk exposure, change orders and claims, mutual understanding, client satisfaction, learning culture, help each other, cooperation, coordination, work loading, accessible, bureaucracy, and exchange thoughts.

3. Building a Hybrid Model for Intertwined Effects Analysis. This section introduces the concepts for establishing the intertwined effects structural model, combined factor analysis, and the DEMATEL technique. Quantifying a precise value in human psychological emotion is difficult. However, the complex phenomenon can be divided into many criteria to more easily judge differences or measure scores. The exploratory factor analysis method is commonly used to divide criteria into groups. These criteria may have interdependent relationships; therefore, the DEMATEL technique was used to construct interrelations between criteria.

3.1. Finding independent factors for building a hierarchical system. Based on a suitable measuring method, the criteria can be categorized into distinct aspects. When the evaluated criteria are too large to determine the dependent or independent relation with others, factor analysis can verify independent factors.

Exploratory factor analysis is a dimension reduction method of multivariate statistics, which explores the latent variables from manifest variables to uncover the underlying structure of a relatively large set of variables. This method explicitly breaks down the variability of criteria into a part attributable to the dimensions and shared with other criteria, while the other part is specific to a particular unrelated criterion to the dimensions. With the feature of exploratory factor analysis, a clear hierarchical structure in dimension and criteria can be extracted. The main procedure of exploratory factor analysis can be described in the following steps:

- Step 1: Find the correlation matrix (\mathbf{R}) or variance-covariance matrix for the objects to be assessed.
- **Step 2:** Find the eigenvalues $(\lambda_k, k = 1, 2, \dots, m)$ and eigenvectors $(\beta_k = [\beta_{1k}, \dots, \beta_{lk}, \dots, \beta_{pk}])$ for assessing the factor loading $(a_{lk} = \sqrt{\lambda_k}\beta_{lk})$ and the number of factors (m).
- **Step 3:** Consider the eigenvalue ordering $(\lambda_1 > \cdots > \lambda_k > \cdots > \lambda_m; \lambda_m > 1)$ to decide the number of common factors, and select the number of common factors to be extracted by a predetermined criterion.
- **Step 4:** To facilitate the interpretation of factors, choose a rotation method. In this study, the promax rotation method was applied, which allows the factors to be correlated.
- Step 5: Name the factor referring to the combination of manifest variables.

When a large set of variables is factored, the method first extracts the combinations of variables, explaining the greatest amount of variance, and then proceeds to combinations that account for progressively smaller amounts of variance. Two types of criteria are used for selecting the number of factors: latent root criterion and percentage of variance criterion. The former criterion is that any individual factor should account for the variance $(Var(Y_k) = \lambda_k)$ of at least a single variable if it is to be retained for interpretation. In this criterion, only the factors having eigenvalues greater than 1 (i.e., $\lambda_k \geq 1$, $k = 1, 2, \dots, m$) are considered significant. The latter criterion is based on achieving a specified cumulative percentage of total variance extracted by successive factors. Its purpose is to ensure the

extracted factors can explain at least a specified amount of variance. Practically, to be satisfactory, the total amount of variance explained by factors should be at least 95% in the natural sciences, and 60% in the social sciences. However, no absolute threshold has been adopted for all applications [15].

3.2. **DEMATEL** technique for building the structural model. DEMATEL [11, 12] is a comprehensive method for building and analyzing a structural model involving causal relationships between complex factors. The method was developed with the assumption that properly used scientific research methods could facilitate comprehension of the specific problematique, the cluster of intertwined problems, and contribute to recognition of practical solutions by a hierarchical structure. The methodology, according to the characteristics of objective affairs, can verify the interdependence among the variables/attributes/criteria and confine the relation that reflects the characteristics with an essential system and evolution trend [5, 20]. The method is a practical and useful tool, especially for visualizing the structure of complex causal relationships with matrices or digraphs. The matrices or digraphs show a contextual relation between the elements of the system, in which a numeral represents the strength of influence of each element. Thus, the DEMATEL technique converts the relationship between the causes and effects of criteria into an intelligible structural model of systems [55]. Recently, DEMATEL technique has been widely applied in a number of disciplines, including airline safety [34], e-learning [53], decision-making [16, 33], knowledge management [48], operations research [39], technology and innovation management [20], marketing and consumer behavior [55], theory validation [24], and others. The structure of DEMATEL and the calculation steps are described as follows.

Step 1: Calculate the direct-influence matrix by scores (depending on the views of experts) and evaluate the relationship among elements (called variables/attributes/criteria) of mutual influence, using the scale ranging from 0 to 4 (indicating "no influence (0)," to "very high influence (4)"). Subjects are asked to indicate the direct effect they believe each element *i* exerts on every other element *j*, as indicated by d_{ij} . The matrix \boldsymbol{D} of direct relations is thus obtained, which shows the pairwise comparison of causal relationship. Assume there are *n* variables that impact the system, the direct-influence matrix \boldsymbol{D} is illustrated as follows.

$$\boldsymbol{D} = \begin{bmatrix} 0 & d_{12} & \cdots & d_{1n} \\ d_{21} & 0 & \cdots & d_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & 0 \end{bmatrix}$$

Step 2: Normalize the direct-influence matrix: based on the direct-influence matrix D, the normalized direct-relation matrix N is acquired using Equations (1) and (2).

$$\boldsymbol{N} = \boldsymbol{D}/\boldsymbol{u} \tag{1}$$

$$u = \max_{i,j} \left\{ \max_{i} \sum_{j=1}^{n} d_{ij}, \max_{j} \sum_{i=1}^{n} d_{ij} \right\}; \quad i, j \in \{1, 2, \cdots, n\}$$
(2)

Step 3: Attain the total-influence matrix: once the normalized direct-influence matrix N by summation for i or j is obtained, the total-influence matrix T is arrived at through Equation (3), in which the I is denoted as the identity matrix.

$$T = N + N^{2} + \dots + N^{q}$$

= $N \left(I + N + N^{2} + \dots + N^{q-1} \right) \left[(I - N)(I - N)^{-1} \right]$
= $N (I - N^{q})(I - N)^{-1}$ (3)

If $q \to \infty$, then $\lim_{q\to\infty} \mathbf{N}^q = [0]_{n\times n}$, where $\mathbf{N} = [d_{ij}]_{n\times n}$, $0 \le d_{ij} < 1$, $0 < (\sum_{j=1}^n d_{ij}, \sum_{i=1}^n d_{ij}) \le 1$, and either $\sum_{j=1}^n d_{ij}$ or $\sum_{i=1}^n d_{ij}$ equals 1, but not all. Based on Equation (3), we may obtain

$$T = N(I - N)^{-1}$$
(4)

Step 4: Analyze the results: in the stage, the sum of rows (given influence) and the sum of columns (received influence) are separately expressed as influential vector $d = (d_1, \dots, d_i, \dots, d_n)'$ by factor j $(j = 1, 2, \dots, n)$ and influential vector $r = (r_1, \dots, r_j, \dots, r_n)'$ by factor i $(i = 1, 2, \dots, n)$ using Equations (5)-(7). Then, when $i, j \in \{1, 2, \dots, n\}$ and i = j the horizontal axis vector (d + r) is made by adding vector d to vector r, which exhibits total important influence of each criterion. Similarly, the vertical axis vector (d - r) is built by deducting vector d from vector r, which may separate criteria into a cause group and an effect group. In general, when the value of $d_i - r_i$ is higher, the criterion belongs to the cause group. On the contrary, if the value of $d_i - r_i$ is lower, the criterion belongs to the effect group. Therefore, the impact relation map can be achieved by plotting the data set of $\{(d_i + r_i, d_i - r_i) | i = 1, 2, \dots, n\}$, which provides a valuable approach for decision-making.

$$\boldsymbol{T} = [t_{ij}]_{n \times n}, \quad i, j \in \{1, 2, \cdots, n\}$$

$$\tag{5}$$

$$\boldsymbol{d} = \left[\sum_{j=1}^{n} t_{ij}\right]_{n \times 1} = [t_i]_{n \times 1} = [d_i]_{n \times 1} \tag{6}$$

$$\boldsymbol{r} = \left[\sum_{i=1}^{n} t_{ij}\right]'_{1 \times n} = [t_j]_{n \times 1} = [r_j]_{n \times 1}$$
(7)

where vector $\boldsymbol{d} = (d_1, \dots, d_i, \dots, d_n)'$ and vector $\boldsymbol{r} = (r_1, \dots, r_j, \dots, r_n)'$ express the sum of rows and the sum of columns based on total-influence matrix $\boldsymbol{T} = [t_{ij}]_{n \times n}$, separately.

4. Empirical Study: Case of Project Success. The empirical experiment focused on firms that composed the project group. The study included two parts, the exploratory factor analysis, and DEMATEL analysis, described below.

4.1. Exploratory factor analysis to obtain independent criteria groups. The questionnaire was sent to several Taiwanese companies that have project groups consisting of Taiwanese working professionals, and it was explained that through the study, they can receive a clearer understanding of which factors are perceived to lead to greater project performance, which ultimately increases the probability of project success. Totally 224 questionnaires were collected for this study; 16 questionnaires were invalid, making 208 useable feedbacks.

In exploratory factor analysis, a clear structure emerged on the third iteration using a kappa rotation of 7. The Kaiser-Meyer-Olkin (KMO) and the Bartlett test are both acceptable on each iteration, with the lowest KMO being 0.949 and the highest Bartlett being 0.000. The Cronbach's α and Pearson Correlation were also both acceptable on each iteration with the lowest α being 0.851 and the lowest correlation being 0.618. After iterations one and two, the original 35-item list reduced to a final 26 items, categorized into eight dimensions. Eigenvalues were all greater than 1 and all item-to-total correlations of items were above the cutoff value 0.5. Table 1 shows the exploratory factor analysis final iteration result, which lists the dimension and criteria extracted from our original 35 internal factors.

Extracted Dimensions	Items/Criteria	Factor Loading	Eigenvalues (Rotated)	Item-to-Total Correlation
	Work Loading (C_{11})	1.22		0.79
	Accessible (C_{12})	0.95		0.84
	Reliable (C_{13})	0.90		0.79
	Considerate (C_{14})	0.87		0.83
Synergy (D_1)	Coordination (C_{15})	0.83	14.27	0.87
55H0185 (D1)	Help each other (C_{16})	0.81	11.21	0.84
	Cooperation (C_{17})	0.74		0.86
	Consensus (C_{18})	0.68		0.83
	Shared objective (C_{19})	0.63		0.75
	Trouble-shooting (C_{21})	0.95		0.80
$C_{\text{ompotones}}(D)$	Handle deviations (C_{22}) 0.93		10.00	0.86
Competence (D_2)	Positive/proactive (jiji) (C_{23})	0.86	12.08	0.85
	Responsible (C_{24})	0.80		0.81
	Polite (ke-chi) (C_{31})	1.08		0.77
Attitude (D_3)	Friendly (chin-chieh) (C_{32})	0.86	9.93	0.79
	Patience (C_{33})	0.69		0.70
	Learning culture (C_{41})	1.04		0.69
Relationship (D_4)	Client satisfaction (C_{42})	0.81	11.62	0.79
	Bureaucracy (C_{43})	0.59		0.68
	Shows empathy (C_{51})	0.85		0.75
Consideration (D_5)	Competent (C_{52})	0.84	10.43	0.73
	Effective (C_{53})	0.53		0.69
Dials Exposure (D)	Risk exposure (C_{61})	0.86	4.92	N/A
Risk Exposure (D_6)	Change orders and claims (C_{62})	0.80	4.92	N/A
Litigation (D_7)	Litigation (C_{71})	0.91	3.71	N/A
$\begin{array}{c} \text{Personnel} \\ \text{Connection} (D_8) \end{array}$	Personnel connection (C_{81})	0.84	2.49	N/A

TABLE 1. Dimension and criteria extracted

4.2. **DEMATEL method to find the interrelation between entwined criteria.** According to the factor analysis results, 50 experts were invited to discuss the relationship and influence level of criteria under the same factor, and to score the relationship among criteria based on the DEMATEL method. These experts were the certified Project Management Professional (PMP) of the Project Management Institute (PMI) with at least ten vears' project management experience.

The initial direct-influence matrix D was then produced as shown in Table 2. Based on the direct-influence matrix, according to Equation (2), u = 60.64. The normalized direct-influence matrix N, as shown in Table 3, was then retrieved based on Equation (1). Subsequently, the total-influence matrix T was calculated as displayed in Table 4. The degree of influence in dimension level and criteria level are presented in Table 5 and Table 6, respectively. Based on the above analysis, the comprehensive impact relation map can be generated as illustrated in Figure 1.

5. Discussion and Implication. The proposed hybrid method combining exploratory factor analysis and the DEMATEL technique has proven to be an effective model for evaluating complex psychological intertwined effects. Based on our empirical experiments, exploratory factor analysis was used to classify each element/criteria into eight independent factors/dimensions. Those criteria under the same dimension had some interrelations with each other. The direct/indirect influential relationship of criteria was figured using the DEMATEL technique.

$\begin{array}{c} 0 \\ 3.12 \\ 0.56 \\ 0.2 \\ 0 \end{array}$	0 0
3.8 0.04 0.06 0.06 3.52 3.5	$0 \\ 0.04$
3.7 0.06 0.04 0.04 3.52 0	$3.4 \\ 0.06$
$\begin{array}{c} 1.64 \\ 0.12 \\ 0.06 \\ 0.1 \\ 0 \\ 3.6 \end{array}$	3.9
$\begin{array}{c} 0.02 \\ 0.56 \\ 1.78 \\ 0 \\ 0.04 \\ 0.2 \end{array}$	$0 \\ 0.86$
$\begin{array}{c} 0 \\ 0.3 \\ 0 \\ 0.04 \\ 0.04 \end{array}$	0.5
$\begin{array}{c} 0 \\ 0 \\ 0.12 \\ 0.18 \\ 0.06 \\ 0.1 \end{array}$	0 1,16
$\begin{array}{c} 0 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.3 \end{array}$	0.04
$\begin{array}{c} 0 \\ 2.1 \\ 2.92 \\ 0 \\ 0 \end{array}$	$\frac{0}{3.02}$
$\begin{array}{c} 0.7\\ 1.44\\ 1.44\\ 1.62\\ 0.8\\ 0.8\\ 1.1\end{array}$	$\begin{array}{c} 0 \\ 1 \ 46 \end{array}$
$\begin{array}{c} 0 \\ 0.74 \\ 0.1 \\ 0.4 \\ 0.04 \\ 0.3 \end{array}$	0
$\begin{array}{c} 0 \\ 1.32 \\ 0.08 \\ 0.1 \\ 0.02 \end{array}$	0 2.06
$\begin{array}{c} 0\\ 1.16\\ 0.08\\ 0.12\\ 0.04\\ 0\end{array}$	$\frac{0}{2.58}$
$\begin{array}{c} 0.04 \\ 0.38 \\ 0.52 \\ 0.38 \\ 0.06 \\ 0.06 \end{array}$	0 0.64
$\begin{array}{c} 0\\ 0.5\\ 0.38\\ 1.36\\ 0.04\\ 0\end{array}$	0_{-84}
$\begin{array}{c} 0.2\\ 0.44\\ 1.96\\ 1.42\\ 0.06\\ 2.1\end{array}$	0 1.58
$\begin{array}{c} 0.22\\ 0.26\\ 2.26\\ 0.32\\ 0.16\\ 2.16\\ \end{array}$	0.06
$\begin{array}{c} 0.1 \\ 0.48 \\ 0.32 \\ 0.04 \\ 0.04 \\ 0.04 \\ 1.16 \end{array}$	0
0.38 0.62 0.24 0.64 0.04 1.32	
0.32 (1.04 (0.68 (0.54 (0.06 (1.38]	
0 3.12 0.92 0.22 0.04 0.12	
0.22 (0.44 3) 0.44 3) 0.18 (0.18 (0.05 (0.06 (0.06 1.58	-
0 3.58 0.08 0.28 0.08 0.08 0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE 2. Direct-influence matrix D

D. J. F. JENG

$\overline{C_{81}}$	79	620	508	534	261	557	455	109	53	63	82	303	109	580	623	425	82	445	0	515	92	33	0	0	0	0
C_{71}	452	30	13	ŝ	16	20	139	2	ŝ	43	158	129	33	2	e C	2	142	2	627	2	10	10	597	577	0	2
C_{62}	425	16	2	7	7	13	10	10	13	218	13	7	10	10	10	7	231	7	610	10	2	7	580	0	561	10
C_{61}	557	33	10	30	2	36	20	16	10	13	10	36	13	16	16	10	221	10	270	20	10	16	0	594	643	16
C_{53}	580	76	129	59	465	132	475	472	511	241	155	313	49	66	115	201	228	115	e	92	294	0	2	33	0	142
C_{52}	251	69	412	63	379	82	63	33	20	554	505	419	86	23	82	59	26	89	0	49	0	178	7	2	0	82
C_{51}	482	96	158	594	251	135	33	36	10	60	59	33	26	43	175	69	16	46	0	0	20	30	10	16	0	191
C_{43}	462	13	2	10	10	2	10	13	16	16	2	2	10	2	2	13	165	7	0	7	2	2	392	49	145	2
C_{42}	270	557	590	458	547	228	284	425	485	475	458	445	261	551	544	389	350	0	0	346	482	396	0	0	0	498
C_{41}	129	488	86	66	129	261	419	369	148	53	92	359	175	376	165	251	0	356	115	237	237	267	132	181	0	241
C_{33}	600	82	241	218	458	129	40	13	13	547	211	43	20	122	106	0	10	59	0	122	16	66	7	49	0	66
C_{32}	422	66	313	313	139	251	56	16	10	53	109	66	40	346	0	43	23	82	0	218	13	16	ŝ	0	0	340
C_{31}	442	62	270	172	208	119	73	46	16	63	155	73	43	0	221	49	30	63	0	191	13	20	7	0	0	425
C_{24}	313	115	594	66	125	115	139	53	112	96	73	290	0	46	96	66	33	46	2	63	86	63	10	10	0	106
C_{23}	172	129	168	73	181	165	43	10	16	82	148	0	158	69	89	33	16	66	0	82	63	224	2	0	0	139
C_{22}	528	102	142	168	528	112	79	119	158	188	0	59	40	109	69	303	109	102	33	73	323	234	10	346	0	261
C_{21}	412	112	112	79	518	152	119	102	122	0	373	26	36	26	63	16	53	92	36	43	373	53	26	356	10	195
C_{19}	162	237	59	129	468	109	577	515	0	46	228	53	49	63	106	26	333	425	16	62	53	73	7	191	0	214
C_{18}	356	416	49	419	498	155	554	0	392	63	122	73	56	82	66	33	280	62	63	102	40	106	7	218	0	482
C_{17}	531	274	66	478	442	590	0	139	241	92	135	112	59	79	142	40	300	290	53	172	112	89	10	228	0	251
C_{16}	587	468	73	580	551	0	524	109	228	142	76	172	60	129	135	59	261	119	0	515	152	36	7	20	0	280
C_{15}	488	267	66	172	0	152	112	132	175	389	422	53	56	488	106	228	158	303	36	73	30	102	10	261	0	594
C_{14}	524	317	63	0	172	567	66	115	43	46	162	56	53	106	122	66	33	23	0	590	13	46	13	26	0	211
C_{13}	218	237	0	102	69	201	49	53	79	66	49	63	76	69	142	89	49	16	0	63	20	168	10	0	0	228
C_{12}	557	0	162	524	122	538	66	66	241	43	86	92	66	524	597	195	102	43	က	379	36	63	13	0	0	521
C_{11}	0	158	346	66	350	432	129	102	53	313	79	406	327	148	155	158	66	356	554	96	317	109	350	584	16	175
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{21}	C_{22}	C_{23}	C_{24}	C_{31}	C_{32}	C_{33}	C_{41}	C_{42}	C_{43}	C_{51}	C_{52}	C_{53}	C_{61}	C_{62}	C_{71}	C_{81}

TABLE 3. Normalized direct-influence matrix $\pmb{N}~(\times 10^{-4})$

7459

C_{81}	530	863	723	846	570	845	626	228	193	237	256	450	200	800	838	553	206	579	49	761	204	139	$\frac{38}{38}$	102	10	315
C_{71}	628	89	69	55	97	96	185	42	37	106	196	186	72	54	47	45	212	60	734	50	58	44	698	688	95	68
C_{62}	587	73	57	48	78	79	64	45	42	264	00	67	47	54	49	40	289	56	714	48	54	36	680	137	624	64
C_{61}	702	92	65	75	78	109	76	51	39	76	54	102	54	64	59	46	278	63	404	63	55	47	128	701	698	73
C_{53}	880	282	290	263	737	347	650	588	626	397	312	448	135	227	258	306	348	276	84	237	402	96	63	184	17	371
C_{52}	468	188	517	178	556	213	155	103	66	652	606	496	139	127	173	140	00	174	43	138	93	247	$\frac{38}{38}$	108	11	233
C_{51}	647	205	248	691	370	273	107	86	00	145	130	105	73	137	258	130	63	118	47	112	74	70	44	87	10	306
C_{43}	539	53	45	39	58	56	44	37	35	53	32	51	38	39	35	38	195	44	64	34	38	27	435	129	182	45
C_{42}	838	885	882	817	982	602	564	609	671	714	708	661	383	837	815	579	516	232	84	633	648	542	63	188	18	891
C_{41}	488	686	273	312	400	485	588	478	282	206	240	497	253	549	347	363	125	481	178	414	340	356	182	287	31	480
C_{33}	802	198	343	330	618	266	125	76	80	644	310	125	76	225	195	73	70	149	64	216	103	119	53	160	15	214
C_{32}	605	225	421	445	280	392	146	71	66	132	181	148	91	446	108	115	76	163	43	336	74	64	35	67	∞	469
C_{31}	608	201	377	300	341	258	159	98	71	142	224	152	93	109	321	124	81	147	45	296	74	66	39	71	∞	544
C_{24}	464	215	673	165	247	229	212	103	165	167	140	355	45	125	174	120	83	114	43	140	138	113	37	71	x	216
C_{23}	314	211	247	163	290	256	114	59	71	147	207	63	191	144	159	87	61	122	26	155	113	259	25	49	5	234
C_{22}	790	258	285	318	729	282	209	208	247	339	133	179	108	249	193	397	198	223	119	197	411	302	78	458	34	434
C_{21}	635	242	230	209	685	290	222	173	197	128	478	127	93	147	164	103	134	194	113	144	447	117	88	458	44	347
C_{19}	459	444	208	344	700	320	734	620	134	181	360	179	123	241	262	142	451	554	81	237	157	163	56	305	23	443
C_{18}	671	623	206	635	728	404	717	120	500	193	255	202	133	272	273	153	395	239	138	289	136	184	68	338	27	701
C_{17}	856	495	235	696	693	811	183	258	358	244	278	257	147	267	310	162	415	433	138	369	225	178	79	351	28	484
C_{16}	930	680	250	818	801	275	677	224	340	290	228	313	158	324	319	183	368	278	79	706	257	125	64	157	16	529
C_{15}	800	467	256	383	265	374	276	240	282	530	554	192	138	662	287	354	262	441	120	251	153	187	76	385	30	803
C_{14}	755	453	182	187	352	716	182	177	117	142	240	150	111	224	242	145	104	118	57	715	86	96	55	114	12	368
C_{13}	360	324	80	204	181	304	129	101	130	125	104	125	110	151	221	141	94	79	28	148	66	199	31	48	9	322
C_{12}	875	211	346	754	370	766	264	163	326	170	207	224	145	691	757	302	193	184	69	582	128	131	62	105	12	735
-			-		-	_	275					-							_							
	C_{11}	C_{12}	C_{13}	C_{14}	C_{15}	C_{16}	C_{17}	C_{18}	C_{19}	C_{21}	C_{22}	C_{23}	C_{24}	C_{31}	C_{32}	C_{33}	C_{41}	C_{42}	C_{43}	C_{51}	C_{52}	C_{53}	C_{61}	C_{62}	C_{71}	C_{81}

TABLE 4. Total-influence matrix \boldsymbol{T} (×10⁻⁴)

7460

	d_i	r_i	$d_i + r_i$	$d_i - r_i$
D_1	0.2676	0.2185	0.4861	0.0492
D_2	0.1748	0.1462	0.3210	0.0287
D_3	0.2083	0.1409	0.3493	0.0674
D_4	0.1723	0.2468	0.4191	-0.0746
D_5	0.1576	0.1567	0.3143	0.0009
D_6	0.1895	0.1765	0.3660	0.0131
D_7	0.0917	0.1575	0.2492	-0.0659
D_8	0.2473	0.2660	0.5133	-0.0187

TABLE 5. Influence of concern factors in the dimension level

TABLE 6. Influence of concern factors in the criteria level

	d_i	r_i	$d_i + r_i$	$d_i - r_i$
C_{11}	1.6598	0.9587	2.6185	0.7011
C_{12}	0.9005	0.8771	1.7776	0.0234
C_{13}	0.8021	0.3812	1.1833	0.4210
C_{14}	0.9532	0.6098	1.5630	0.3434
C_{15}	1.1789	0.8766	2.0555	0.3024
C_{16}	0.9657	0.9388	1.9045	0.0269
C_{17}	0.7684	0.8949	1.6633	-0.1266
C_{18}	0.5156	0.8601	1.3757	-0.3446
C_{19}	0.5330	0.7920	1.3250	-0.2589
C_{21}	0.6893	0.6211	1.3105	0.0682
C_{22}	0.6722	0.7378	1.4100	-0.0656
C_{23}	0.6389	0.3773	1.0162	0.2616
C_{24}	0.3556	0.4563	0.8118	-0.1007
C_{31}	0.7468	0.4947	1.2415	0.2521
C_{32}	0.7163	0.5205	1.2368	0.1957
C_{33}	0.5101	0.5650	1.0751	-0.0548
C_{41}	0.5497	0.9320	1.4817	-0.3824
C_{42}	0.5986	1.5364	2.1350	-0.9378
C_{43}	0.4211	0.2386	0.6597	0.1824
C_{51}	0.7515	0.4594	1.2109	0.2921
C_{52}	0.4952	0.5986	1.0938	-0.1034
C_{53}	0.4106	0.8824	1.2930	-0.4718
C_{61}	0.3657	0.4253	0.7910	-0.0596
C_{62}	0.6449	0.4351	1.0801	0.2098
C_{71}	0.2067	0.4713	0.6781	-0.2646
C_{81}	1.0068	1.1162	2.1230	-0.1093

A clear structure of the team-internal impact factors for project performance within the Taiwanese cultural context was created through exploratory factor analysis (see Table 1). By combining the 26 attributes of ISQ from Stanworth et al. [50], two trouble-shooting attributes from Pinto and Prescott [43], and the seven relationship attributes from Jin and Ling [25], the final scale investigated in this study comprised 35 attributes. Exploratory factor analysis was then conducted to extract a final structure of eight dimensions and 26 criteria: Synergy (9 criteria), Competence (4 criteria), Attitude (3 criteria), Relationship

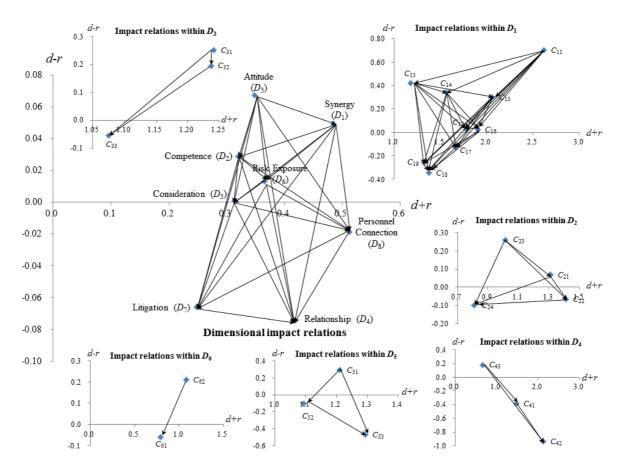


FIGURE 1. Comprehensive dimension and criteria impact relation map

(3 criteria), Consideration (3 criteria), Risk Exposure (2 criteria), Litigation (1 criterion), and Personnel Connection (1 criterion) (see Table 1).

According to DEMATEL analysis, the factors showing greater values of $d_i + r_i$ intensely affect the others, the factors showing lesser values of $d_i - r_i$ are intensely affected by the others. Figure 1 shows a clear picture of intertwined effect between dimensions and criteria.

Based on Figure 1, in the dimensional level, attitude (D_3) plays a significant role that highly influences other internal factors towards project success. However, relationship (D_4) is impacted by all dimensions. Personal connection (D_8) highly relates with other dimensions. Furthermore in cross-dimensional, work loading (C_{11}) is a key factor that greatly influences all other criteria, while ultimately meeting customer satisfaction (C_{42}) . Bureaucracy (C_{43}) and litigation (C_{71}) show less relationship with other factors.

Project leadership requires more than mere technical competence and encompasses the ability to manage a team. Kloppenborg and Petrick [29] stated that skills in managing relationships are critical to satisfy stakeholders through all stages of the project. Creating right relationships between team members is one of the largest challenges project managers face [3, 40, 52]. Whitty [56] mentioned, "projects are simply a synthesis of human sensations and expectations about how multiple resources are to be used" (p.577). Ropponen and Lyytinen [46] indicated that personnel management is one of the major risk components in software development projects. The above evidences highlight the importance of understanding the interrelation of project team internal factors. Operationally, Okuhara et al. [38] proposed a genetic algorithm method to the worker and workload assignment problem in project management. However, the approach omits the human

factors internally within the project team which may eventually impact the success of project.

The result of this study clearly shows the intertwined effects of team internal factors on project success. Because workloading is a key influencer, when more resources such as people, are needed than are available, the project manager needs to reschedule tasks concurrently or even sequentially to manage the constraint. The project manager should apply resource leveling to resolve schedule conflicts instead of overloading work to a single resource. The project team should emphasize positive attitude to create a harmonious working environment to further build team synergy. From the internal service point of view, Jeng [23] stated that rewards and recognition can be the best strategy to enhance internal service operation of a team.

6. Concluding Remarks. This research proposed a hybrid method combining factor analysis and the DEMATAL technique. Supported by previous qualitative studies, exploratory factor analysis was applied to extract a clear factor structure consisting of dimension and criteria. Then, the DEMATEL technique was utilized to analyze the intertwined effect between the extracted dimension and criteria. The proposed method is capable of analyzing the interrelation of complex human factors in social science research.

The impact relation map provides the project manager a clear picture on the affect of internal factors on project performance. A project manager may set strategies to better manage the working environment and team atmosphere. The result provides directions to enhance team synergy, increase relationships, and ultimately achieve project success. This study also provides information for a company to further adopt an effective training agenda and employee assistance programs (EAPs) to improve the working atmosphere of a project team. Future research may extend the proposed hybrid method with multiple criteria decision-making (MCDM) on managing project portfolio, for instance, fuzzy MCDM algorithm [10, 23], and grey relational analysis (GRA) [20].

Acknowledgement. The author would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. He is also grateful to Dr. James Stanworth for introducing the ISQ problem, along with discussion; and to Johanna Owen and Logan Reittinger for their assistance and literature survey.

REFERENCES

- R. Atkinson, Project management: Cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria, *International Journal of Project Management*, vol.17, no.6, pp.337-342, 1999.
- [2] P. Bromiley and L. L. Cummings, Transactions costs in organizations with trust, Research on Negotiation in Organizations, vol.5, pp.219-250, 1995.
- [3] A. Bucero, Smart emotions, *PM Network*, vol.18, no.11, pp.22, 2004.
- [4] D. M. Cable and T. A. Judge, Person-organization fit, job choice decisions, and organizational entry, Organizational Behavior and Human Decision Processes, vol.67, no.3, pp.294-311, 1996.
- [5] Y. J. Chiu, H. C. Chen, G. H. Tzeng and J. Z. Shyu, Marketing strategy based on customer behaviour for the LCD-TV, *International Journal of Management and Decision Making*, vol.7, no.2-3, pp.143-165, 2006.
- [6] T. Cooke-Davies, The "real" success factors on projects, International Journal of Project Management, vol.20, no.3, pp.185-190, 2002.
- [7] A. De Wit, Measurement of project success, International Journal of Project Management, vol.6, no.3, pp.164-170, 1988.
- [8] W. Deng, S. Chiang, C. Tsai and S. Tsai, The relationship of internal service quality, external service quality and overall customer satisfaction, *Quality Monthly*, vol.43, no.10, pp.52-58, 2007.
- [9] W. Deng, M. Lin and C. Tsai, Employee satisfaction as the foundation for assessing internal service quality: An international hotel example, *Quality Monthly*, vol.41, no.11, pp.79-83, 2005.

- [10] J.-F. Ding, Fuzzy MCDM approach for selecting strategic partner: An empirical study of a container shipping company in Taiwan, *International Journal of Innovative Computing*, *Information* and Control, vol.5, no.4, pp.1055-1068, 2009.
- [11] E. Fontela and A. Gabus, The DEMATEL observer, DEMATEL 1976 Report, Battelle Geneva Research Center, Geneva, Switzerland, 1976.
- [12] A. Gabus and E. Fontela, Perceptions of the world problematique: Communication procedure, communicating with those bearing collective responsibility, *DEMATEL Report No. 1*, Battelle Geneva Research Center, Geneva, Switzerland, 1973.
- [13] G. Gao, "Don't take my word for it." Understanding Chinese speaking practices, International Journal of Intercultural Relations, vol.22, no.2, pp.163-186, 1998.
- [14] D. D. Gremler, M. J. Bitner and K. R. Evans, The internal service encounter, International Journal of Service Industry Management, vol.5, no.2, pp.34-56, 1994.
- [15] J. S. Hair, R. E. Anderson, R. L. Tetham and W. C. Black, *Multivariate Data Analysis*, 5th Edition, Prentice Hall, NJ, 1998.
- [16] M. Hajime and I. Kenichi, Systematic decision making process for identifying the contradictions to be tackled by TRIZ to accomplish product innovation, *Journal of Automation, Mobile Robotics & Intelligent Systems*, vol.1, no.4, pp.21-29, 2007.
- [17] G. Hofstead, Cultural dimensions in management and planning, Asia Pacific Journal of Management, vol.1, no.2, pp.81-99, 1984.
- [18] G. Hofstede and M. H. Bond, The Confucius connection: From cultural roots to economic growth, Organizational Dynamics, vol.16, no.4, pp.4-21, 1988.
- [19] G. Hofstede, B. Neuijen, D. D. Ohayv and G. Sanders, Measuring organizational cultures: A qualitative and quantitative study across twenty cases, *Administrative Science Quarterly*, vol.35, no.2, pp.286-316, 1990.
- [20] C. Y. Huang and G. H. Tzeng, Reconfiguring the innovation policy portfolios for Taiwan's SIP mall industry, *Technovation*, vol.27, no.12, pp.744-765, 2007.
- [21] K.-K. Hwang, The deep structure of Confucianism: A social psychological approach, Asian Philosophy: An International Journal of the Philosophical Traditions of the East, vol.11, no.3, pp.179-204, 2001.
- [22] B.-S. Jaw, Y.-H. Ling, C. Y.-P. Wang and W.-C. Chang, The impact of culture on Chinese employees' work values, *Personnel Review*, vol.36, no.5, pp.763-780, 2007.
- [23] D. J.-F. Jeng, Selection of an improvement strategy in internal service operations: The MCDM approach with fuzzy AHP and nonadditive fuzzy integral, *International Journal of Innovative Computing*, *Information and Control*, vol.8, no.8, pp.5917-5933, 2012.
- [24] D. J.-F. Jeng and G. H. Tzeng, Social influence on the use of clinical decision support systems: Revisiting the unified theory of acceptance and use of technology by the fuzzy DEMATEL technique, *Computers & Industrial Engineering*, 2012.
- [25] X.-H. Jin and F. Y. Y. Ling, Key relationship-based determinants of project performance in China, Building and Environment, vol.41, no.7, pp.915-925, 2006.
- [26] K. Jugdev and R. Muller, A restropective look at our evolving understanding of project success, Project Management Journal, vol.36, no.4, pp.19-31, 2005.
- [27] R. Katz, The effects of group longevity on project communication and performance, Administrative Science Quarterly, vol.27, no.1, pp.81-104, 1982.
- [28] A. Y.-C. King, Kuan-hsi and network building: A sociological interpretation, *Daedalus*, vol.120, no.2, pp.63-84, 1991.
- [29] T. Kloppenborg and J. Petrick, Leadership in project life cycle and team character development, *Project Management Journal*, vol.30, no.2, pp.8-13, 1999.
- [30] A. Lester, Project Management, Planning and Control, 5th Edition, Butterworth-Heinemann, Oxford, 2007.
- [31] J. F. Liao, C. H. J. Wu, Y. H. Jou and Y. Y. Huang, A study of the relationship between of internal marketing, job satisfaction and customer-oriented behaviors, *Sun Yat-Sen Management Review*, vol.12, no.5, pp.181-201, 2004.
- [32] C. S. Lim and M. Z. Mohamed, Criteria of project success: An exploratory re-examination, International Journal of Project Management, vol.17, no.4, pp.243-248, 1999.
- [33] F.-T. Lin, Time-cost tradeoff problem based on confidence-interval estimates and level (1-α) fuzzy numbers, *International Journal of Innovative Computing*, *Information and Control*, vol.4, no.10, pp.2551-2564, 2008.

- [34] J. J. H. Liou, L. Yen and G. H. Tzeng, Building an effective safety management system for airlines, Journal of Air Transport Management, vol.14, no.1, pp.20-26, 2008.
- [35] C. J. Lin and W. W. Wu, A causal analytical method for group decision-making under fuzzy environment, *Expert Systems with Applications*, vol.34, no.1, pp.205-213, 2008.
- [36] I. Y. Lu and Y. H. Cheng, The study on the relationships among the factors of internal service quality, service ability, job satisfaction and external service quality: The case of nurse, *Journal of Quality*, vol.14, no.2, pp.161-179, 2007 (in Chinese).
- [37] J. E. McGrath, Time, interaction, and performance (TIP): A theory of groups, *Small Group Research*, vol.22, no.2, pp.147-174, 1991.
- [38] K. Okuhara, J. Shibata and H. Ishii, Adaptive worker's arrangement and workload control for project management by generic algorithm, *International Journal of Innovative Computing*, *Information and Control*, vol.3, no.1, pp.175-188, 2007.
- [39] Y. P. Ou Yang, H. M. Shieh, J. D. Leu and G. H. Tzeng, A novel hybrid MCDM model combined with DEMATEL and ANP with applications, *International Journal of Operational Research*, vol.5, no.3, pp.160-168, 2008.
- [40] I. Pant and B. Baroudi, Project management education: The human skills imperative, International Journal of Project Management, vol.26, no.2, pp.124-128, 2008.
- [41] A. Paraskevas, Internal service encounters in hotels: An empirical study, International Journal of Contemporary Hospitality Management, vol.13, no.6, pp.285-292, 2001.
- [42] A. Parasuraman, L. L. Berry and V. A. Zeithaml, Perceived service quality as a customer-based performance measure: An empirical examination of organizational barriers using an extended service quality model, *Human Resource Management*, vol.30, no.3, pp.335-364, 1991.
- [43] J. K. Pinto and J. E. Prescott, Variations in critical success factors over the stages in the project life cycle, *Journal of Management*, vol.14, no.1, pp.5-18, 1988.
- [44] J. K. Pinto and D. P. Slevin, Critical factors in successful project implementation, *IEEE Transactions on Engineering Management*, vol.34, no.1, pp.22-27, 1987.
- [45] J. Reynoso and B. Moores, Towards the measurement of internal service quality, International Journal of Service Industry Management, vol.6, no.3, pp.64-83, 1995.
- [46] J. Ropponen and K. Lyytinen, Components of software development risk: How to address them? A project manager survey, *IEEE Transactions on Software Engineering*, vol.26, no.2, pp.98-112, 2000.
- [47] S. H. Schwartz and L. Sagiv, Identifying culture-specifics in the content and structure of values, Journal of Cross-Cultural Psychology, vol.26, no.1, pp.92-116, 1995.
- [48] Y. Shi, Y. Peng, G. Kou and Z. Chen, Classifying credit card accounts for business intelligence and decision making: A multiple-criteria quadratic programming approach, *International Journal of Information Technology and Decision Making*, vol.4, no.4, pp.581-599, 2005.
- [49] L. L. Stanley and J. D. Wisner, Internal service quality in purchasing: An empirical study, Journal of Supply Chain Management, vol.34, no.3, pp.50-60, 1998.
- [50] J. Stanworth, S. Chen and R. Hsu, Understanding Chinese Employees' (Dis)Satisfaction in the Internal Service Encounter, Unpublished Research Article, National Changhua University of Education, Changhua, Taiwan, 2009.
- [51] E. F. Stone-Romero and D. L. Stone, Cognitive, affective, and cultural influences on stigmatization: Impact on human resource management processes and practices, *Research in Personnel and Human Resources Management*, vol.26, pp.111-161, 2007.
- [52] H. J. Thamhain, Linkages of project environment to performance: Lessons for team leadership, International Journal of Project Management, vol.22, no.7, pp.533-544, 2004.
- [53] G. H. Tzeng, Y. P. Ou Yang, C. T. Lin and C. B. Chen, Hierarchical MADM with fuzzy integral for evaluating enterprise intranet web sites, *Information Sciences*, vol.169, no.3-4, pp.409-426, 2005.
- [54] X. Wang and J. Huang, The relationships between key stakeholders' project performance and project success: Perceptions of Chinese construction supervising engineers, *International Journal of Project Management*, vol.24, no.3, pp.253-260, 2006.
- [55] P. L. Wei, J. H. Huang, G. H. Tzeng and S. I. Wu, Causal modeling of web-advertising effects by improving SEM based on DEMATEL technique, *International Journal of Information Technology* & Decision Making, vol.9, no.5, pp.799-829, 2010.
- [56] S. J. Whitty, A memetic paradigm of project management, International Journal of Project Management, vol.23, no.8, pp.575-583, 2005.