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ABSTRACT. Logistics and inventory operations, which involve transportation, communi-
cation, and storage management, are a crucial part of disaster relief. Chaotic conditions
after a disaster might cause imbalances in the inventory level at each storage location or
shelter. To ensure an even level of inventory among shelters, a new approach for model-
ing logistics and inventory operations after a natural disaster using probabilistic cellular
automata is proposed. In our model, two states — normal and abnormal — represent the
inventory level of each shelter. Fach shelter receives items from a central warehouse and
can transfer their items to other shelters. Our model uses eight parameters to character-
ize the dynamic interactions among shelters.

Keywords: Logistics and inventory model, Probabilistic cellular automata, Mutual
supply, Disaster relief supply, Dynamic interaction

1. Introduction. The need to help people after a disaster is not diminishing and may
even be growing due to the increasing number of natural disasters recently [1]. Human-
itarian relief operations may involve various local and international organizations, host
governments, the military, and private companies. With their capacity and logistics ex-
pertise, such organizations are able to supply daily essentials such as food, clothing and
medicine.

There have been a few cases of successful coordination in disaster relief, in which all
parties involved effectively coordinated their logistics planning and management. The
inventory or supply system plays a critical role in emergency situations, including storing
and managing essential items and providing them to disaster victims. Logistics operations
and rate of consumption affect the inventory level. The role of logistics and inventory
in famine relief and disaster operations amid complex environments has been explicitly
described [2].

After a disaster, the demand for essential items usually fluctuates drastically and ir-
regularly. In most disaster-relief operations, information on the demand for emergency
resources is collected mainly at the operational level and then flows upward to the higher
level [3]. However, after a disaster it is usually difficult to collect reliable information,
including information about the demand at each shelter. Even if such information is avail-
able, it may be unreliable due to chaotic conditions. This situation leads to imbalances
in the level of inventory among shelters. If each shelter shares some of their stock to help
others, then imbalance situation in the inventory level among shelters is solved.
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In enterprise environment, this sharing activity is known as lateral transshipment. Flow
of goods in lateral transshipment is within the same or adjacent level, i.e., between whole-
salers and retailers [4]. This flow complements existing inventory system flows which is
hierarchical from one level to the next, i.e., from suppliers to manufacturers, from manu-
facturers to wholesalers, from wholesalers to retailers, and from retailers to customers.

Lateral transshipments between inventory locations (shelters) would help even out the
level of stock among shelters [5]. A simple system for lateral transshipment of inventory,
as illustrated in Figure 1, consists of a single central warehouse supplying four inventory
locations. Lateral transshipment, as well as regular delivery of inventory, needs strong
support from logistics operations. In order to implement lateral transshipment into famine
relief logistics and inventory operations, we need a reference model as a basis of deciding
lateral transshipment parameters.

If the information about demands and supplies is correctly acquired during disaster,
then operation research approach is the best option for modeling lateral transshipment op-
erations. Since that information is difficult to be gathered during disaster, it is necessary
to find another robust approach. The self-repair approach inspired by the cooperative
work of immune cells in immunity-based system theory [6] is suitable for a basis of model-
ing lateral transshipment operations. Even if information on demand is not available or is
greatly biased, the approach may be able to distribute the inventory level among shelters.
However, this approach could actually cause the inventory performance to worsen, like a
double-edge sword effect. In terms of cost, there is a trade-off in lateral transshipment
between reducing the “out of stock” cost and increasing the transportation cost. It is
therefore necessary to find appropriate parameters for lateral transshipment that improve
inventory performance while reducing overall cost.

The theory of self-repair approach is once mentioned in self-repair network (SRN) model
in the field of computer science. The self-repair network model involves collaboration in
the computer network whereby each computer tries to repair other computers by mu-
tual copying [7]. The difference between self-repair network model and inventory lateral
transshipment is the resources used for the repair process. The repair process for the
self-repair network does not consume resources, whereas in the repair process for lateral
transshipment, its own resources are consumed by transferring them to others. The SRN
model uses the cellular automata as a basis of representing an entity and its interactions.
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FIGURE 1. Lateral transshipments between stock points. Central ware-
house supplies four stock points (SP1 to SP4) regularly. Each of them tries
to help their neighbors.
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The cellular automata model is a tool for modeling complex phenomena [8]. Each entity
(cell) in cellular automata has specific characteristics, has the ability to interact with
neighboring cells, and also has the ability to change dynamically according to some rules.
In order to increase the performance of the humanitarian logistics and inventory system,
we propose a humanitarian logistics and inventory model based on probabilistic cellular
automata, which has the characteristics of a self-repair system. The cellular automata
model is appropriate as a base model, since we can model dynamic interaction among
shelters as interaction among cells. Our model assumes that lead-time is instantaneous
and there are sufficient vehicles for the required logistics operations. We include three
types of cost in our humanitarian logistics and inventory model with lateral transshipment:
procurement cost, delivery cost, and “stock-out” cost.

2. Related Work. Recently, there has been much interest in improving the response to
rapid-onset disasters [9]. The effectiveness of the humanitarian relief response depends
on the speed with which supplies can be procured, transported and managed at the site
[10]. It is indeed humanitarian logistics that contributes most to disaster relief, estimated
to account for at least 80% of the cost of a disaster [11]. Humanitarian logistics is closely
related with inventory management at humanitarian relief sites.

The enterprise inventory model has been developed and is widely used, while the
disaster-relief inventory model is still under development. There are slight differences
between the two models, such as the environment and characteristics of disaster-relief
inventories in all areas from acquisition through to storage and distribution [12]. Never-
theless, the fundamental principle of the enterprise inventory model can be used to build
an inventory model in disaster situations.

Recently, information systems for disaster relief have improved greatly, leading to better
coordination among each organization involved [5]. Better communication, coordination,
early warning systems, evacuation procedures, inventory and logistics systems, and fire-
fighting and rescue equipment have all helped reduce the impact of disasters. Achieving an
integrated global relief chain is a remaining challenge even though current and emerging
efforts to improve disaster relief coordination are promising [13].

Sharing items between shelters is one way to reduce the lack of necessary items and
improve the effectiveness of humanitarian relief activities. In enterprise inventory model
theory, this practice is called lateral transshipment. Formally, lateral transshipment in an
inventory system means the movement of stock between locations at the same level [3].
These stock movements can be conducted periodically at predetermined times, and can
proactively redistribute stock to meet the demand that cannot be met from the stock on
hand.

In the field of computer science, the self-repair network (SRN) consists of units capa-
ble of repairing other connected units in a synchronous fashion based on a probabilistic
cellular automata model [7]. Each unit tries to repair its adjacent units and clean up
contamination in the network with mutual copying. The SRN consists of three elements:
a set of units, the topology of connections among units, and a set of rules. Development
of the SRN model was inspired by the immunity-based system, which is self-maintaining
and adaptive [6].

Cellular automata, as a reference model for the SRN, is a collection of cells, each of
which is in one of a finite number of states [14]. Cellular automata have been used to model
a wide range of physical phenomena including traffic flows, disease epidemics, stochastic
growth, predator-prey dynamics, invasion of populations, earthquakes, and dynamics of
stock markets. Cellular automata models can be either deterministic or probabilistic,
depending on the component for updating rules. It may be possible to combine the power
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of enterprise inventory theory, probabilistic cellular automata, and the self-repair network
model to build a logistics and inventory model applicable to humanitarian relief situations.

3. Logistics and Inventory Model. Formally, the model consists of a set of cells C' in
two-dimensional space, time step ¢ as discretization in time space, and a set of interaction
rules R between cells. In a humanitarian relief situation, cells represent inventory locations
for relief activities, which are usually located at nearby relief shelters. We assume that
each cell has four neighbors, as shown in Figure 2. The state of cell (7, j) at time ¢, Sf7j,
can be either 1 or 0 representing a normal or abnormal condition of inventory. In this case,
the value of state, 1 or 0, is not essential. We can assign —1 and 1 to the states like the
Ising model, or black (1) and white (0) [15]. The cell state represents the inventory level
of shelters. In our model, the cell state of 0 (abnormal) represents an inventory location
having a low inventory level and vice versa. Generally, in enterprise inventory theory,
inventory level less than multiplication of average usage rate and average lead-time can
be considered as low.

There are three types of activities that affect inventory level: consumption of items,
delivery of new items from the central warehouse, and lateral transshipment. Every time,
disaster victims consume items that delivered regularly from central warehouse. At some
periods of time, the shelters having enough inventory level, send some of their items to
the other shelters (lateral transshipment). Consumption of items and delivery of new
items from central warehouse are not affected by the inventory level. We assume that
disaster victims consume items with the same rate, and delivery of new items is placed
on the same time period. On the other hand, lateral transshipment is directly affected
by inventory level. The shelter, which has low inventory level, will share small amount of
items with the others and vice versa.

Regarding consumption, we define two parameters (p;, p2) representing the probability
of cell (i, 7) at time ¢ maintaining or increasing the cell state to 1 (normal) at time ¢ + 1
from state 1 and 0, respectively. These two parameters can be expressed mathematically
as:

p1 = prob(S;it =1]5};, =1) (1)

pa = prob(Sitt = 1|57, = 0) (2)

New items can be delivered from the central warehouse regularly at predetermined
times or reactively in order to meet the demand. The latter requires a smooth flow of
information between shelters, but this is impossible in a disaster situation, so our model
assumes the periodic delivery of new items. As new items are received from periodic
delivery, we define two parameters (ps, ps) representing the additional probability of cell
(i,7) at time t becoming state 1 at time ¢ +n from state 1 and 0, respectively. Variable n
represents time periods when new items are delivered to shelters. For example, if n = 2
then this probability occurs at time period of 2, 4, 6, and so forth, as shown in Equations
(3) and (4). The probability calculated by these equations could actually be larger than
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FIGURE 2. A cell and its neighbors
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1 for the parameter set of (pi1, p2, ps3, ps), in which case the probability is set to 1.
p1+ps = pr0b<S;—;2 = 1|Sf,er1 =1) (3)

P2+ ps = prob(S;;* = 1S5 = 0) (4)

Lateral transshipment is the most complex activity in the model. We introduce five
parameters (pp, ps, Ps, P, Ps) representing the detailed activities. Each cell wants to help
its neighboring cells with probability p,. At time ¢, some cells (helper cells) will help
other cells by sending some of their resources, though this might harm their own state
(decrease to abnormal). ps represents the probability of a cell’s state reducing to 0 at
time ¢t + 1 due to helping other cells when its previous state is 1. On the other hand, pg
is used when the cell state at ¢ is 0. Because of helping activity, neighboring cells get a
chance to increase their states. At time ¢, the probability of a cell’s state increasing to 1
at time ¢ 4 1 due to receiving help is represented by p7 if its previous state is 1, otherwise
the probability is pg. Figure 3 illustrates the helping process and its related probabilities
without periodic delivery from the central warehouse. In the figure, each cell has four
neighbors with different states, for example: 0 normal and 4 abnormal neighboring cells,
1 normal and 3 abnormal neighboring cells, etc. Each combination is associated with
different transition probabilities; corresponding equations are shown below each of the
figures that follow. For example, consider the configuration of cells where 1 normal cell
has 1 normal neighboring cell and 3 abnormal neighboring cells. We assume that at that
particular time the central warehouse does not send new items to any shelter, so the
transition probability consists of the following components:

e Consumption probability (p;)

e Additional probability of receiving help from neighboring cells (pnp7 + 3prps)

e Reduction in probability of sending help to neighboring cells (pps)

If at that time the central warehouse sends new items, then the transition probability will
be increased by adding the probability of receiving new items from the central warehouse
(p3)-

0 normal neighbor 1 normal neighbor 2 normal neighbors 3 normal neighbors 4 normal neighbors
pl-ph(p5-4p-,) pl-ph(p5-p-,--3p8) pl'ph(ps'ZP',"Zpg) P1- ph(pg 3ps- pg P ph(ps 4p7
p1'ph(p6'4p7) pl'ph(pe'p',"apg) p1'ph(p6'2p7'2pg) p]_ p (pe 3p7 pg Pi- ph(ps 4P7

F1GURE 3. The transition probability of a center cell with different neigh-
bor’s states
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In our model we introduce four more variables, x, y, z; and 2z5. x is a binary variable
having a value of 0 or 1 depending on the state of cells, as shown in Equation (5). y
is also a binary variable having a value of 0 if period t equals with multiple value of
n and vice versa, as shown in Equation (6). Lastly, variables z; and zy represent the
number of normal and abnormal neighboring cells, respectively. The formal definition of
our humanitarian logistics and inventory model is given by the transition probabilities
resulting from the interaction of all variables mentioned previously, as shown in Equation
(7). Meanwhile, Equation (8) shows the relationship between variables. An analysis of
the relief situation based on inventory and logistics revealed the following:

1. The probability of a cell becoming state 1 at time ¢ + 1 from state 0 at time ¢ (ps)
due to consumption is impossible without any help from outside parties. We set this
probability to 0.

2. The additional probability for cell (7, j) at time ¢ becoming state 1 at time ¢ +n from
state 1 (p3) due to receiving items from the central warehouse is a certainty. We set
this probability to 1.

3. It is certain that the probability of a cell state decreasing to 0 at time ¢ 4+ 1 due to
helping activity if the cell state at ¢ is 0 (pg). We set this probability to 1.

Based on these findings, we simplify Equation (7) into Equation (9).

1. St. =1

— ? 2,]

v { 0, St;=0 (5)
1, tmodn=20

y_{O, t modn # 0 (6)
Py = x(p1 + yps — pu(ps — 21pr — 22p8)) + (1 — @) (p2 + ypa — pu(ps — 2197 — 22ps))  (7)

p2 <y

P4 < D3
8
D5 < De (8)

ps < pr

P =x(pr +y — pru(ps — 2107 — 22p8)) + (1 — 2)(yps — pr(1 — 2107 — 22p8)) (9)

4. Model Validation. We will validate the fitness of our model by comparing it with
the enterprise inventory model especially for the fixed order review period model. We
use the enterprise inventory model as a reference model for validation, since this model
provides a basic and valid building block of how the inventory system works. Our model
is able to represent the basic characteristics of the inventory system, which has several
characteristics according to the enterprise inventory model such as [16]:

1. Inventory has a predefined optimum level and demand rate. Over time, the inventory
level will be reduced by the demand rate. The optimum combination of inventory level
and demand rate determines the probability of the inventory system meeting the demand.
Variables p; and ps in our model represent this situation.

2. There is a regular delivery of new items at predetermined times. This operation en-
ables the inventory system to restore its inventory level to the original level, as illustrated
in Figure 4. Without this operation, the inventory system will lose its ability to meet the
demand. In our model, this characteristic is represented by variables p3 and py.

Lateral transshipment might increase the capability of the inventory system to meet the
demand if there are enough vehicles to transport goods [4]. In our model, this situation
is represented by interaction of variables py, ps, ps, p7 and ps.

We construct a Monte Carlo simulation on a square lattice, with predetermined param-
eters for further validation. This simulation uses Equations (7) and (8) to determine cell
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FIGURE 4. Basic inventory characteristic [16]

TABLE 1. Monte Carlo simulation parameters

Parameter | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4

D1 0.5 0.5 0.5 0.5
Do 0 0 0 0

Pa 0 0.5 0 0.5
s 0.5 0.5 0.5 0.5
De 1 1 1 1

D7 0.3 0.3 0.3 0.3
Ds 0.2 0.2 0.2 0.2
Ph 0 0 0.5 0.5
n 3 3 3 3

states. The result is visually presented as black and white patterns on a square lattice. In
this simulation, black represents a normal cell and white represents an abnormal cell. We
determine that about 100 cells interact with each other in the square lattice. We propose
four scenarios in this simulation illustrating the inventory characteristics as follows:

1. Simulating inventory without periodic delivery or lateral transshipment.

2. Simulating inventory with periodic delivery but without lateral transshipment.
3. Simulating inventory without periodic delivery but with lateral transshipment.
4. Simulating inventory with both periodic delivery and lateral transshipment.

Table 1 shows the simulation parameters used in each scenario. Each scenario has
similar parameters, except for ps, ps and p,. Parameters p3 and p, show the existence of
regular delivery while p;, shows the existence of lateral transshipment. The result of each
scenario is displayed in Figures 5-8.

If we take a look at each scenario, we can see that in the scenario without regular
delivery or lateral transshipment, the number of normal cells decreases rapidly with time.
In this case, black represents a normal cell and white represents an abnormal cell. In the
scenario without lateral transshipment but with periodic delivery, the number of normal
cells decreases between the period of delivery and increases during the period of delivery.
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In this case, the delivery of new items stabilizes the inventory level. In the scenario with
lateral transshipment but without periodic delivery, normal cells are able to survive for
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longer than the usual scenario (without both lateral transshipment or periodic delivery).
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Lastly, the number of normal cells increases when lateral transshipment and periodic
delivery are activated.

5. Analysis and Discussion. Based on the transition probability equation mentioned
previously, we further analyze the model to understand the effects of important variables
on the performance measured by fraction of normal nodes (cells). Similar to the SRN
model [7], we are interested in finding ways to improve inventory performance: we want
to maximize the number of normal cells without sacrificing cells that share their resources.
One important variable in this situation is ps, which represents the ability of normal cells
to remain normal after helping.

Another Monte Carlo simulation is conducted using the simulation parameters of sce-
nario 4 and the initial condition that 100 percent of cells are normal. The number of cells
is 100 and each run stops at 100 steps. Figure 9 illustrates inventory performance toward
ps and p, (probability of helping). As shown, the greater the ability of a cell to remain
normal after helping coupled with a high probability of helping will increase the number
of normal cells. In addition, Figure 10 illustrates the parameter boundary region. The
upper left region represents parameters that make the state of all cells normal (frozen
region) while the lower right region represents parameters that make the state of some
cells abnormal (active region). In this phase diagram, the frozen region is a narrow region
compared with the active region. This means that lateral transshipment will be successful
if willingness to help between cells is high (p,) and after helping, a cell which shares its
resources does not fall into trouble (ps)

Even though the cost is less important than saving human life in a disaster situation,
clearly it is important to plan the cost of disaster operations to avoid excessive budget
spending. Similar to inventory and logistics for enterprises, humanitarian inventory and
logistics involve several costs such as the stock-out cost, procurement cost, and delivery
cost. The stock-out cost occurs when shelters do not have any items in stock to meet

FractionOfNormalNade

o 0.1 0.2 0.3 0.4 0.5 0.8 0.7 c.8 0.9
p5

—

F1GURE 9. Effect of helping on system performance
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FIGURE 10. Frozen (upper left) and active (lower right) regions

the demand. For an enterprise this situation means losing customers, but for disaster
relief operations it could mean loss of life or increased suffering of victims. Procurement
and transportation costs are related to the activities of procuring and delivering items
to disaster victims either by periodic delivery or lateral transshipment. Increasing the
number of deliveries might reduce the suffering of victims, but will certainly increase the
procurement and transportation costs.

Consider Cy, C,, C; as the unit cost of stock-out, procurement, and transportation
activities, respectively. All of these costs contribute to the total cost of disaster recovery
operation. Equations (10)-(12) show the stock-out, procurement and transportation cost.
Furthermore, Equation (13) shows the total cost representing the cost function of our
model. By substituting the total transition probability of Equation (9) into Equation
(13), we obtain a simplified form of the cost function as shown in Equation (14).

Lateral transshipment demonstrates a positive impact on the performance of the in-
ventory system during a disaster, where demand and lead-time information are greatly
biased [4]. Based on Equation (14), the cost function of the inventory and logistics model
is a linear function, in which there is a trade-off between the stock-out cost and the
transportation cost.

TC; = (1-PR)C;s (10)
TCp = (zy+ (1 = 2)yps)Cy (11)
TCy = (x(y — pu(ps — 217 — 22ps)) + (1 — 2)(ypa 12)
— (1 — 21p7 — 22p8))) Gy + (wy + (1 — 2)ypa) Gy
TC =(1—-P)Cs+ (x(y — palps — 21p7 — 22ps)) + (1 — 2)(ypa (13)

— pr(1 — 21p7 — 22p8)))Cy + (wy + (1 — 2)ypa) (C), + C)
TC =(1-PR)Cs+ (P, — xp1)Cy + (xy + (1 — 2)yps) (Cp + Cy) (14)
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6. Application. In order to assess the applicability of the model, we implemented our
model for the real case of humanitarian logistics and inventory operations of a volcanic
eruption in Indonesia. Merapi Mountain, which is located on the border of the two
provinces of Yogyakarta and Central Java, is the most active volcano in Indonesia. During
the eruption in November 2010, most of the people living near the mountain lost their
houses and belongings. For a one-month period, the government and NGOs tried to
support their lives at shelters located all over the city.

Data on evacuees gathered by the Indonesia National Disaster Management Agency
for the two provinces during the one-month evacuation period is shown in Figure 11 [16].
The Agency announced two increases in the eruption safety zone, from a radius of 10
km to 15 km, and from a radius of 15 km to 20 km. These announcements caused the
number of shelters to change dynamically. In this paper, we select the largest number
of shelters and evacuees that occurred on 14 November 2010 as a basis for calculating
the inventory parameters. Table 2 shows the number of evacuees and shelters for each
sub-area of Yogyakarta province.

We use inventory settings similar to those numerically simulated by Mulyono, 2011 [4]:
Total period = 720 hours
Demand rate/hour = 535 units
Delivery period = 12 hours
Target inventory = 7114 units
Quantity delivered = Target Inventory — Current Inventory Level
Probability of helping = 0.9
Proportion of normal cells (p,,) = 0.2
Proportion of abnormal cells (p,) = 0.1
. Abnormal threshold = 30%

Furthermore, we convert those parameters into probability parameters as follows:

© NSO WD

L. b1 = L - ta(ig:éailrll(\l/el;?tfry =0.93

2. P2 = 0

4. py = % + abnormal threshold ~ 1
5. ps =pn =02

6. Pe = 1

7. pr="2=0.05

8. pg =B =0.025

9. pr =0.9

Figure 12 shows the trend of the fraction of normal nodes (cells) over time. As shown,
at ps = 0.2 about 23% of cells are in the normal state. In order to know which ps
value maximizes the fraction of normal cells, we further simulate the inventory system

TABLE 2. Number of evacuees on 14 November 2010 [4]

Sub area Area Evacuees Shelter | Evacuees/ | Shelter
(km?) points | shelter |density
Sleman 574.82 109193 74 1476 7.7
Kulon Progo | 586.28 4753 16 297 36.64
Yogyakarta city | 32.5 5118 14 366 2.32
Bantul 506.85 20516 17 1207 29.81
Gunung Kidul | 1485.35 12162 13 936 114.26
Total 3185.8 151742 134 4282 190.8
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FIGURE 11. Number of evacuees during the eruption [4]
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FIGURE 12. Fraction of normal nodes over time

for various values of p5 as seen in Figure 13. This figure clearly illustrates the effect of
variable p; on the fraction of normal cells. If p; has a higher value (above 0.15), then the
fraction of normal cells will sharply decrease to 0.2 and stay at that value. Furthermore,
when the value of ps is below 0.15, then the fraction of normal cells will be steady at 0.2.

This simulation result implies that lateral transshipment between shelters should be
conducted when each shelter has a high stock level. The purpose of this condition is to
prevent shelters from falling into an abnormal state after helping other shelters. This
result complements the work of Mulyono, 2011 [4] that mentioned the minimum number
of resources necessary for successful lateral transshipment operations.
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7. Conclusions. We successfully built a logistics and inventory model based on proba-
bilistic cellular automata with reference to the enterprise inventory model and self-repair
network model, which is applicable to humanitarian relief situations. Even though the
interaction of cells in our model is limited to their closest neighbors, the model illustrates
various important characteristics of humanitarian logistics and inventory operations: the
positive impact of lateral transshipment, factors affecting the overall transition probabili-
ties, and the threshold of helping probability parameters in order to maximize the fraction
of normal cells.

This model is suitable for disaster situations since information on the inventory level
and other logistics information is usually unknown. Further research is required on the
dynamic number of cells, delivery lead-time, and vehicle capacity constraints.
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Appendix.

Equation (7)
P, = transition probability of normal cell 4 transition probability of abnormal cell
transition probability of normal cell
= consumption probability (p;)
+ regular delivery of items from central warehouse (p3)
— probability of helping * (probability of state decrease due to giving help (ps))
— probability of state increase due to receiving help (p7)
transition probability of abnormal cell
= consumption probability (ps)
+ regular delivery of items from central warehouse (p4)
— probability of helping x (probability of state decrease due to giving help (pg))
— probability of state increase due to receiving help (pg)

Py = x(p1 + yps — pa(ps — 2107 — 22ps)) + (1 — @) (p2 + ypa — pr(Ps — 21p7 — 22ps))

Equation (9)

Replace the value of (po, p3, pg) of Equation (7) with (0, 1, 1):

P =x(p1 +y — pn(ps — 21p7 — 22p8)) + (1 — @) (ypa — pn(1 — 21p7 — 22ps))
Equation (10)
TCy = probability of stock out * unit cost of stock out
TC, = (1 - P)C,
Equation (11)
T'C, = (probability of regular delivery to normal cell
+ probability of regular delivery to abnormal cell)

x number of cells x unit cost of procurement

TC, = (zy+ (1 — z)yps)C,
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Equation (12)
T'Cy =probability of transhipment % number of cells
% unit cost of transportation + probability of regular delivery
x number of cells * unit cost of transportation
TCy = (x(y—pn(ps—21pr—22p8) ) + (1 =) (ypa —pn(1—z1p7 — 22p8) ) ) Ci+ (2y + (1 — ) yp4) Cy
Equation (13)
TC=TC;+TC,+TC,
TC =(1-PR)Cs+ (x(y — pr(ps — 2107 — 22ps)) + (1 — ) (yps
— pu(1 = 21p7 — 22p8))) i + (zy + (1 — 2)ypa) (Cp, + Cy)
Equation (14)
Substitute Equation (9) into Equation (13) to obtain a simplified form of total cost
(TC):
TC =1~ F)Cs+ (P — 2p1)Ci + (zy + (1 — 2)yps) (Cp + Ct)



