
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 11, November 2012 pp. 7909–7923

MINING ROLES USING ATTRIBUTES OF PERMISSIONS

Ruixuan Li, Wei Wang, Xiaopu Ma, Xiwu Gu∗ and Kunmei Wen

School of Computer Science and Technology
Huazhong University of Science and Technology

No. 1037, Luoyu Road, Hongshan Dist., Wuhan 430074, P. R. China
{ rxli; kmwen }@hust.edu.cn; {wangwei pl; xpma }@smail.hust.edu.cn

∗Corresponding author: guxiwu@hust.edu.cn

Received August 2011; revised January 2012

Abstract. Recently, many approaches were proposed to generate roles using automatic
techniques. However, most of these approaches generate many composite roles because
they only optimize minimality of the state in role-based access control (RBAC). The re-
sponsibility of the composite roles is complex and hardly interpretable, which weakens the
robustness of the RBAC state. In this paper, we propose to use operations and resources
of permissions as the functional information in role mining algorithm and present a novel
approach, role mining with functional features (FMiner), to reduce composite roles. The
FMiner approach is a two-phase solution. Firstly, an initial RBAC state is built by
formal concept analysis theory. Secondly, relative closeness is defined to measure the
functional similarity between roles. We optimize the relative closeness and minimality
of the initial RBAC state simultaneously. The experimental results demonstrate the ef-
fectiveness of the proposed approach on reducing composite roles.
Keywords: Role-based access control, Role engineering, Role mining, Operation, Re-
source

1. Introduction. In recent years, role-based access control (RBAC) [1, 2] has success-
fully been adopted by a variety of enterprise security management products. In an RBAC
system, users acquire permissions through roles instead of directly assigning permissions
to users. Although RBAC will simplify the security management works, how to build an
optimal RBAC state is a challenge work.

To solve this problem, role engineering [3, 4] is introduced to configure an RBAC sys-
tem, i.e., creating roles, assigning permissions to roles and users to roles. There are two
basic approaches towards role engineering: the top-down and the bottom-up. Under top-
down approach, roles are generated by analyzing business processes and then assigning
the needed permissions to create roles for these business functions [5, 6]. Though this ap-
proach can reflect the organization function well, it is time-consuming and costly because
of dozens of business processes and tens of thousands of users in an organization. Un-
der bottom-up approach, roles are discovered from existing user-permission assignments
by data mining techniques. It is easier to develop a tool for building an RBAC state
automatically or semi-automatically through the bottom-up approaches.

In role mining field, the minimality is the commonly criterion for generating roles.
However, if we only optimize the minimality of the RBAC state, the function of roles would
be weakened because minimality and function are often contradictory. The minimality
includes a number of roles, a number of assignments, role hierarchies, etc. The less the
number of roles is, the more the permissions of every role are assigned. A role with many
permissions is hard to be assigned when employees fluctuate and it is uninterpretable for
complex functions and unlikely to correspond with business processes. Therefore, a role

7909

7910 R. LI, W. WANG, X. MA, X. GU AND K. WEN

with many permissions is often a composite role which is the collection of some real roles.
On the other hand, the less number of assignments will also make composite roles because
composite roles are in favor of reducing the number of users to role assignments. If the
inheritance relationships between roles are reduced, the less number of role hierarchies can
be got. However, the permissions of senior roles will be assigned to junior roles, which
will increase the opportunity to generate composite roles. Consequently, it is difficult
to generate optimal roles by taking minimality as the only criteria. Some functional
information should be considered to improve the interpretability and generalization ability
of the generated roles [4].
In order to generate roles with semantic meaning, Frank et al. [7, 8] and Molloy et

al. [21] propose to use the attributes of users together with basic user-permission as-
signments to improve the interpretability of roles. However, few researches employ the
attributes of permissions. Ma et al. [14] view the permissions with different weights since
the permissions cannot be treated evenly. Therefore, [14] uses association rule mining
technology to discover frequent patterns. These frequent patterns are described by item
sets and can be viewed as roles. In addition to weights, operations and resources are
also important attributes of the permissions. A permission means that a user has the
access to operate a resource. In an RBAC system, a role is usually generated to ag-
glomerate the permissions that can complete a task or process. For example, the role
“Undergrad” in a university contains two permissions: “Register UndergradClass” and
“Withdraw UndergradClass”. An undergraduate achieves the necessary operations to ac-
cess resource “UndergradClass” by the role “Undergrad”. “Register UndergradClass” and
“Withdraw UndergradClass” have the same resource “UndergradClass”. The role “Pa-
tient” in a hospital is another case with almost the same operations. “Patient” contains
permissions “View OldMedicalRecords”, “View RecentMedicalRecords”, “View Medical
RecordsWithThirdPartyInfo”, “Sign LegalAgreement”, “View Prescriptions” and “View
Bills”. Intuitively, operations and resources of the permissions can be used as the func-
tional information to discover meaningful roles.
Together with considering the operation and resource attributes of permissions, the

number of the composite roles will be reduced. If a role in a business process with a set
of strong related resources or a set of strong related operations, we view it as a single
responsibility. In object-oriented programming, the single responsibility principle states
that every object should have a single functionality, and that functionality should be
entirely encapsulated by the class. We can add or remove users without modifying the
RBAC configuration frequently through the roles with single responsibility. In extreme
cases, every role with only one permission may be more adaptive to the fluctuations of
users.
Based on the above observation, we propose a novel approach for role mining that

considers the user-permission assignments together with the attributes of permissions.
This approach is a two-phase solution. In the first phase, we build an initial RBAC
state by formal concept analysis. Every permission only belongs to one role in this initial
RBAC state. In the second phase, we prune the initial RBAC state based on weighted
structural complexity (WSC) and relative closeness (RC). WSC is a widely used criterion
that measures the minimality of RBAC states. In the pruning process of HierarchicalMiner
[21] and StateMiner [13], the permission set of a role r is added to all of its immediate
senior roles and the user set of r is added to all its immediate juniors. This pruning
strategy will cause the following problems:

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7911

• When we add the permission set of r to the permission set of its immediate seniors,
the added permission set may weaken the functional features of immediate seniors,
which makes the responsibilities of immediate seniors unclear.

• Some roles that have immediate juniors but are not associated with permissions
may be viewed as composite roles. If the relationship of the immediate juniors of a
composite role is weak, the function of this composite role is also hard to interpret
because it does not meet the principle of single responsibility.

These problems are the main reasons of creating composite roles. Our approach uses rel-
ative closeness to overcome these problems. Relative closeness is the measure of functional
feature similarity between roles. The functional features include assignment cohesion de-
gree, operation centrality and resource centrality of roles. Usually, the proportion of the
number of common users to all users associated with two permissions is used to measure
the similarity between these two permissions. The user similarity can be calculated by
the similar method. If the users of a role have the same permission assignments and the
permissions have the same user assignments, we consider the cohesion degree of the role
should be high. If a role refers to an operation or related operations, we view the role’s
operation centrality is high. Similarly, the resource centrality is measured by the same
method. These functional features will help to reduce composite roles effectively.

The remainder of the paper is organized as follows. We discuss the related work in
Section 2 and the related definition in Section 3. The limitations of existing applications
for role mining drive our motivation and Section 4 proposes the method to find the
relative closeness between roles. Furthermore, we provide a novel role mining algorithm,
FMiner, based on relative closeness and WSC to reduce composite roles. A summary
of our experimental results on real dataset is discussed in Section 5. Finally, Section 6
provides some insight into our ongoing and future work.

2. Related Work. The role mining algorithms can be divided into two classes according
to their outputs [5]. The first class algorithms generate a set of candidate roles and
then give every role a priority value. The representative algorithms of this class are
CompleteMiner (CM) and FastMiner (FM) [17]. The CM and FM will generate a
large number of roles and then use Origcount(r)× priority + Count(r) to prioritize the
candidate roles (where Origcount(r) denotes the users have exactly the permissions in
r, priority is a tunable parameter to favor initial roles, and Count(r) is the number of
users whose permissions are a superset of r). The second class algorithms use WSC
as the common quality measurement to generate a complete RBAC state. ORCA [12],
HierarchicalMiner (HM) [21], and GO [10] are such kind of algorithms. ORCA is
a hierarchical clustering algorithm where every permission is exactly assigned to only
one role. HM restructures the initial RBAC state based on the cost decreasing using a
greedy strategy. GO reduces the number of role-user assignments and permission-role
assignments by graph optimization method.

Some researchers add business information into the role mining approaches. Their al-
gorithms are called hybrid role mining approaches. Frank et al. [8] provide a probabilistic
model to analyze the relevance of different kinds of business information for defining roles
that can explain the given user-permission assignments and describe the meaning from
the business perspective. Molloy et al. [21] propose attribute miner to generate roles by
attribute information of users.

However, none of the work introduces operations and resources of permissions to im-
prove the effectiveness of the algorithms. Operations and resources contain functional
information that can discover the potential reasons for creating roles. In our algorithm,
the functional features are extracted from operations and resources of roles, and then the

7912 R. LI, W. WANG, X. MA, X. GU AND K. WEN

relative closeness between roles is computed based on these features. The relative close-
ness is borrowed from CHAMELEON [19] algorithm in data mining field. CHAMELEON
is a two-phase clustering algorithm that can discover natural and homogeneous clusters on
data sets with different shapes, densities and sizes. The two-phase strategy is a common
strategy used in many mining algorithms, such as [13, 21].
We use reduced concept lattices that are created by user-permission assignments to

represent the initial RBAC state. The pruning process of the initial RBAC state is guided
by relative closeness between roles and WSC of the RBAC state. The experimental results
show the effectiveness of reducing composite roles.

3. Problem Statement and Preliminaries. In this paper, we follow the basic defi-
nitions in NIST standard [1], which is the most widely known as formal description of
RBAC model.

Definition 3.1. The RBAC model contains the following components:

• USERS, PERMS, ROLES, the set of users, permissions and roles respectively;
• UA ⊆ USERS ×ROLES, many-to-many user to role assignment relationships;
• PA ⊆ ROLES × PERMS, many-to-many role to permission assignment relation-
ships;

• UPA ⊆ USERS × PERMS, many-to-many user to permission assignment rela-
tionships

where M = |USERS|, N = |PERMS| and K = |ROLES|. The users, permissions and
roles can be ordered. ui (i = 1, . . . ,M) indicates the ith user, pj (j = 1, . . . , N) indicates
the jth permission, and rk (k = 1, . . . , K) indicates the kth role. If the ith user has the
jth permission, UPAij = 1; otherwise, UPAij = 0. Similarly, the matrix UA denotes
user to role relationships and PA denotes role to permission relationships.

Definition 3.2. The original similarity between the ith permission and the jth permission
is defined as

sim(pi, pj) =
|UPAT

.i ∩ UPAT
.j|

|UPAT
.i ∪ UPAT

.j|

Definition 3.3. The original similarity between the ith user and the jth user is defined
as

sim(ui, uj) =
|UPAi. ∩ UPAj.|
|UPAi. ∪ UPAj.|

Definition 3.4. The operation and resource attributes of permission are defined as:

• OP , the set of operations, such as “create”, “add”, “delete” and “read”;
• RS, the set of resources, such as “accounts”, “books” and “students”;
• POA ⊆ PERMS × OP , many-to-many relationships between permissions and op-
erations;

• PRA ⊆ PERMS × RS, many-to-many relationships between permissions and re-
sources.

Define A = |OP | and B = |RS|, where A denotes the size of OP , and B denotes the size
of RS. opi (i = 1, . . . , A) indicates the ith operation and rsj (j = 1, . . . , B) indicates the
jth resource.

Figure 1 shows the relationships of roles, permissions, operations and resources. The
target of roles is to manage the access control of operations on resources. A role is a
collection of permissions and permissions can be split into operations and resources. Op-
erations and resources carry the function and action information of permissions. Such a

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7913

Figure 1. The relation of user-resources

split approach can provide good interpretability of a permission. However, the common
approach just utilizes naming permissions for reducing the system’s redundancy. For ex-
ample, the permission to delete a book in a library management system can be represented
as follows.

• (Permission), DeleteBook
• (Operation), Delete
• (Resource), Book

Here operation and resource are just abstract definitions. The delete operation can-
not directly be mapped to the actual method book.delete(). Two mappings need to be
built. One is mapping permission to operation and the other is mapping permission to
resource. Obviously, this representation contains more semantic information than the
naming approach. However, the complexity of this approach is something high.

Definition 3.5. The operation and resource centrality of a role r are defined respectively
as follows.

OpC(ri) = −
n∑

j=1

|ROAj|
|PAi.|

log2
|ROAj|
|PAi.|

ResC(ri) = −
m∑
j=1

|RRAj|
|PAi.|

log2
|RRAj|
|PAi.|

where n is the operation number and m is the resource number of role ri respectively.
ROAj = {pk|PAik ≡ 1 and POAkj ≡ 1} permissions authorized to role ri, which has
the operation opj, RRAj = {pk|PAik ≡ 1 and PRAkj ≡ 1} is the number of permis-
sions authorized to role ri that has the resource rsj. OperCen and ResCen are measured
by the sum of entropy of operations and resources appeared in ri respectively. For exam-
ple, the role “Undergrad” {Register UndergradClass,Withdraw UndergradClass} that
contains the same resource “UndergradClass” and two operations “register” and “with-
draw”. Thus, ResCen(Undergrad) = 0 and OperCen(Undergrad) = 1.

However, if we use the proportion of 1 to the number of roles to indicate the operation
centrality, we cannot distinguish r1 = {op1 rs1, op1 rs2, op1 rs3, op1 rs4, op2 rs1} from
r2 = {op1 rs1, op1 rs2, op1 rs3, op2 rs4, op2 rs1}, which have the same number of permis-
sions and operations. Intuitively, r1 has stronger operation association than r2 because
most of permissions have the same operation op1 in r1, but the operation distribution of
r2 is mean. Therefore, considering the entropy of operation and resource will be more
accurate to describe the operation and resource centrality feature of r1 and r2.

Definition 3.6. The internal permission cohesion is measured by

IPC(ri) =

∑|rp|
j=1min(sim(pj, rp− pj))

|rp|

7914 R. LI, W. WANG, X. MA, X. GU AND K. WEN

where rp is the permission set associated with ri. Analogously, internal user cohesion is
measured by

IUC(ri) =

∑|ru|
j=1min(sim(uj, ru− uj))

|ru|
where ru is the user set associated with ri. Every permission in ri has a similarity with
other permissions. If we include all of them, there may be some permissions with very
high similarity values that leads to a high overall internal permission cohesion. Therefore,
we only consider the lowest similarity with other permissions for every permission.

In the pruning process of our algorithm, we want to merge two roles that their internal
permission cohesion, internal user cohesion, operation centrality and resource centrality
features are not changed too much between merging before and after. Thus, we firstly
describe these features of a role ri as a vector.

RF (ri) = 〈IPC(ri), IUC(ri), OpC(ri), ResC(ri)〉.

Definition 3.7. After define the features of a role r as a vector, we use the relative
closeness between ri and rj to measure the feature change of ri and rj merging before and
after as follows:

RC(ri, rj) =
∑

wi∈w,RFi∈RF

wi ×
RFi(ri + rj)− 0.5×RFi(ri)− 0.5×RFi(rj)

RFi(ri + rj)

where w = 〈fu, fp, fo, fr〉, fp+fu+fo+fr = 1 is the weight vector of features in a role.
RF = 〈IPC, IUC,OpC,ResC〉 is the feature vector of role. RF (ri+ rj)− 0.5×RF (ri)−
0.5×RF (rj) indicates the information gain between view ri and rj as a composite role and
view them as two roles. The information gain ratio of merging before and after is measured
by (RF (ri + rj) − 0.5 × RF (ri) − 0.5 × RF (rj))/RF (ri + rj). In these expressions, we
suppose roles have the same weight because if we use Ni/(Ni+Nj) or Nj/(Ni+Nj) where
Ni and Nj are the number of permissions in ri and rj respectively to indicate the weights
that the information gain ratio turns to roles have more permissions. It is understood that
the number of permissions in a role affects slightly to its creation. Therefore, the higher
gain ratio is, the more dissimilar between roles merging before and after.

Definition 3.8. Roles are formally described by concept lattices in our algorithm, thus we
review the definition of concept lattice. A formal context is a triple κ = (G,M, I), where
G and M are sets of objects and attributes respectively, and I ⊆ G × M is an incident
relation. gIm means that object g has the attribute m.

In role mining field, we view the user-permission assignments as a formal context, where
G is the set of all users and M is the set of all permissions. A concept of the context
(G,M, I) is a pair (X, Y), where X ∈ G and Y ∈ M satisfy the following properties:

Y = {m ∈ M |(∀g ∈ X)gIm},

i.e., Y is the set of all properties shared by all objects in X.

X = {g ∈ G|(∀m ∈ Y)gIm},

i.e., X is the set of all objects that share all properties in Y . X is also called the extent and
Y the intent of the concept (X,Y). The set of all concepts of the context is denoted by
B(G,M, I). A concept (X1, Y1) is a subconcept of (X2, Y2), denoted as (X1, Y1) ≤ (X2, Y2)
if and only if X1 ⊆ X2 (or, equivalently, Y1 ⊇ Y2).

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7915

Definition 3.9. For the given W = 〈wr,wu,wp, wh〉 where 〈wr,wu,wp, wh〉 ∈ Q+
∪

{∞}. The weighted structural complexity wsc(γ,W) of an RBAC state γ is denoted as
follows:

wsc(γ,W) = wr × |R|+ wu× |UA|+ wp× |PA|+ wh× |t r(RH)|

where Q+ is the set of all non-negative rational numbers, |.| indicates the size of the set
or relation, and t r(RH) indicates the transitive reduction of role-hierarchy. A transitive
reduction is the minimal set of relationships that describes the same hierarchies of roles.
For example, t r({(r1, r2), (r2, r3), (r1, r3)}) = {(r1, r2), (r2, r3)} for (r1, r3) can be inferred.

4. Algorithms. In this section, we present a two-phase algorithm to find a set of roles
with high cohesion on features and relatively simple responsibilities. In the first phase,
we use reduced concept lattices to build initial RBAC state. In the second phase, we
reconstruct this RBAC state based on relative closeness and WSC. Algorithm 4.1 gives
the details of computing the relative closeness between roles. The internal permission
cohesion and internal user cohesion of r1 and r2 are computed in Lines 1-18. Lines 19-32
give the method to get operation centrality and resource centrality of r1 and r2. The
value of relative closeness between r1 and r2 is computed in Lines 33-37.

Algorithm 4.2 gives the details of reconstructing RBAC states in the second phase.
There are three pruning cases need to be considered.

Case 1. A role r does not associate with a new user or a permission. If removing r can
make value of WSC decrease, we remove it and update the role-hierarchy. r is solely used
as a connection point of its immediate senior and immediate junior roles. Removing it
will not affect the features of other roles.

Case 2. A role r associates with some users but no permissions. If removing r can
decrease value of WSC, we remove it and assign the users of r to its immediate junior
roles. However, if removing r cannot make value of WSC decrease, HierarchicalMiner
will retain r as a composite role and r inherits all permissions of its immediate juniors.
In such case, StateMiner uses the global optimization function that includes WSC and
global dissimilarity of the RABC state to determine whether retain r or not. In Hierarchi-
calMiner and StateMiner, all users of r will be added to its juniors. In FMiner, if adding
ru to rj that an immediate junior of r can make RC(

∑
jun(r)− rj, rj) > τ , we will add

ru to rj. Otherwise, the hierarchy relation between r and rj will be retained. Thus, r
is removed when ∀rj ∈ jun(r), RC (

∑
jun(r)− rj, rj) > τ , where τ is the threshold of

relative closeness.
For example, Figure 2(a) shows an example that {u0, u1, u2} is assigned to the role

“HonorStudent”, {u7, u8, u9} is assigned the role “Grader”, and {u4, u5, u6, u7} is assigned
to both of these two roles. Figure 2(b) shows the concept lattices of this example and Fig-
ure 2(c) shows the reduced concept lattices. On the setting of W = 〈1, 1, 1, 1〉, the WSC of
current RBAC state is 18. If adding {u3, u4, u5, u6} to {{u0, u1, u2}, {Register GradClass,
Withdraw GradClass}} and {{u7, u8, u9}, {AssignGrad GradeBook}}, the WSC of pru-
ned RBAC state is 19. Thus, HierarchicalMiner and StateMiner will retain {{u3, u4, u5,
u6}, {}} that is shown in Figure 2 of [21] and Figure 2 of [13] as a composite role. In-
tuitively, r0 with the same resource has high cohesion and r1 is added the new resource
“GradBook” that weakens this internal feature of r0. Therefore, the composite role r1
should not be created.

Currently, there are a lot of works discussing user similarity and permission similarity
based on assignments. FMiner focuses on the affection of operation and resource on roles
in this example. Thus, we set fp = 0, fu = 0, fo = 0.2 and fr = 0.8 because the
resources has more influence on the weight of permissions. The relative closeness of r0

7916 R. LI, W. WANG, X. MA, X. GU AND K. WEN

(a) The original RBAC state

(b) The concept lattice (c) The reduced concept lattice

Figure 2. The example for Case 2

(a) The original RBAC state (b) The concept lattice

(c) The reduced concept lattice (d) The final RBAC state

Figure 3. The example for Case 3

and r2 shown in Figure 2(c) will be RC(r0, r2) = 0.92. Though adding {u3, u4, u5, u6} to
its juniors will increase the value of WSC, the high relative closeness between r0 and r2
will prevent creating composite role r1.
Case 3. A role r associates with no user but some permissions. In HierarchicalMiner,

r will be removed and the permissions in r will be assigned to its immediate senior roles
when this action can make WSC decrease. However, in FMiner, rp will be added to
rj when RC(r, rj) < τ where rj is an immediate senior role of r. Otherwise, hierarchy
relation between r and rj will be retained.
For example, Figure 3(a) shows an example that the role “TA” is assigned to {u0, u1, u2},

and the role “Associate TA” and “Grad” are assigned to {u3}. “Associate TA” helps
“TA” assign grade books. However, there is some information in grade book cannot
be known by others except the receivers of grade book or “TA”. Thus, the permission
“ViewGrad GradeBook” is not assigned to “Associate TA”. The WSC of Figure 3(c) is

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7917

Algorithm 4.1. Compute relative closeness
Require: two role r1 and r2
Require: system configuration 〈USERS, PERMS,UPA〉
Require: permission-operation relationships POA
Require: permission-resource relationships PRA
Require: weights for internal permission cohesion, internal

user cohesion, operation centrality and resource
centrality 〈fp, fu, fo, fr〉

1: ru1 = AuthorizedUsers(r1)
2: rp1 = AuthorizedPermissions(r1)
5: Compute original similarity between users in ru1

6: Avgsim = 0
7: for each user ui ∈ ru1 do
8: MinSim = 1
9: for each user uj ∈ ru1, uj 6= ui do
10: if (MinSim > origsim(ui, uj)) then
11: MinSim = origsim(ui, uj)
12: end if
13: end for
14: Avgsim = Avgsim+MinSim
15: Avgsim = Avgsim |ru1|
16: end for
17: IUC(r1) = Avgsim
18: Analogously compute IPC(r1) on rp1
19: ro1 = AuthorizedOperations(rp1)
20: rr1 = AuthorizedResources(rp1)
21: Entropy = 0
22: for each opi ∈ ro1 do
23: cPerm = 0
24: for each pj ∈ rp1 do
25: if (POAji ≡ 1) then
26: cPerm = cPerm+ 1
27: end if
28: end for
29: Entropy+ = cPerm

|rp1| log2
cPerm
|rp1|

30: end for
31: OperCen(r1) = Entropy
32: Analogously compute ResCen(r1) on rr1
33: RF(r1) = 〈IPC(r1), IUC(r1),OpC(r1),ResC(r1〉
34: Analogously compute features of r2 RF (r2)
35: r = (ru1

∩
ru2, rp1

∪
rp2)

36: Compute features of r RF (r)

37: RC(r1, r2) = 〈fp, fu, fo, fr〉 × RF (r)−0.5×RF (r1)−0.5×RF (r2)
RF (r)

38: return RC(r1, r2)

13. If adding “AssignGrad GradeBook” to r1 and r2 shown in Figure 3(c), the WSC
of this pruned state is 12. Such pruning action is supported in HierarchicalMiner. In
this example, adding “AssignGrad GradeBook” to r1 will not change its central resource.

7918 R. LI, W. WANG, X. MA, X. GU AND K. WEN

Algorithm 4.2. The algorithm of FMiner
Require: system configuration 〈USERS, PERMS,UPA〉
Require: permission-operation relationships POA
Require: permission-resource relationships PRA
Require: weight factors for complexity,

W = 〈wr,wu,wp, wh〉
Require: threshold of relative closeness τ
Require: threshold of WSC redundance ε
1: create reduced concept lattice L = 〈R,UA, PA,RH〉
2: t r(RH) = treduce(RH)
3: wscbefore = wsc(L,W)
4: Lcopy = L
5: for each role r ∈ L do
6: Sen(r) = ri ∈ R|(ri, r) ∈ tr(RH)
7: Jun(r) = rj ∈ R|(r, rj) ∈ tr(RH)
8: rp = AssignedPermissions(r)
9: ru = AssignedUsers(r)
10: CNU = 0, CNP = 0
11: if (|rp| > 0 and |ru| ≡ 0) then
12: if (RC(r, rj) ≥ τ) then
13: rj.rp = rj.rp

∪
rp

14: delete edge (r, rj)
15: ∀ri ∈ Jun(r) add edge (ri, r)
16: CNU = CNU + 1
17: end if
18: end for
19: else if (|rp| ≡ 0 and |ru| > 0)
20: for each ri ∈ Jun(r) do
21: if (RC(rj,

∑
rj − rj) < τ) then

22: rj.ru = rj.ru
∪
ru

23: delete edge < rj, r >
24: ∀rj ∈ Sen(r) add edge (r, rj)
25: CNP = CNP + 1
26: end if
27: end for
28: else if (|rp| ≡ 0 and |ru| ≡ 0) then
29: ∀rj ∈ Sen(r) add edge (r, rj)
30: ∀ri ∈ Jun(r) add edge (ri, r)
31: end if
32: if ((CNU ≡ |Sen(r)| and CNP ≡ |Jun(r)|) then
33: delete r
34: end if
35: Compute t r(RH)
36: wscafter = wsc(L,W)
37: if ((1− ε)× wscafter < wscbefore) then
38: L = Lcopy

39: else
44: wscbefore = wscafter
41: Lcopy = L
42: end if
43: return L

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7919

However, adding r2 will make its resource centrality more fuzzy. Thus, we only add “As-
signGrad GradeBook” to r1. When we use the parameter Settings mentioned in Case 2,
RC(r0, r1) = 0.2 < τ = 0.5 and RC(r0, r2) = 0.67 > τ = 0.5. Thus, the final RBAC state
of this example is shown in Figure 3(d) with wsc = 13.

When we merge the roles with high relative closeness, sometimes this merging will make
the WSC increase, e.g., Case 2. Therefore, we give the threshold ε to control the growth
range of WSC. If ε, which judges whether the merging on RABC state is successful or
not, is set to zero (ε = 0), FMiner is the same with HierarchicalMiner, which merges roles
that can make the value of WSC decrease. On other settings of ε, we allow the value of
WSC increase below the value ε× wsc.

The details of FMiner is shown in Algorithm 4.2. For the given initial RBAC state
γ = 〈R,UA, PA,RH〉 and a system configuration ϕ = 〈U, P, UP 〉, we prune the RBAC
state γ that makes the relative closeness between r and rk is almost higher than τ and
local WSC increased value below ε× wsc, where rk is its immediate senior or immediate
junior of r.

5. Performance Evaluation. To evaluate the performance of our algorithm FMiner, we
implement the algorithm by Java and run the program on the synthetic data set containing
400 users and 14 permissions. This data set has been used to evaluate HierarchicalMiner
by Molloy et al. [21] and StateMiner by Takabi and Joshi [13]. Our experimental platform
is a personnel computer with an Intel(R) Core(TM) 2 Duo CPU and 2GB memory.

5.1. Accuracy comparison. In this section, we evaluate the accuracy of FMiner and
HierarchicalMiner. The accuracy of a role mining algorithm is defined as the ratio of
the number of generated roles exactly matching the original role sets to the number of
generated role sets.

acc =
numRoles(Match)

numRoles(Generate)

where numRoles(Match) is the number of the exactly matched between the original
role sets and the generated role sets, and numRoles(Generate) is the number of all the
generated roles.

The original roles are shown in Figure 4(a). Figure 4(b) shows the RBAC state gener-
ated by FMiner, and Figure 4(c) shows the RBAC state generated by HierarchicalMiner.
StateMiner generates the same roles with HierarchicalMiner in Figure 2(b) of [13] with a
little different WSC. Therefore, we do not show the RBAC state generated by StateMiner
in Figure 4. The accuracy of HierarchicalMiner in this data set is 6÷10 = 60%, while that
of FMiner is 5 ÷ 7 = 71%. The role “RA” and “GradCommittee” are not generated by
both algorithms. FMiner does not generate any composite roles, while HierarchicalMiner
generates some composite roles, such as “UndergradPermittedGradClass and HonorsStu-
dent” and “UndergradPermittedGradClass and Grader”. These composite roles reduce
the accuracy of HierarchicalMiner.

FMiner does not retain the composite roles “HonorStudent and UndergradPermit-
tedGradClass” and “HonorStudent and Grader” because RC(HonorStudent,Grader) =
0.92 and RC(HonorStudent, UndergradPermittedGradClass) = 0.79. If we view the
operation and resource as the same importance on the role feature, “HonorStudent and
UndergradPermittedGradClass” will be retained. Though merging “HonorStudent” to
“UndergradPermittedGradClass” makes the composite role add a new resource “Grad-
Class”, the original operations of these roles are the same. Therefore, the features of this
composite role are not changed too much.

7920 R. LI, W. WANG, X. MA, X. GU AND K. WEN StudentViewGrade_GradeBookCreate_ComputerAccountObtain_StudentParkingPermitRegister_CoursePay_TuitionUndergradRegister_UndergradClassWithdraw_UndergradClass 0GradRegister_GradClassWithdraw_GradClass Enroll_StudentHealthInsur300UndergradPermittedGradClassRegister_GradClassWithdraw_GradClass GradCommittee 10RA 40HonorsStudentRegister_UndergradHonorsClass Withdraw_UndergradHonorsClass 40TAAssignGrade_GradeBookViewGrade_GradeBook 40 GraderAssignGrade_GradeBook ViewGrade_GradeBook 18GradStudOfficerReserveRoom_RoomSchedule 5 29
(a) The original roles

UndergradPermittedGradClassRegister_GradClassWithdraw_GradClass 29StudentViewGrade_GradeBookCreate_ComputerAccountObtain_StudentParkingPermitRegister_CoursePay_TuitionUndergradRegister_UndergradClassWithdraw_UndergradClass 0
GradEnroll_StudentHealthInsur 95287

GradStudOfficerReserveRoom_RoomSchedule 5HonorsStudentRegister_UndergradHonorsClassWithdraw_UndergradHonorsClass 20 Grader or TAAssignGrade_GradeBook 70
(b) The FMiner result TAAssignGrade_GradeBookUndergradPermittedGradClassRegister_GradClassWithdraw_GradClass GraderAssignGrade_GradeBook 10 40StudentViewGrade_GradeBookCreate_ComputerAccountObtain_StudentParkingPermitRegister_CoursePay_TuitionUndergradRegister_UndergradClassWithdraw_UndergradClass 0 GradRegister_GradClassWithdraw_GradClass Enroll_StudentHealthInsur 55245 18 GradStudOfficerReserveRoom_RoomScheduleUndergradPermittedGradClass and HonorsStudent 12 UndergradPermittedGradClass and Grader 12HonorsStudentRegister_UndergradHonorsClass Withdraw_UndergradHonorsClass 11

(c) The HierarchicalMiner result

Figure 4. These graphs represent the set of roles in the student part of
the university datasets. The original roles are shown in the top. The RBAC
state with wsc = 533 generated by FMiner is shown in the middle. The
RBAC state with wsc = 443 generated by the HierarchicalMiner is shown
in the last.

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7921

Table 1. The FMiner results for fixed ε

W = 〈1, 1, 1, 1〉 W = 〈1, 1, 2, 2〉
R UA PA RH WSC R UA PA RH WSC

Original 32 799 35 19 885 32 799 35 19 885
τ = 0.2 22 599 56 24 701 22 599 56 24 781
τ = 0.4 22 599 56 24 701 22 599 56 24 781
τ = 0.6 21 579 62 23 685 21 579 62 23 770
τ = 0.8 21 572 62 22 677 21 572 62 22 761
τ = 1.0 24 493 69 27 613 24 493 69 27 709

HierarchicalMiner 21 498 67 19 605 21 505 67 20 696
StateMiner 24 498 63 27 612 24 498 63 27 702
optimal 19 496 59 14 600 19 496 57 16 685

Table 2. The FMiner results for fixed τ

W = 〈1, 1, 1, 1〉 W = 〈1, 1, 2, 2〉
R UA PA RH WSC R UA PA RH WSC

Original 32 799 35 19 885 32 799 35 19 885
ε = 0.02 24 532 56 28 640 23 559 56 26 746
ε = 0.04 23 559 56 26 664 23 559 56 26 746
ε = 0.06 22 559 56 24 701 22 599 56 24 781
ε = 0.08 22 559 56 24 701 22 599 56 24 781
ε = 0.10 22 559 56 24 701 22 599 56 24 781

HierarchicalMiner 21 498 67 19 605 21 505 67 20 696
StateMiner 24 498 63 27 612 24 498 63 27 702
optimal 19 496 59 14 600 19 496 57 16 685

5.2. Quality measurement. In this section, we evaluate the quality of the generated
roles by FMiner compared to HierarchicalMiner and StateMiner. The experiments are
carried out on the data set with 493 users and 56 permissions. The experiments are to
measure RBAC state generated by FMiner on different parameter settings.

In the first scheme, we fix the threshold of the relative closeness τ while changing the
user specified parameter ε. The columns of R, UA, PA, RH, WSC represent the cost
for role, user assignment, permission assignment, and the weighted structural complexity
of RBAC state. This experiment is done on W = 〈1, 1, 1, 1〉, W = 〈1, 1, 2, 2〉 and ε = 0.1.
The result is shown in Table 1.

In the experimental results shown in Table 1, the number of roles generally increases
with the increasing of τ . As the value of τ gets bigger, the roles have more opportunities
to merge with its immediate juniors or seniors. However, our merging strategy is a partial
merging approach. Thus, not all the initial roles will be deleted after merging. When the
bigger τ make more composite roles in Case 3, the bigger τ also makes more composite
roles in Case 2. The initial roles with no permissions are more than those with no users in
this data set. Therefore, the value of WSC is reduced with the increase of τ . Usually, the
junior roles in an RBAC state have little users and the senior roles have little permissions.
Large value of τ will make many roles without permissions but with some users. Some
roles without users but with some permissions still exist after pruning process.

In the second scheme, we fix τ while changing ε. The experimental results are shown
in Table 2. The value of WSC is going up with the increase of ε. The larger ε means the
roles with high relative closeness have more opportunities to be merged. In FMiner, if

7922 R. LI, W. WANG, X. MA, X. GU AND K. WEN

the merging action makes the increase of WSC beyond the range of ε, this action will not
be allowed, and the pruned RBAC state will be returned to pruning before. When we set
a higher ε, the less composite roles will be generated in pruning process. However, the
higher ε, the more R, UA, PA and RH in an RABC system, which makes the management
of the RBAC state more complex. Therefore, the setting of ε should be adjusted based
on the system and application requirements.

6. Conclusions. This paper proposes to use operations and resources of the permissions
as the function information in role mining and presents a new role engineering approach
FMiner that could reduce composite roles. Our algorithm has two main processes. Firstly,
we generate the initial RBAC state that each permission only belongs to a role using for-
mal concept analysis. Secondly, we prune this RBAC state based on weighted structural
complexity (WSC) and relative closeness. The experimental results demonstrate the ef-
fectiveness of the proposed approach on reducing composite roles. For the future work,
we will use the business information to create more meaningful initial roles.

Acknowledgments. This research is partially supported by National Natural Science
Foundation of China under grants 61173170 and 60873225, National High Technology Re-
search and Development Program of China under grant 2007AA01Z403, Natural Science
Foundation of Hubei Province under grant 2009CDB298, Innovation Fund of Huazhong
University of Science and Technology under grants 2012TS052, 2011TS135 and 2010MS06
8, and CCF Opening Project of Chinese Information Processing.

REFERENCES

[1] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn and R. Chandramouli, Proposed nist standard for role-
based access control, ACM Transactions on Information and System Security, vol.4, no.3, pp.224-274,
2001.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, Role-based access control models,
IEEE Computer, vol.29, no.2, pp.38-47, 1996.

[3] E. J. Coyne, Role engineering, Proc. of the 1th ACM Workshop on Role-Based Access Control, 1995.
[4] M. Frank, J. M. Buhmann and D. Basin, On the definition of role mining, Proc. of the 15th ACM

Symposium on Access Control Models and Technologies, pp.35-44, 2010.
[5] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang and J. Lobo, Evaluating role mining algorithms, Proc. of

the 14th ACM Symposium on Access Control Models and Technologies, pp.95-104, 2009.
[6] A. Baumgrass, M. Strembeck and S. R. Ma, Deriving role engineering artifacts from business pro-

cesses and scenario models, Proc. of the 16th ACM Symposium on Access Control Models and Tech-
nologies, pp.11-20, 2011.

[7] M. Frank, D. Basin and J. M. Buhmann, A class of probabilistic models for role engineering, Proc.
of the 15th ACM Conference on Computer and Communications Security, New York, pp.299-310,
2008.

[8] M. Frank, A. P. Streich, D. Basin and J. M. Buhmann, A probabilistic approach to hybrid role
mining, Proc. of the 16th ACM Conference on Computer and Communications Security, New York,
pp.101-111, 2009.

[9] A. Colantonio, R. D. Pietro and A. Ocello, A cost-driven approach to role engineering, Proc. of the
2008 ACM Symposium on Applied Computing, 2008.

[10] D. Zhang, K. Ramamohanarao and T. Ebringer, Role engineering using graph optimisation, Proc.
of the 12th ACM Symposium on Access Control Models and Technologies, pp.139-144, 2007.

[11] D. Zhang, K. Ramamohanarao, T. Ebringer and T. Yann, Permission set mining: Discovering prac-
tical and useful roles, Proc. of the 2008 Annual Computer Security Applications Conference, pp.247-
256, 2008.

[12] J. Vaidya, V. Atluri and Q. Guo. The role mining problem: Finding a minimal descriptive set of
roles, Proc. of the 12th ACM Symposium on Access Control Models and Technologies, pp.175-184,
2007.

MINING ROLES USING ATTRIBUTES OF PERMISSIONS 7923

[13] H. Takabi and J. B. D. Joshi, StateMiner: An efficient similarity-based approach for optimal mining
of role hierarchy, Proc. of the 16th ACM Symposium on Access Control Models and Technologies,
pp.55-64, 2010.

[14] X. Ma, R. Li and Z. Lu, Role mining based on weights, Proc. of the 15th ACM Symposium on Access
Control Models and Technologies, pp.65-74, 2010.

[15] Q. Guo, J. Vaidya and V. Atluri, The role hierarchy mining problem: Discovery of optimal role
hierarchies, Proc. of 2008 Annual Computer Security Applications Conference, pp.237-246, 2008.

[16] M. Kuhlmann, D. Shohat and G. Schimpf, Role mining – Revealing business roles for security
administration using data mining technology, Proc. of the 8th ACM Symposium on Access Control
Models and Technologies, pp.179-186, 2003.

[17] J. Vaidya, V. Atluri and J. Warner, Roleminer: Mining roles using subset enumeration, Proc. of the
13th ACM Conference on Computer and Communications Security, pp.144-153, 2006.

[18] J. Schlegelmilch and U. Steffens, Role mining with ORCA, Proc. of the 10th ACM Symposium on
Access Control Models and Technologies, pp.168-176, 2005.

[19] G. Karypis, E.-H. Han and V. Kumar, CHAMELEON: A hierarchical clustering algorithm using
dynamic modeling, IEEE Computer, vol.32, no.8, pp.68-75, 1999.

[20] A. Ene, W. Horne, N. Milosavljevic, P. Rao, R. Schreiber and R. E. Tarjan, Fast exact and heuristic
methods for role minimization problems, Proc. of the 13th ACM Symposium on Access Control
Models and Technologies, pp.1-10, 2008.

[21] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo and J. Lobo, Mining roles with
semantic meanings, Proc. of the 13th ACM Symposium on Access Control Models and Technologies,
pp.21-30, 2008.

[22] G. Neumann and M. Strembeck, A scenario-driven role engineering process for functional RBAC
roles, Proc. of the 7th ACM Symposium on Access Control Models and Technologies, pp.33-42, 2002.

[23] H. Takabi and J. B. D. Joshi, An efficient similarity-based approach for optimal mining of role
hierarchy, Proc. of the 16th ACM Conference on Computer and Communications Security, 2009.

