International Journal of Innovative
Computing, Information and Control ICIC International (©)2012 ISSN 1349-4198
Volume 8, Number 11, November 2012 pp. 7969-7981

TOWARDS FORMAL SECURITY ANALYSIS OF DECENTRALIZED
INFORMATION FLOW CONTROL POLICIES

ZHI YANG!?, LiHUA YIN'3, SHUYUAN JINU* AND Mr1Y1 Duants3

nstitute of Computing Technology
Chinese Academy of Sciences
No. 6, Kexueyuan South Rd., Zhongguancun, Haidian Dist., Beijing 100190, P. R. China
*Corresponding author: jinshuyuan@ict.ac.cn
zynoah@gmail.com; yinlh@hit.edu.cn; duanmiyi@software.ict.ac.cn

2Institute of Electronic Technology
Information Engineering University
No. 7, Kexue Rd., Jinshui District, Zhengzhou 450004, P. R. China

3National Engineering Laboratory for Information Security Technologies
Beijing 100190, P. R. China

Received July 2011; revised December 2011

ABSTRACT. Decentralized information flow control (DIFC) is a key innovation of tradi-
tional information flow control (IFC). Compared with IFC, DIFC provides new features
including decentralized declassification, taint-tracking, and privilege-transferring. These
characteristics also make DIFC able to achieve more fine-grained security goals. How-
ever, the flexibility of DIFC also presents challenges to its policy verification which exist-
ing approaches have not been able to effectively solve. This paper formalizes the DIFC’s
policy verification problem, and uses Computational Tree Logic formulae to express fine-
grained security goals. This paper also proves that the DIFC’s policy verification prob-
lem is NP-complete, and discusses the main factors resulting in its high computational
complexity. Further, a model checking approach is proposed to realize DIFC’s policy ver-
ification. Experimental results show that our proposed approach is effective.
Keywords: Access control, Formal verification, NP-complete, Model checking

1. Introduction. Access control is one of the most fundamental and pervasive security
mechanisms used in information systems [1,2]. As a main access control technology, infor-
mation flow control (IFC) enforces centralized mandatory access control over operating
systems. IFC can effectively prevent bugs or malicious software from destroying the se-
crecy and integrity of systems. However, traditional IFC is found too restrictive and
simple to build any practical systems [3-5].

Decentralized Information Flow Control (DIFC) [3-8] is a key innovation of IFC. Com-
pared with IFC, the DIFC mechanism provides new features of decentralized declassifi-
cation, taint-tracking, and privilege-transferring. These characteristics make DIFC more
applicable to the control of information flows in systems. Specially, the DIFC decen-
tralized declassification mechanism permits processes to declassify their own data. In
contrast, IFC only permits a universally trusted process for the declassification of data.
This mechanism guarantees that a DIFC process has the ability to only weaken its own
policies rather than endanger the data that it does not own. The DIFC taint-tracking
mechanism guarantees information flow tracking by recording process label changes either
implicitly [4] or explicitly [5,6]. This mechanism reflects the principle of least privilege.
The DIFC privilege-transferring mechanism permits processes to transfer a portion of

7969

7970 Z. YANG, L. YIN, S. JIN AND M. DUAN

their label adjustment capabilities to other processes. Thus, the information propagation
control becomes more flexible.

This paper aims to verify DIFC’s policy, which currently represents a large problem.
Policy verification determines whether DIFC systems are able to achieve their security
goals. We recognize that a mistake in policy implementation often results in a process
having more privileges than it should have. Undesirable right leakage resulting from
these privileges can threaten system security seriously. However, the flexibility of DIFC
challenges its policy verification for two reasons: 1) the flexibility of DIFC may cause the
informational flow graph of a DIFC system to be highly complex [9-11], and resulting
attempts to analyze such systems can be difficult; and 2) the flexibility of DIFC allows it
to express fine-grained security goals. As such, approaches to DIFC’s policy verification
should involve the verification of fine-grained security goals.

In the field of DIFC system policy verification, the verified security goals can be cat-
egorized into two types: coarse-grained and fine-grained goals. The coarse-grained goal
is expressed by the existence of an information flow path while the fine-grained goal is
expressed by the constraints and correlations between informational flow paths. Most
existing approaches have focused on verifying coarse-grained security goals, with few ap-
proaches able to verify fine-grained security goals. For example, Chaudhuri et al. [10]
modeled an IFC system in an expressive and decidable extension of Datalog, and then
translated questions surrounding the existence of an information flow path between two
entities into a Datalog-style query. They applied their approach in an analysis of a DIFC
system Asbestos policy. Harris et al. [11] used a relation abstraction method to model
DIFC programs, using two kinds of first-order logic formulae to express their security
properties. These two kinds of formulae only asserted the existence or nonexistence of an
information flow path between two program points. Harris et al. [12] also studied how
to construct DIFC applications automatically according to information flow reachability
policies. Krohn and Tromer [7] used process algebra CSP to verify the nonexistence of
information flow paths from a high-level to low-level process, according to the theory
of noninterference. Some approaches [13-15] also have been proposed to verify the exis-
tence of information flow paths in SELinux system. These approaches are inefficient in
verifying whether decentralized declassification, taint-tracking, and privilege-transferring
are properly implemented (with implementation expressed by the constraints and corre-
lations between information flow paths). In this paper, we propose an approach that can
verify constraints and correlations between information flow paths, thus enabling these
fine-grained security goals to be verified.

Moreover, few existing works have analyzed the computational complexity of DIFC’s
policy verification issues. Complexity analyses can help us evaluate and improve the
algorithms to address this problem. Similar analysis on traditional access control models
has been done well. For example, Harrison et al. [16] showed that, in general, the problem
of security analysis in the access control matrix model is undecidable. S. Jha et al. [17]
proved that the problem of security analysis in the administrative role-based access control
model (ARBAC97) is PSPACE-complete.

In this paper, we study the policy verification problems of three main DIFC systems:
Asbestos [4], HiStar [5], and Flume [6,7]. The key contributions of this paper are as
follows:

e We model the policy verification problem in DIFC (referred to as Q-DIFC), and use
Computational Tree Logic formulae to express the fine-grained security goals with
forms of constraints and correlations between information flow paths. Further, a
model checking approach is proposed to solve Q-DIFC. The experimental results in
Flume’s policy verification demonstrate the high efficiency of our approach.

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7971

e We prove that, in general, Q-DIFC is NP-complete. We further study the main fac-
tors resulting in high computational complexity of Q-DIFC. To our best knowledge,
ours is the first effort to prove that Q-DIFC is NP-complete.

The rest of the paper is organized as follows. Section 2 roughly introduces three main
DIFC systems: Asbestos, HiStar, and Flume. Section 3 formalizes Q-DIFC, and proves
that Q-DIFC is NP-complete. This section also studies the main factors resulting in a
high computational complexity of Q-DIFC. Section 4 proposes a model checking approach
to solve Q-DIFC. Section 5 concludes the paper.

2. Preliminaries. We first give a brief overview of DIFC systems. For a more complete
description, please see [3-8].

2.1. Overview of the FLUME system. Flume uses tags and labels to track its infor-
mation flows within it. In Flume, each tag is generally associated with some category of
secrecy or integrity. Let T denote the set of all tags. Labels are subsets of T'. For each
process p, Flume maintains a secrecy label Sp, an integrity label Ip, and a capability set
Cp. Flume represents privilege using two capabilities per tag. For tag t, the capabilities
are denoted as t* and t~. A process p with t+ € Cp can add t to its label; similarly, a
processp with ¢t~ € Cp can remove ¢ from its label.

In order to track information flows within a system, Flume regulates label changes and
process communications as follows: For a process p, let label L denote either Sp or Ip,
and let L' denote p’s new label. The change from L to L’ is safe if and only if:

L'—LCC{and L— L' CCp, where Cf = {t|tT € Cp}, Cpr = {t|t” € Cp}.

The information flow from a process p to a process q is safe if and only if

S, — D, CS,UD, and I,UD, D I, — D,, where Dp = {t|tT € Cp Nt~ € Cp}.

In the Flume system, a process p can grant capabilities in C'p to a process ¢ so long as
p is allowed to send message to ¢q. p can also subtract some capabilities from Cp when
needed. The label of a new process p is the same as the label of the process that spawns
p, unless p’s Sp, Ip and Cp are specified by p’s creator. p’s creator can change p’s labels
into specified labels Sp, Ip and Cp.

2.2. Overview of the Asbestos system. In Asbestos, different information categories
are referred to as handles. Handle’s privileges are represented by levels. Levels are defined
as members in an ordered set [x,0,1,2,3], where x represents the minimum level and
3 represents the maximum level. Asbestos uses labels to describe the mapping from
handles to levels as follows: VL, VLo, Ly C Ly < Vh, Li(h) < Lo(h), where Ly and L,
are labels, and h is any handle. The operators U and N are defined as follows: (L; U
Ls)(h) = max(Li(h), La(h)), (Ly N Ly)(h) = min(Ly(h), La(h)). Asbestos decentralizes
P o . . ey) o* i L(h) ==

declassification by using its special x operation defined as L*(h) = 3 otherwise

In the Asbestos system, each process P has two labels, a send label Ps and a receive
label Pr. The send label represents a process’s current contamination level, while the
receive label represents the maximum level of contamination that a process can accept
from other processes. Each process uses communication ports to communicate with each
other. For each communication port p, its corresponding port label pgr represents the
upper limit of the security messages that can be carried by p. A sender process can
selectively taint a handle by providing an optional contamination label C's when sending
a message. A process with declassification privileges for a handle h can decontaminate
other processes’ labels with respect to h. This decontamination is facilitated by lowering
their send labels (through a decontaminate-send label Dg) while raising their receive labels
(through a decontaminate-receive label Dg).

7972 Z. YANG, L. YIN, S. JIN AND M. DUAN

A process P is allowed to send a message to a process) on port p, when the following
four requirements are satisfied: (1) Ps U Cs C (Qr U Dgr) Npg; (2) If Dg(h) < 3, then
Ps(h) = «; (3) If Dg(h) > *, then Ps(h) = *; (4) Dgr C pg. After receiving the message,
@)’s labels will be tainted by P as Qs < (Qs N Dg) U ((PsUCs) NQY), Qr + QrU Dg.

2.3. Overview of the HiStar system. HiStar employs the same labeling policy as
Asbestos to track information flow in a system with one exception: it prohibits implicit
label adjustments. Since implicit label adjustments are the source of a covert channel
problem [4], HiStar allows each process to explicitly rather than implicitly contaminate
itself via a system call self_set_clearance.

2.4. Equivalence of Flume schema and Asbestos/HiStar schema. In this section,
we demonstrate that the basic control functions in-place among different DIFC systems
are equivalent. The following example shows how to covert a Flume schema A into an
Asbestos/Hitar schema B.

For each secrecy tag t in A, we construct a handle h in B. For each process p and
pair of t/h, we construct the receive label LR, (p) and the send label LSy (p) for h in B,
corresponding to the secrecy label S(p) and capabilities C'(p) in A. Table 1 describes the
mapping from labels in A to labels in B. For simplicity, Table 1 shows the mapping of
secrecy protection schema of Flume. Flume’s integrity protection sub-model is the dual
of Flume’s secrecy protection sub-model, and the two can be transformed into the other.

TABLE 1. Mapping from Flume labels to Asbestos/HiStar labels

Flume Asbestos (Histar)
Secrecy label Capabilities receie label | send label
t ¢ S(p) {t*} ¢ Cp) LRy(p) =0 LSy(p) =0
tgS(p) |[tTel(p),t” ¢Clp) | LRu(p) =1] LSu(p) =0
t¢ S(p) t= € Cp) LRy(p) = * | LSu(p) =0
t € S(p) {7} ¢ C(p) LRu(p) =1 LSp(p) =1
t € S(p) e Clp) LRy(p) = * [LSy(p) =1

The mapping of a process p granting ¢t (or t¥) to a process ¢ through inter-process com-
munication in the Flume schema is p adjusting ¢’s receive labels. This adjustment takes
place through inter-process communication with the parameter of the decontaminate-
receive label Dy satisfying Dr(h) = 1 or Dg(h) = * in the Asbestos/HiStar schema.
Thus, given a Flume schema, we have the ability to construct an Asbestos/HiStar schema.
In the rest of this paper, we narrow our discussion of the Flume system.

3. Formal Definition and Complexity Analysis of Q-DIFC. In this section, we
first use the theory of infinite state machine and Computational Tree Logic to model
Q-DIFC. Then, we move on to prove that Q-DIFC is NP-complete while showing that
the high complexity of Q-DIFC is due to the mechanisms of decentralized declassification
and taint-tracking.

3.1. Formal definition of Q-DIFC. In order to verify whether the security goals of
DIFC systems can be achieved, there is a fundamental question that policy verification
should answer: “given the current authorization state and the policy specification, will
information ever flow from a subject (object) to another subject (object)?” This question
surrounds the existence of an information flow path.

However, to answer the question with a simple “yes” or “no” would be inadequate. We
need to further verify more fine-grained security properties of the DIFC systems. These

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7973

fine-grained properties include the constraints and correlations between information flow
paths. For example, the existence of an information flow path depends on the existence
of another path; or from a different perspective, the existence of an information flow path
depends on the nonexistence of another. A more in-depth information flow analysis is
required to answer these questions.

We regard a DIFC system as a state transition system < I', vy, U, >, where I" denotes
the set of all possible states, vy denotes the initial state, U denotes the set of all processes,
and 0 denotes DIFC’s state transition relations. Permitted information flows trigger off
state transitions. Each state consists of labels of the processes in U and a function f:
U x U — {true, false}. In a state, f(u,v) = true if a flow from u to v exists; otherwise
f(u,v) = false. In state ~y, for arbitrary u,v € U, f(u,v) is false.

Definition 3.1. (Reachability of information flow in DIFC). Given a DIFC system
sys =< I',v,U, 6 >, for arbitrary processes p,q € U, we say p can reach q if and only
if there exists a state transition path < ~vo,71,...,%v. > and an information flow path
< Vo, V1, ...,V >, where v; € T and v; € U (0 < i < n), vg = p, v, = q, satisfying
the following conditions: f(v;,viy1) = true in state v; and f(v;,v;11) = false in state
v (0 < j < i < n). Further, we say that state ~, satisfies a primitive proposition
reached(p, q), which is notated as v,| = reached(p, q).

Based on the set of primitive propositions {reached(z,y)|x € U,y € U}, we can describe
fine-grained security goals with CTL formulae [18].

Definition 3.2. (Security Goals of information flow control). Let) denote the
set of primitive propositions {reached(x,y)|lz € U,y € U}. We define a security goal
statement with a CTL formula by the following grammar: ¢ ::= a|=|(pAp)|(eV)|(¢ —
P)IAX Q| EXp|AF | EF | AGo| EGo|Alp U ¢]|E[p U ¢|, where a € Q.

The semantics of temporal operators in CTL formulas are as follows. AGyp: along all
state paths, ¢ holds globally. EGg: There exists a state path where ¢ holds globally.
AFy: along all state paths, ¢ holds at some state in the future. EFy: there exists a state
path where ¢ holds at some state in the future. AXy: along all state paths, ¢ holds in
the next state. EXy: there exists a state path where ¢ holds in the next state. A [p U
q]: along all state paths, p holds until ¢ holds. E [p U ¢|: there exists a state path where
p holds until ¢ holds.

Now, we can formally describe Q-DIFC as follows:

Definition 3.3. (Policy Verification Problem in DIFC). Given a DIFC system
sys =< I',v,U,d >, a set of primitive propositions) = {reached(z,y)|x € U,y € U},
and a security goal ¥ (Y is a CTL formula over Q), a DIFC policy verification problem
instance < sys, v > determines whether sys satisfies 1.

We provide some examples of fine-grained security goals in Q-DIFC as follows:
(i) To verify reachability policies — the following formula asserts that P can reach Q.
EF [reached(P, Q)]

(ii) To verify the path length — the following formula asserts that the length of path
from P to @ is not less than 3. (We assume no capability grant operations.)

—(reached(P, Q) V EX[reached(P,Q)| vV EX[EX][reached(P,Q)]])

(iii) To verify taint-tracking policies — the following formula asserts that an information
flow from @ to R is not allowed any longer after () receives tainted data from P.

AG [reached(P, Q) — —reached(Q, R)]

7974 Z. YANG, L. YIN, S. JIN AND M. DUAN

(iv) To verify privilege transferring policies — the following formula asserts that P cannot
send information to R before () sends declassification capabilities to P.

AG [-reached(P, R) U reached(Q, P)]

3.2. Complexity analysis of Q-DIFC. In the following section, we show that in gen-
eral Q-DIFC is a NP-complete problem. The main reason for the high complexity is that
the explored state space is potentially large. We would like to understand how different
features of DIFC affect this search space; as such, we consider special cases of Q-DIFC
that result from restricting the DIFC schema in various ways.

We first analyze the complexity of Q-DIFC in the Flume system. We call the problem
of policy verification in the Flume system Q-Flume, with the problem of reachability
verification in Q-Flume called Q-Flume™. We present the following results.

Lemma 3.1. Q-Flume™ without privilege-transferring is NP-hard.

Proof: Q-Flume™ is a decision problem. We use a reduction approach to prove this
lemma. We introduce an NP-complete problem — MONOTONE 3SAT, and reduce the
MONOTONE 3SAT problem to Q-Flume™ by transforming any instance of MONOTONE
3SAT to an instance of Q-Flume~. MONOTONE 3SAT problem [19] is defined as the
following;:

MONOTONE 3SAT: Given a set X of boolean variables and a collection L of clauses
over X, such that each | € L has |I| = 3 and [contains all positive or negative variables.
The question is whether there exists a satisfying truth assignment on L over X. This
problem is denoted as M3SAT (L, X).

We reduce M3SAT (L, X) to Q-Flume™ in polynomial time as follows: Given a MONO-
TONE 3SAT instance M3SAT(L, X), assume X = {zy,2s,...,2x} and L = a; A ag A
.. Nay Nby Nby A ... A by, where each clause a; = w;, V z;, V z;, and each clause
b; = 7;, VT, VT;. In the corresponding Q-Flume™ instance, we let S denote the set
of secrecy tags while allowing U to be the set of processes. For each process p in U,
the secrecy labels and the capabilities of p are denoted as S(p) and C(p), respectively.
Assume that both the sets of integrity tags and the set of global capabilities are empty.
We produce a Q-Flume™ instance as summarized in the following process.

Tag Construction. For each clause a;, 1 <1 < M, we introduce a secrecy protection
tag d; into S. For each clause b;, 1 < j < N, we introduce six protection tag d;l, d;?, d;g,
ti, t3, t3 into S.

Processes Construction. For each Boolean variable x; € X, 1 <1 < K, we introduce
a process u; into U. For each clause b; = 7;, VT;, VT, 1 < j < N, we introduce three

1,2 3. o :
processes u}, u}”, u;” into U. In addition, we introduce two processes p and ¢q. The

initializatioils of Jsecrecy labels and capabilities of the constructed process in the Q-Flume™
instance are described in Table 2.

The security goal of the Q-Flume™ instance is to determine if an information flow path
exists from p to ¢q. Clearly, the construction can be finished in polynomial time.

Next, we prove that the M3SAT (L, X) instance is true if and only if the Q-Flume™
instance is true.

We will first prove if the M3SAT (L, X) instance is true, then the Q-Flume™ instance
is also true. In the M3SAT (L, X) instance, when the true/false assignments to the
variables satisfy the formula L, we let set X' = {xg,,z,,...,2,,} represent the vari-
ables assigned to true. We can prove that in the Q-Flume™ instance there exists a path <
D, Us;, Usys - - - Us,, select(u, w2, ut®), select(uy', ubh?, ub®), ..., select(uy", uy>, uy®),

q >, where select(ug-l, w'?, u?) (1 < j < N) denotes the selection of one process from

Jj o

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7975

TABLE 2. Initializations of labels and capabilities of processes in the Q-
Flume™ instance

Process | Secrecy label Capability
p_ [{dids, ... du} | {(t)F, (D)5, ()7}
Uy {} {df,dy,...,d},} U{d; Jvariable x occurs in a; }U

{(d")T1<i<N,1<w<3}U

{d}" |variable x occurs in the position w of b;}
uj” {} Ud?)" L <0< N 1=y < 3,17 j}U

(@) 1< 2 <32 £ w}

q i U

I o~

i
|
|
|
|
|

|
fIH
=
H
Il
1)
=
|
53
g |

O
-U-’q.:
@]

r
‘e
- =
[=]

"

7 [oo o ===
; N I 7 i 70
1 ~ l 'l 1 | i] [} l
I ooed=—==gal |} | | H | |
e oo NIz Wi
O PO O) —y it i e L]
| 1 -.l'---"-"i_-"l' | | ' ! : -] Eo
' [==) ' | ' 1]
3 n IMREN]
| N J'O.\ ;o |=I= :: ll I
[Vot e | Lo Lo Lt
-t

F1GURE 1. An information flow path from p to ¢ in the Q-Flume™ instance

the three processes ugl, U;Q, u;?’ to act as the node having the ability to legally forward

information to the next node in the path. Here, we can reasonably assume that each
process in the path will delete all of its tags from its contaminated label upon receiving
information from the previous node. The reasons for the existence of this path are as fol-
lows: 1) since each clause a; = x;, V;, V x;, is true, X’ includes at least one variant in the
set {x;,, T, T . At this point, corresponding to each tag d; in p’s label, there exists at
least one process uy in the set {ug,, us,, . . ., us, } which can delete d;. This deletion takes
place when the information flow passes uq; and 2) since each b; = 75, VT;, VT, is true, X’
includes at most two variables in the set {z;,,z;,,2;,}. Correspondingly, for each group

of tags {d;l, d;z, d;?’}, the current secrecy label of information includes at most two tags in

the set {d;l, d;?, d;g} when the information flow passes the path < p,ug,, us,, ..., us, >.
This guarantees that at least one process in the set {ug-l, u;2, uf} can remove these tags

from the label of the information before forwarding. Therefore, if L is satisfied, then p can
reach ¢. Figure 1 shows the corresponding information flow path in Q-Flume™ instance.

We will now prove that when Q-Flume™ is true, M3SAT (L, X) is also true. Assume
that a legal information flow path exists from p to ¢, referred to as flow,_, 4. Obvi-
ously, p cannot reach ¢ if tags dy, do, ..., dyr are not deleted from the label of flow,_, _,.
For each d;, flow,, _,, must have contained at least one of three processes having the
capability d; . Meanwhile, the processes that delete tags {di,ds,...,dy} from the la-
bel of flow,, _,, also bring some tags from {d."|1 < z < N,1 < ¢ < w} into the
flow,_, _,,. Since no process can obtain the capabilities (d}l)*, (d;?)*, (d;-?’)* simulta-
neously, flow,, _,, could not be contaminated by d}l, d}Z, d;-3 simultaneously. Let U’
denote the set of processes which delete tags {d;|1 < i < M} from the label of flow,_, _,.
Let X' denote the set of variables in X that corresponds U’. Each variable in X’ is as-
signed to be true, and each variable in X — X’ is assigned to be false. At this point, the
formula L is satisfied.

7976 Z. YANG, L. YIN, S. JIN AND M. DUAN

Now, we prove that the M3SAT (L, X) instance is true if and only if the Q-Flume~
instance is true. This proves that Q-Flume™ without privilege-transferring is NP-hard.

Lemma 3.2. @Q-Flume™ without decentralized declassification is a P problem.

Proof: In a Flume system without decentralized declassification, process label changes
are monotonic. That is, the changes of processes’ secrecy labels are non-decreasing while
the changes of their integrity labels are non-increasing. In this case, if a process p is
not permitted to send information to a process ¢ directly, p cannot reach ¢ via other
processes. Therefore, the reachability from p to ¢ depends on whether or not p’s label
is less than or equal to ¢’s new maximum label after all other processes have granted
all their label-heightening abilities to ¢. (Such grant operations should be permitted by
Flume rules.)

Assume there are n processes. We only consider at most (n — 1)(n — 2)/2 + 1 la-
bel operations and comparisons. Thus, the problem of Q-Flume™ without decentralized
declassification can be solved in polynomial time.

Lemma 3.3. Q-Flume™ without taint-tracking is a P problem.

Proof: The proof is similar to the proof of Lemma 3.2, without considering the opposite
direction of label changes. In a Flume system without taint-tracking, the label changes are
monotonic. The changes of processes’ secrecy label are non-increasing while the changes
of their integrity labels are non-decreasing. In this case, if a process p is not allowed to
send information to a process ¢ directly, p cannot reach ¢ via other processes. Therefore,
the reachability from p to ¢ depends on whether or not p’s new minimum label is less than
or equal to ¢’s label after all other processes have granted their declassification abilities
to p. (Such grant operations should be permitted by Flume rules.)

Assume there are n processes. We only consider at most (n — 1)(n — 2)/2 + 1 label
operations and comparisons. Thus, the problem of Q-Flume™ without taint-tracking can
be solved in polynomial time.

Lemma 3.4. Q-Flume is in NP.

Proof: We need to demonstrate that a candidate solution (evidence) for any Q-Flume
instance can be verified in polynomial time. Since Q-Flume is to verify whether there
exists a counterexample that dissatisfies a specified goal, we now take negative evidences
into consideration. Given a negative evidence e (a state path) of a Q-Flume instance, we
can prove that the length of this path is not longer than n(n — 1), where n represents the
number of processes. The reasoning is supported by the role of each primitive proposition
in the Q-Flume instance, which asserts an information flow path from one process to
another. This denotes that if a primitive proposition ¢ holds in a state -, then ¢ holds
in all successor state of «v. Thus, the set of primitive propositions holding in a state 7 is
larger than the set of primitive propositions holding in +’s predecessor state. Since the
total number of the primitive propositions is n(n — 1), the length of an effective negative
evidence will not be larger than n(n — 1).

On the other hand, there are at most n(n — 1) primitive propositions that need to be
verified in each state. Therefore, the verification can be finished in O (n?(n — 1)?) in a
worst-case scenario. With this line of logic, we prove our result.

Theorem 3.1. Q-DIFC is NP-complete.

Proof: According to Lemmas 3.1-3.4, we know that Q-Flume is in NP and that a
sub-problem of Q-Flume is NP-hard. Therefore, Q-Flume is NP-complete. Further, as
shown in Section 2.4, when given a Flume system, we have the ability to construct an

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7977

equivalent Asbestos/Histar system in linear time. Thus, the results of Lemmas 3.1-3.4
still hold in Asbestos/Histar systems. By this logic, Q-DIFC in Asbestos/Histar systems
is also NP-complete. We conclude that in general Q-DIFC is NP-complete.

Theorem 3.1 shows that: 1) in the worst case, the policy verification problem in DIFC
(we call this problem Q-DIFC) cannot be solved in polynomial time since Q-DIFC is
NP-complete; 2) the high complexity of Q-DIFC is attributed to the mechanisms of de-
centralized declassification and taint-tracking. One can easily solve a Q-DIFC without
decentralized declassification and taint-tracking with the use of a fast algorithm. How-
ever, this algorithm may not be practical since DIFC lacking decentralized declassification
and taint-tracking is unable to achieve fine-grained security goals. Therefore, to solve a
general Q-DIFC, an acceptable solution should solve fewer Q-DIFC instances over long
time periods, while solving most Q-DIFC instances in short time periods.

4. Model Checking Approach to DIFC Policy Verification. In this section, we
propose a formal method of model checking to solve Q-DIFC. Formal methods consist of
mathematically-based verification techniques, which are widely used in the hardware and
software industries [20]. Our experimental results show that the proposed model checking
approach can solve most Q-DIFC instances in reasonable amounts of time.

4.1. Model checking approach. Generally speaking, model checking can be used to
verify whether or not a system satisfies a desired property. If a model M satisfies the
property, a model checker will report true. If M does not satisfy the property, a model
checker will provide a counterexample showing a violation of the property.

In detail, model checking uses the Kripke structure [21] to describe a verification model.
This structure is a 4-tuple M = (S, Sy, R, L), where S represents a set of finite states, Sy
is a set of initial states, R C S x S is a transition relation, L : S — 247 is a labeling
function, where AP is a set of atomic propositions.

In order to construct the formal policy verification model M of an DIFC system <
L, 7%,U,0 >, we can let S =T, Sy =9, R =0, AP = {reached(z,y)|x € U,y € U}, and
L represent the set of existing information flow paths in a given state. Moreover, we use
CTL formulae over atomic propositions AP to describe its security goals (properties).

This section demonstrates how to use the proposed approach to verify polices in the
Flume system, although this approach can also be applied in any arbitrary DIFC systems.
We cast the model of Flume’s policy verification into NuSMV language as shown in Figure
2.

As shown in Figure 2, each process i corresponds to a p[i] — an instance of a reusable
module proc. We introduce the following vraiables for each pl[i]: variable s denotes the
secrecy label of process i, variable add denotes i’s capabilities of adding tags to its labels,
variable sub denotes i’s capabilities of deleting tags from its labels, variable id denotes
the process identifier, and array-type variable taint denotes the taint state of a process
(where taint [j] records whether process i has been contaminated by the information flow
originated from process j). The variables are initialized in the main module.

The main module randomly selects a pair of sender and receiver processes in the current
system state. After receiving the sender’s information via the interface parameters of proc
module, the receiver updates its state information according to Flume’s control rules and
the sender’s taint information.

By default, each sender will grant its capabilities to the receiver, thus enabling the re-
ceiver to have the greatest chance to forward the received information. Each sender /receiv-
er pair communicates once in virtue of the variable once in proc module (here omitting the
integrity label to simplify description). Based on this verification model, we are able to

7978 Z. YANG, L. YIN, S. JIN AND M. DUAN

MODULE main MODULE proc(receiver,sender tainted.in_s,in_add.in_sub)
VAR VAR
p :array 1LNUM_PROC ofproc(next(receiver),next(sender), flow :boolean;
next (in_taint),next(in_label),next(in_add),next(in_sub)); taint :array 1.INUM PROCESS of boolean
sender ,receiver :1.NUM PROCESS; s, add,sub:set; B
in_s,in_add,in_sub :set; once :array 1.NUM_PROCESS ofboolean:
in_taint : array 1.NUM_PROCESS ofboolean; id :1.NUM_PROCESS
ASSIGN ASSIGN
for (i=1; i=NUM_PROC;it++) for (i=1; i=NUM PROCESS:i++) init(once[i]):= FALSE;
for (j=1; j=<NUM PROC; j++) next(flow) :=!once[sender] & id=receiver & id!=sender &
init (p[i].taint[j]):= i=j?7TRUE:FALSE; (in_s—in_sub) =(s Uadd)?TRUE:FALSE;
init (p[i].id):=i; for (i=1; i=NUM_PROCESS:i++)
initialize the labels and capabilities of P [i]; next(taint[i] ;:=next(flow) & tainted[i]? TR UE :taint [i]:
next (sender) := 1.NUM PROCESS: For (i=1; i=NUM _PROCESS;i++)
next (receiver) := 1.NUM_PROCESS; next(oncefi):=selected=i & next(low)?TRUE:once[i];
next (?117t‘«lillt) :=plsender].taint; next(s) :=next(flow)?(labelU(in_s—in_sub):s;
next (fnfs) = plsender].s; next(add) :=next(flow)?in_ addU add:add;
next(in_add) := p[sender |.add; next(sub) ::nett(ﬂow)'?in_sub U sub:sub;
next (in_sub) := p[sender].sub:)) - ’
SPEC CTL formula

FiGURE 2. Policy verification model in NuSMV language

verify various security goals. For example, a CTL formula with the form “EFlp[i].taint[;]”
verifies whether process j can reach process i.

4.2. Preprocessing. Note that some processes may be irrelevant to the verification pro-
cess. The preprocessing phase is used to delete irrelevant processes; thus enabling the size
of search space can be reduced.

Given a Q-DIFC instance < sys, 1 >, the preprocessing phase includes three types of
pruning, as follows:

(1) It deletes processes lacking any capability (since these processes do not have the
ability to influence any information flow path);

(2) It deletes the processes whose capabilities cannot influence the information flow
paths described in the formula . To illustrate this, we use V' to represent these processes
that are capability-irrelevant to 1. For each primitive proposition x = reached(p, q) in
Y, let L = (S, —Cp) — (S, UCy), and let K, represent the set of processes that are
capability-irrelevant to x (with K’s initial value equal to the set of all processes). We
first select a process r from K,, where r satisfies the condition that CF N L # ¢ or
C-NL#¢. Wethen update L and K, as L = LU (S, UC/) and K, = K, — {r}. This
search process is repeated until K is empty or no r can be found in K. Now, we obtain

K,. Further, V = ﬂw K., where x is a primitive proposition;
HAS

(3) It deletes the processes that cannot reach any process in v, since they have no chance
to exert their abilities to influence the information flow paths in . For the purpose of
this explanation, we use F' to represent these processes which cannot reach any process
in v. Let F’s initial value be M — B, where M is the set of all processes and B is the
set of the processes in 1. We first select a process r from F', where r is permitted to
send information to a process in B. Then F' and B are updated as F = L — {r} and
B = BU{r}. The search process is repeated until F' is empty or no r can be found in F'.
At last, we obtain F.

Suppose an instance has a total of m processes. The first two types of pruning described
here take time m, while the last type of pruning takes time m?2. The computational

complexity of the preprocessing is O(m?).

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7979

4.3. Experiments. In this section, we evaluate the performance of the proposed ap-
proach. We use NuSMV 2.5.2 running on a Windows XP with an Intel P4 2.8G CPU and
2GB of memory in the experiments.

We constructed 8 groups of Q-DIFC instances. They are G1, G2, ..., and G8 as shown
in the first row of Table 3. Each group has a total of 10 instances. Each instance occurring
in the same group has the same number of processes and tags, as shown in row 2 “Num
of processes” and row 3 “Number of tags” of Table 3 respectively. For each process p
and each tag d, p’s label depends on the random choice based on {0,1}. p’s capabilities
are determined by the random choice based on {0, 1,2, 3}, where 0, 1,2 and 3 denote the
capabilities of the following options: adding d, removing d, both adding and removing
d, and no capabilities. Moreover, we constructed 10 different CTL formulae to express
security goals, with the connectives in these formulae being evenly selected from the CTL
operator set. We set the n-th version of these 10 formulae as the security goal of the n-th
instance of each group.

TABLE 3. Algorithm performance evaluation on various-scales data

Gl G2 G3 G4 G5 G6 GT7 GS8
Num of processes | 10 20 30 40 80 120 160 200
Num of tags 4 6 8 8 156 20 25 30

N/A o o0 0 0 0 1 3 6
Runtime-1 2 6 27 47 174 245 633 1565
Runtime-2 2 8 39 68 235 660 1465 —

According to our experimental results, the instances can be categorized into three types:
Type 1 instance can be solved in 30 minutes with its specified security goal not satisfied;
Type 2 instance can be solved in 30 minutes with its specified security goal satisfied; Type
3 instance cannot be solved in 30 minutes. Row “Runtime-1" describes the average time
in seconds taken to solve the Types I instances, while Row “Runtime-2" describes this
average time for the Types 2 instances. Row “N/A” describes the number of the Type
3 instances in each group. The experimental results are shown in Table 3. Please note,
there is no Type 2 instance in G8; thus the entry (Runtime-2, G8) in Table 3 is empty.

Table 3 shows that the proposed approach can solve most cases of nontrivial size. The
runtime of the proposed approach does not increase exponentially with the increase of
the processes and tags. A reason for this could be that the scale of the problem does not
increase in proportion to the number of processes and tags occurring under constraints of
partial relations of the processes’ labels.

Further, we evaluate the effects of preprocessing and capability grant operations on the
overall performance of the approach. We generate 6 instances with a different number
of processes (denoted as n) and a different number of tags (denoted as m). The experi-
mental results are shown in Figure 3. Runtime-A measures the runtime in the case where
preprocessing is not conducted and capability grant operations are permitted. Runtime-B
measures the runtime in the case where preprocessing is conducted while no capability
grant operations are permitted. Runtime-C measures the runtime in the case where both
preprocessing and capability grant operations are permitted.

By comparing the results between Runtime-A and Runtime-C, we can find preprocessing
plays an important role in improving the efficiency of the approach. In particular, with
the increase of m or n, preprocessing improves the efficiency of the approach accordingly.
By comparing the results between Runtime-B and Runtime-C, we find that, although
capability grant operations may not represent the key factor of the exponential complexity

7980 Z. YANG, L. YIN, S. JIN AND M. DUAN

10000

Lo00 /

E
o
E 100
+
E .
- —4—Runtime-A
10 —8B—FRuntime—B
Runtime—C
l 1 1 1 T
2086 3008 40810 n/m 20812 120413 160420

F1GURE 3. Effects of preprocessing and capability grant operations on the
performance of the algorithm

of policy verification, in most case its presence will remarkably increase the computing
time of policy verification. In particular, the increase of m or n will cause the effects of
capability grant operations on performance to increase accordingly.

5. Conclusions. In this paper, we have modeled the policy verification problem in DIFC,
while using Computational Tree Logic formulae to express the fine-grained security goals
as they relate to the constraints and correlations between informational flow paths. In our
research, we have proven that the policy verification problem in DIFC is NP-complete.
We have further studied the main factors resulting in high computational complexity,
and proposed a model-checking approach for policy verification in DIFC systems. The
experimental results in Flume’s policy verification demonstrate the high efficiency of the
proposed approach.

The model checking approach in this paper provides a feasible method for solving
the policy verification problem in DIFC. There are many other approaches in existing
literature that can also be employed in this field. Future work will involve making further
improvements in solving DIFC’s policy verification issues.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China under Grant No. 61070186 and No. 61100181, and the National
Basic Research Program of China under Grant No. 2011CB311801. We gratefully ac-
knowledge the helpful comments and suggestions of the reviewers, which have improved
the presentation.

REFERENCES

[1] C.-C. Lo, C.-C. Huang, F.-Y. Lee, K.-Y. Chen, P.-H. Ho and A. Graebner, A flexible access control
mechanism for web services, ICIC Express Letters, vol.5, no.4(B), pp.1377-1383, 2011.

[2] Y. Liu, Research on the construction and assessment of the technical control models in network
information communication, ICIC Ezpress Letters, vol.5, no.1, pp.27-33, 2011.

[3] A. C. Myers and B. Liskov, Protecting privacy using the decentralized label model, ACM Transac-
tions on Software Engineering and Methodology, vol.9, no.5, pp.410-442, 2000.

[4] S. VanDeBogart, P. Efstathopoulos, E. Kohler, M. Krohn, C. Frey, D. Ziegler, F. Kaashoek, R. Morris
and D. Mazieres, Labels and event processes in the Asbestos operating system, ACM Transactions
on Computer Systems, vol.25, no.4, 2007.

[5]

TOWARDS FORMAL SECURITY ANALYSIS OF DIFC POLICIES 7981

N. Zeldovich, S. Boyd-Wickizer, E. Kohler and D. Mazieres, Making information flow explicit in
HiStar, Proc. of Usenixz Association the 7th Usenix Symposium on Operating Systems Design and
Implementation, Seattle, Washington, pp.263-278, 2006.

M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler and R. Morris, Information
flow control for standard OS abstractions, Proc. of the 21st ACM Symposium on Operating Systems
Principles, Skamania Lodge, Southern Washington State, pp.321-334, 2007.

M. Krohn and E. Tromer, Noninterference for a practical DIFC-based operating system, Proc. of the
IEEE Symposium on Security and Privacy, Berkeley, California, pp.61-76, 2009.

B. Lampson, Making untrusted code useful: Technical perspective, Communications of the ACM,
vol.54, no.11, pp.92-92, 2011.

P. Efstathopoulos and E. Kohler, Manageable fine-grained information flow, Proc. of the 3rd ACM
European Conference on Computer Systems, Glasgow, Scotland, pp.301-313, 2008.

A. Chaudhuri, P. Naldurg and S. K. Rajamani, EON: Modeling and analyzing dynamic access control
systems with logic programs, Proc. of the 15th ACM Conference on Computer and Communications
Security, Alexandria, Louisiana, pp.181-390, 2008.

W. R. Harris, N. A. Kidd, S. Chaki, S. Jha and T. Reps, Verifying information flow control over
unbounded processes, Proc. of the 16th International Symposium on Formal Methods, LNCS, Eind-
hoven, Netherlands, vol.5850, pp.773-789, 2009.

W. R. Harris, S. Jha and T. Reps, DIFC programs by automatic instrumentation, Proc. of the 17th
ACM Conference on Computer and Communications Security, Chicago, Illinois, pp.284-296, 2010.
J. D. Guttman, A. L. Herzog, J. D. Ramsdell and C. W. Skorupka, Verifying information flow goals
in security-enhanced Linux, Journal of Computer Security, vol.13, no.3, pp.115-134, 2005.

B. Hicks, S. Rueda, L. S. Clair, T. Jaeger and P. McDaniel, A logical specification and analysis for
SELinux MLS policy, ACM Transactions on Information and System Security, vol.13, no.3, pp.26:1-
26:31, 2010.

B. Sarna-Starosta and S. D. Stoller, Policy analysis for security enhanced Linux, Proc. of the Work-
shop on Issues in the Theory of Security, Barceloma, Spain, pp.1-12, 2004.

M. Harrison, W. Ruzzo and J. Ullman, Protection in operating system, ACM Communication, vol.19,
no.8, pp.461-471, 1976.

S. Jha, N. H. Li, M. V. Tripunitara, Q. Wang and W. H. Winsboroug, Towards formal verification of
role-based access control policies, IEEE Transactions on Dependable and Secure Computing, vol.5,
no.4, pp.242-255, 2008.

E. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co., New York, 1979.

L. Lu and J. Ma, Formal method for the analysis of security protocols, ICIC Ezpress Letters, vol.5,
no.10, pp.3785-3789, 2011.

A. Biere, A. Cimtti, E. M. Clarke, M. Fujita and Y. Zhu, Symbolic model checking using SAT
procedures instead of BDDs, Proc. of the 36th Annual Conference on Design Automation, New
Orleans, Louisiana, pp.317-320, 1999.

