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Buca, İzmir 35160, Turkey
zferendogu@gmail.com; cengiz.celikoglu@deu.edu.tr

Received July 2011; revised December 2011

Abstract. Increasing complexity of risk management requires the use of more flexible
approaches to measure information security risk. Adapting complex risk analysis tools in
today’s information systems is a very difficult task due to the shortage of reliable data.
Analytic Hierarchy Process group decision making (AHP-GDM) offers a technical support
for risk analysis by taking the judgements of managers and systematically calculating the
relative risk values. This paper presents how Bayesian Prioritization procedure (BPP)
provides a more effective way of risk assessment than proposed by the conventional ap-
proaches used in AHP-GDM.
Keywords: Information security, Risk assessment, Analytic hierarchy process (AHP),
Group decision making (GDM), Bayesian prioritization procedure (BPP)

1. Introduction. Information security risk management is a recurrent process of identi-
fication, assessment and prioritization of risks, where risk could be defined as a possibility
that a threat exploits a particular vulnerability in an asset and causes damage or loss to
the asset. Risk management has two primary activities, risk assessment and risk control.
Risk assessment is a very important decision mechanism which identifies the information
security assets that are vulnerable to threats, calculates the quantitative or qualitative
value of risk (or expected loss), and prioritizes risk incidents. In an organization, in the
past, a single manager was used to be the responsible staff to protect information systems
where, nowadays, a group of managers could take the responsibility of this task or par-
ticipate in the risk analysis process. As risk analysis becomes a cross-functional decision
making process, researchers seek ways to develop new risk analysis methods which allow
a group of people to participate.

Although risk is well defined and practical for decision making, it is often difficult
to calculate a priori [1]. Due to the difficulty in adapting complex risk analysis tools in
today’s information systems, researchers have proposed new techniques which are capable
of analyzing information security risk properly. A number of quantitative and qualitative
risk analysis methods have been developed.

The quantitative approaches use mathematical and statistical tools to represent risk as
a function of the probability of a threat and the expected loss due to the vulnerability
of the organization to this threat [2,3]. Due to the shortage of reliable data on incidents
(probabilities and impacts), quantitative approaches may not yield reliable results. Con-
sequently, security or risk management professionals mostly prefer qualitative methods
rather than quantitative ones. In qualitative methods, estimated risk is calculated using
only the estimated potential loss instead of the probability data. These approaches de-
pend on the ideas of the analyst so they are subjective and might yield inconsistent results
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[4]. There is not a single risk evaluation method which is best under all circumstances and
for all purposes. Some researchers claimed that neither of the quantitative and qualita-
tive approaches could properly model the assessment process alone. Alternatively, some
of them developed comprehensive approaches combining both the quantitative and the
qualitative approaches [2,3,5]. The Analytic Hierarchy Process (AHP), first proposed by
T. L. Saaty [6], is one of the most widely used multi-criteria decision technique which
can combine qualitative and quantitative factors for prioritizing, ranking and evaluating
alternatives [7]. It allows multiple actors, criteria and scenarios to be involved in the
analysis [8].
Previously, AHP analysis was used as support for an organization’s information security

system to evaluate the weights of risk factors [9], to determine the optimal allocation of
a budget [10], to evaluate the weighting factors needed to combine risk measures [2], to
obtain the indices’ weights with respect to the final goal of the security evaluation [11], to
select information security policy [12], and to establish e-commerce information security
evaluation [13]. Zhang et al. [14] proposed calculating a relative risk value with Analytic
Hierarchy Process group decision making (AHP-GDM) instead of calculating the actual
value of the risk. They mentioned that the loss could be measured by the value of assets,
and that probability of risk could be described in an equation with the danger degree of
threat and vulnerability as its two variables.
The AHP method is operable and efficient as it prioritizes and orders risk incidents,

which could also satisfy the aim of risk management. However, there might be some com-
plexities when using AHP-GDM for information security risk evaluation. For instance, in
AHP-GDM, it is assumed that the pairwise comparison matrices containing the judge-
ments expressed by decision makers are complete and accurate. In real life, decision
makers might provide only incomplete information due to following situations: (1) some
of the decision makers may have limited expertise about the problem domain or the AHP
analysis; (2) decision makers participated in the analysis would prefer to concentrate
on the risk assessment itself rather than the AHP tool being implemented in the risk
analysis; (3) they may have difficulties in making pairwise comparisons efficiently as the
number of elements (assets, threats and vulnerabilities) in the problem increase. More-
over, the practitioner may also prefer to ignore the inconsistent or opposing judgements
while keeping the consistent or homogeneous ones in order to increase the consistency or
consensus among decision makers. Altuzarra et al. [15] proposed a Bayesian prioritization
approach for AHP-GDM which can naturally be extended to the case of incomplete pair-
wise comparison matrices. Contrary to the conventional prioritization methods applied
in AHP-GDM [16-18], this technique does not require intermediate filters for decision
makers’ initial judgements.
The paper aims at providing an effective and practical group decision mechanism to

prioritize the risk incidents. We propose using BPP based AHP-GDM for information
security risk evaluation, which is a remedy for the complexities mentioned above. This
approach provides flexibility to the group of participants when expressing their judge-
ments, and to the risk analysts, who may not be professional AHP practitioners, by
treating incomplete or inconsistent judgements properly. We compare the method with
the conventional approach used in the AHP-GDM and the results show that the proposed
methodology performs more robust manner and calculates the final priorities with smaller
MSE than the conventional approach. Other advantages of this technique can be listed
as follows: it can easily be adapted to any information security standard by updating the
elements in the problem, and can be used alone or with any other information security
risk analysis methods as a support.
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The remainder of this paper is as follows. The relevant theoretical background of
the AHP-GDM approach and the Bayesian prioritization procedure for the AHP-GDM
is briefly presented in Section 2. In Section 3, an illustrative example is provided to
show how the proposed method can be implemented to calculate the relative values of
risk incidents. The main results of the illustrative example are also given here. Finally,
Section 4 summarizes the conclusions obtained from this study.

2. Background.

2.1. AHP group decision making (AHP-GDM). The AHP was developed by Saaty
[6] in order to deal with problems which involve consideration of multiple criteria simulta-
neously. It has been extensively applied in complex decision-making problems of choice,
prioritization and evaluation. Its ability to synthesize both tangible and intangible charac-
teristics, to accommodate both shared and individual values and monitor the consistency
with which a decision-maker makes his judgements made the AHP a widely used multiple
criteria decision making (MCDM) tool [19]. The AHP has particular applications in in-
dividual and group decision making. According to many researchers AHP is an effective
and flexible tool for structuring and solving complex group decision situations [15,17,19].

The AHP comprises of four stages: modeling, valuation, prioritization and synthesis. In
the modeling stage, a hierarchy which describes the problem is constructed. The overall
goal or mission is placed at the top of the hierarchy. The main attributes, criteria and
subcriteria are placed in the subsequent levels below. In the evaluation stage, decision
makers compare all the criteria with regard to goal and then all the alternatives with
respect to each criterion. Their preferences are included as pairwise comparison matrices
in the analysis and they are based on the fundamental scale proposed by Saaty [6]. In the
prioritization stage, the local priorities are derived by calculating the eigenvalues of the
comparison matrix of each element and global priorities are derived using the hierarchic
composition principle. In the last stage, the global priorities for each alternative are
synthesized in order to get their total priorities.

There are different methods to accommodate the judgements of decision makers in a
group setting [8]. Saaty [16] suggests one of the two methods to proceed: decision makers
make each paired comparison individually, or the group is required to achieve consensus
on each paired comparison. If individual’s paired comparison ratio judgements are gath-
ered, the AHP literature describes different methods for the prioritization and synthesis
procedures [6,20,21]. The two conventional procedures to obtain group priorities are the
aggregation of individual judgements (AIJ) and the aggregation of individual priorities
(AIP). Based on individual judgements, a new judgement matrix is constructed for the
group as a whole in AIJ procedure and the priorities are computed from the new matrix.
In the AIP method, the total priorities are obtained on the basis of individual priorities
using one or other aggregation procedure. Synthesis of the model can be done using an
aggregation procedure. The weighted geometric mean method is the most commonly used
technique for both [22].

2.2. Bayesian prioritization procedure (BPP) for AHP-GDM. Bayesian methods
allow the treatment of missing data or incomplete information using data augmentation
techniques [23]. The integration of high-dimensional functions has been the major limita-
tion towards the wide application of Bayesian analysis before Markov Chain Monte Carlo
(MCMC) methods was introduced.

There are very few references to Bayesian analysis in the AHP literature. [24] provided a
Bayesian extension of their regression formulation of the AHP. [25] used MCMC methods
to calculate the posterior distributions of judgements and estimated the vector of priorities
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and the most likely rankings. [15] provided a Bayesian prioritization procedure (BPP)
for AHP group decision making that does not require filters for the initial judgements of
the decision makers. This procedure is based on the prior assumption of the existence
of consensus among the decision makers. Unlike the AIJ and the AIP methods, this
process uses weightings that are inversely proportional to the decision makers’ levels of
inconsistency and is more efficient when compared to them. This method also can be
extended to the case of incomplete pairwise comparison matrices, which is a common
problem in complex decision making problems. For such cases, [15] showed that BPP
performs much more robust manner than the conventional methods, especially with regard
to consistency.

2.2.1. Statistical model. Assuming a single criterion, and a set of n alternatives, A1, . . . ,
An, let D = D1, . . . , Dr, r ≥ 2 be a group of r decision makers, each express individual
pairwise comparisons with regard to the criterion considered, resulting in r reciprocal
judgement matrices, R(k), k = 1, . . . , r. Their preferences are based on the fundamental

scale proposed by Saaty [5]. R(k) = (r
(k)
ij ) is a positive square matrix (n × n) which

validates (r
(k)
ii ) = 1, (r

(k)
ij ) = 1/(r

(k)
ji ) > 0 for i, j = 1, . . . , n. The judgements (r

(k)
ij )
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G
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j be the group’s

unnormalized and normalized priorities for the alternatives, respectively.
As traditionally employed in stochastic AHP [20,24], a multiplicative model with log-

normal errors is applied in the Bayesian analysis of the model. If the decision makers
express all possible judgements, the model will be

r
(k)
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e
(k)
ij , i, j = 1, . . . , n, k = 1, . . . , r, (1)

with e
(k)
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judgements, a regression model with normal errors is obtained given by:

y
(k)
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i − µG
j ) + εkij, i = 1, . . . , n− 1, j = 1, . . . , n, k = 1, . . . , r, (2)

where εkij ∼ N(0, σ(k)2). Here, An is established as the benchmark alternative (µn =
0 ⇐⇒ vn = 1). In matrix notation, model can be written as:
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(k)2I), (3)
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With a constant non-informative distribution as the prior distribution for the vector of

log-priorities, µG, the posterior distribution of µG for complete and precise information
is given by:
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,

τ (k) = 1/σ(k)2 and y = (y(1)′ ,y(2)′ , . . . ,y(r)′)′.
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For the conventional procedure, AIP, the most commonly used method to aggregate
group judgements is the geometric mean method. It can be presented as:

µ̂AIP =
1

r

r∑
k=1

µ̂(k), (5)

where µ̂(k) = (µ̂
(k)
1 , . . . , µ̂

(k)
n−1) with µ̂

(k)
i = ȳ

(k)
i. − ȳ

(k)
n. . The other conventional procedure,

AIJ, is not mentioned in this study since [15] showed that it gives almost the same results
with the AIP method. Further information and theorems can also be found in [15].

2.2.2. Incomplete information. Most MCDM methods are based on the assumption that
complete information about the model parameters (scores, attribute weights) need to be
elicited as ‘exact’ point estimates [26]. According to [27], decision makers might provide
only incomplete information in real life. The reasons for the incomplete information are as
follows: (1) a decision might be made under pressure of limited time and lack of data; (2)
many of the attributes might be intangible or non-monetary because they reflect social and
environmental impacts; (3) decision makers might have limited attention and information
processing capabilities; and (4) all participants might not have equal expertise about the
problem domain in group settings. As a consequence, all of the decision makers may not
express the n×(n− 1)/2 possible judgements in the reciprocal pairwise comparison matrix
or may express inconsistent judgements. There are many methods proposed to overcome
this problem (see [26] for more information). BPP can also naturally be extended to the
case of incomplete information, where it performs more robust manner compared with
the conventional methods in terms of consistency. In such cases, the equations of model
(3) could be expressed as:

y(k) = XµG + ε(k), (6)

with ε(k) ∼ Ntk(0, σ
2
kI tk), k = 1, . . . , r; and in the matrix form it can be expressed as:

y = X(1r ⊗ In−1)µ
G + ε with ε ∼ Nt(0,D) (7)

where y = (y(1)′ ,y(2)′ , . . . ,y(r)′)′, X = diag(X(1),X(2), . . . ,X(r)), ε = (ε(1), ε(2), . . . ,
ε(r))′ and D = diag(σ(1)2I t1 , . . . , σ

(r)2I tr). 1r = (1, 1, . . . , 1)′, tk is the number of judge-
ments issued by each decision maker Dk, t = t1+. . .+tr is the total number of judgements
by all decision makers and ⊗ denotes the Kronecker product.

With a constant non-informative distribution as the prior distribution for the vector of
log-priorities (µG), the posterior distribution of µG for incomplete and precise information
is given by:

µ | y ∼ Nn−1(µ̂B, Σ̂B), (8)

where
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The estimator of µG obtained by means of the AIP procedure is given by:

µ̂AIP =
1

r

r∑
k=1

µ̂(k) =
1

r

r∑
k=1

(X(k)′X(k))−1(X(k)′y(k))

=
1

r
(1r ⊗ In−1)(X

′X)−1(X ′y). (9)

3. Information Security Risk Assessment Example. Let us consider the group de-
cision analysis situation on information security risk assessment taken from [14]. They
defined 3 criteria ({C1, C2, C3}), which are assumed to have the same weights; confiden-
tiality, integrity and availability, and 3 key factors conducting the security risk assess-
ment; assets ({A1, . . . , Am}, m = 5), threats ({T1, . . . , Ts}, s = 6), and vulnerabilities
({V1, . . . , Vh}, h = 6) based on GB/T20984: Risk Assessment Specification for Informa-
tion Security. The key factors are given in Table 1.

Table 1. List of assets, threats and vulnerabilities

Assets Threats Vulnerabilities
A1-Service T1-Physical environment influences V1-Physical damages
A2-Data T2-Hardware and software breakdowns V2-Network vulnerabilities
A3-Software T3-Malicious code V3-Operating systems vulnerabilities
A4-Hardware T4-Ultra vires V4-Application systems vulnerabilities
A5-People T5-Cyber attacks V5-Application middleware vulnerabilities

T6-Management problems V6-Problems in technique and organization

We noted that the AHP-GDM analysis could contain some complexities here. For
example, the decision makers participated in the analysis might have limited expertise
about some of the factors in the analysis so they might express incomplete or inconsistent
judgements. They also might not have sufficient information about the AHP analysis and
its requirements or they might have limited attention which may result in inconsistent
situations. Moreover, expressing complete and consistent judgements is difficult with a
large number of attributes and alternatives, since there are 3 criteria, 5 assets, 6 threats
and 6 vulnerabilities (which requires 183 different judgements for one decision maker at
total) in the model. Consequently, we aimed to solve this problem with the AHP-GDM
based on BPP in order to show that it would present a more practical and flexible way
of information security risk assessment.
In this study, there are three AHP models to be analyzed. The first AHP model given in

Figure 1 is established for calculating the priorities of assets (A1, . . . , A5), with respect to
the attributes: confidentiality (C1), integrity (C2) and availability (C3). The importance
of these three attributes might be different for each organization so we assumed that all

Figure 1. AHP decision tree for asset prioritization
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three factors have the same importance in this study. The overall goal is placed at the
top of the hierarchy. The attributes are placed in the second layer, and the assets are in
the third layer, which is the “alternatives” layer.

The second and the third AHP models are constructed in order to calculate the dan-
ger degree of threats (T1, . . . , T6) and vulnerabilities (V1, . . . , V6) in terms of each asset
respectively. Figure 2 shows the decision tree for the danger of threats model. A similar
model is prepared for the vulnerabilities.

Since we assumed that the attributes in the first AHP model are equal, we did not
require any comparisons for them. So, for each AHP models, we had 3, 5 and 5 different
set of pairwise comparisons to be completed by each decision makers respectively. We
assumed that there is a cross-functional team composed of 5 decision makers from various
departments, who are not forced to give complete answers to the pairwise comparison
matrices. In order to illustrate this case, we simulated data based on the fundamental
scale proposed by Saaty [6] for each set of pairwise comparison matrices that are presented
in Tables 2-4. In Table 2, the simulated pairwise comparisons for the first AHP model
are given, where 5 assets are compared by 5 decision makers in terms of C1, C2 and C3.
In the first model, D2 did not compare A3 with A5, and D5 did not compare A3 with A5

in the second one, which resulted in incomplete judgement situations.
The opening coefficients (ocij) reflect the variability of judgements expressed by decision

makers, and are calculated by: Maxk(r
k
ij)/Mink(r

k
ij), k = 1, . . . , 5, 1 ≤ i < j ≤ n. In this

study we omitted the most inconsistent judgements which cause ocij to be large. In Table

Figure 2. AHP decision tree for threat prioritization

Table 2. Simulated pairwise comparisons of 5 assets in terms of 3 attributes

Ai −Aj pairs 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

C1

D1 1/4 2 5 2 7 9 5 2 1 1/3
D2 1/3 4 7 3 5 8 5 1 NA 1/2
D3 1/2 3 7 5 9 9 4 3 3 2
D4 2 5 9 2 7 6 2 1 1 1/4
D5 1/2 3 6 1/3 9 5 5 1/3 2 1/3

ocij ≥ 8 8 15 9 8

C2

D1 1/3 2 5 2 7 9 5 2 1 1/3
D2 1/4 3 9 2 7 6 2 1 1 1/4
D3 1/2 3 7 5 9 9 4 3 3 1/3
D4 1/3 3 6 1/3 9 5 5 2 2 1/3
D5 1/2 4 7 3 5 8 5 1/3 NA 2

ocij ≥ 8 15 9 8

C3

D1 1/4 2 5 2 7 7 5 2 1 1/3
D2 1/4 3 6 2 7 6 2 1 1 1/4
D3 1/2 4 7 5 9 7 3 3 3 1/3
D4 1/2 3 8 4 9 5 3 8 2 1/3
D5 1/3 4 7 3 1 8 4 3 2 3

ocij ≥ 8 9 8 12
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Table 3. Simulated pairwise comparisons of 6 threats in terms of 5 assets

Ti − Tj pairs 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6

A1

D1 1/5 1/3 1/3 1/7 2 3 3 1/4 5 2 1/3 7 1/4 3 9
D2 1/4 1/3 1/2 1/5 1 3 3 1/2 6 1 1/4 3 1/3 3 9
D3 1/5 NA 1/5 1/5 1 5 6 1/3 5 1 1/4 4 1/2 3 1
D4 1/4 1/2 1/2 NA 2 2 3 3 7 1 1/7 1/2 1/5 2 7
D5 1/5 3 1/2 1/3 1/2 3 4 1/3 4 1 1/3 5 1/6 2 7

A2

D1 1/4 1/7 1/9 1/9 1/2 1/3 1/5 1/4 3 1/2 1/3 2 1 5 9
D2 1/3 1/6 1/9 1/9 1/2 1/2 1/3 1/5 1 1/2 1/3 2 1/2 5 7
D3 1/3 1/7 1/8 1/8 1 1/3 1/3 1/5 2 1 1/4 3 1/2 6 8
D4 1/5 1/8 1 1/7 2 1/2 1/4 1/3 1 1/3 1/5 1 1 1/3 7
D5 1/2 NA 1/7 1/9 1/2 1/2 2 1/4 3 4 1/5 2 1/2 4 9

A3

D1 1/9 1/7 1/2 1/5 1/2 2 6 3 9 4 2 6 1/2 1 3
D2 1/7 1/7 1 1/4 1/3 1 7 4 9 5 3 3 1/2 1 2
D3 1/5 2 1/2 1/5 NA 4 5 3 7 3 5 3 1 2 3
D4 1/9 1/5 1/3 1/8 1/2 1/2 8 2 8 7 2 5 1/3 1 3
D5 1/6 1/6 3 1/7 1/2 3 6 3 9 6 3 1/3 1 2 1

A4

D1 1/4 3 6 3 1/4 9 7 5 2 2 1/2 1/7 1/4 1/9 1/6
D2 1/5 4 7 2 1/2 9 9 4 2 1 1/3 1/5 1/4 1/9 1/3
D3 1/5 2 5 2 1/3 7 8 6 3 3 NA 1/6 1/3 1/7 2
D4 1/4 3 6 4 1/2 1 8 1/2 3 2 1/4 1/7 1/3 1/9 1/7
D5 1/6 1/2 6 3 1/3 7 9 5 2 3 1/3 2 1/4 1/7 1/5

A5

D1 5 4 1/2 5 1/3 1 1/8 1 1/9 1/5 1 1/9 1/2 1/4 1/9
D2 4 4 1 6 1/3 1 1/7 2 1/9 1/3 2 1/7 6 1/2 1/8
D3 4 6 1/2 7 1/4 1/2 1/5 1/2 1/6 1/4 3 1/9 7 1/3 1/7
D4 8 5 1/3 5 1/2 1/2 1/9 2 1/8 1/8 2 1/8 4 1 1/7
D5 1 7 1 4 1/3 2 1/8 1 1/7 1 3 1/9 8 1/3 1/9

2, the ocij line is presented to illustrate the omitting procedure, but the same procedure
is applied for each matrix. Tables 3 and 4 give the simulated pairwise comparisons for
the second and third AHP models, where 6 threats and 6 vulnerabilities are compared by
5 decision makers in terms of 5 different assets respectively.
In Tables 2-4, the incomplete judgements are written as “NA” and the judgements

which are selected to be omitted are given in bold. It can be concluded that five decision
makers have a consensus in general, where D1 and D2 are the most consistent ones and
D5 is the most inconsistent one. Some decision makers, especially D3 and D5 preferred
not to express some of the pairwise comparisons. Looking at the ocij line, it can also be
noted that D4 and D5 seem to pay less attention compared to others since the omitted
judgements mostly belong to them.
It is assumed that consensus exists among the decision makers with regard to the

priorities for each alternative. The degree of inconsistency for each decision maker (σ(k)2) is
assumed to be known and below the threshold. We used the inconsistency levels (σ(k)2) =
(0.127, 0.043, 0.243, 0.272, 0.431) extracted from the first AHP model.
Both the AIP method and the BPP have been applied for aggregating judgements

in group AHP analysis respectively. After omitting the judgements given in bold, the
methods are repeated and are named as AIP* and BPP*. Tables 5-7 show the priorities of

assets, threats and vulnerabilities with MSE = Σn
1≤i≤jΣ

r
k=1ε

(k)
ij /Σr

k=1tk for each method.
For different AHP models, each method gives similar weights and almost same ranking
but the Bayesian estimates reflect more robust results since the priorities (wi) does not
change too much after omitting the inconsistent judgements. Out of the assets, “data”
is the most important one, which is followed by “service”. The order for the priorities
of assets in terms of the main criteria is A2 > A1 > A5 > A3 > A4. The priorities
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Table 4. Simulated pairwise comparisons of 6 vulnerabilities in terms of 5 assets

Vi − Vj pairs 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6

A1

D1 1/4 1/3 1/9 1/8 5 1 1/3 1/2 3 1/4 1/2 2 2 8 4
D2 1/4 1/3 1/9 1/6 3 1 1/7 2 2 1/3 1/2 3 3 8 5
D3 1/3 3 1/8 1/5 5 1/2 1/5 1/2 4 1/4 1 1 1 9 6
D4 1/3 1/2 1/7 1/7 5 1/2 1/4 2 3 1/8 1/5 1/2 2 5 3
D5 1/5 1/4 1/7 1/8 3 2 1/8 1 1/3 1/3 1/3 4 3 1 5

A2

D1 1 1/2 1/9 1/8 1/2 1 1/3 1/2 1/2 1/2 1/2 1/2 2 4 3
D2 1/2 1/3 1/9 1/7 1/2 1 1/3 1/2 1/2 1/5 1/2 1/2 3 4 3
D3 1/2 1/3 1/8 1/8 NA 1/2 1/5 1/2 1/3 NA 1 1 1 5 4
D4 1 1/2 1/9 1/9 3 1/2 1/4 1/3 1/4 3 1/5 1/2 2 3 3
D5 2 1/4 1/9 1/9 1/2 2 1/8 1 1 1/3 1/3 1/8 3 1/3 2

A3

D1 1/4 1/6 1/8 1/4 1/2 1/4 1/7 1/3 1/2 1 2 3 2 4 1
D2 1/2 1/7 1/9 1/5 1/3 1/4 1/7 1/2 1/2 1/2 3 3 3 4 2
D3 NA 1/9 1/8 1/3 1/2 1/3 1/6 1/4 1 NA 1 4 4 5 3
D4 1/3 1/7 1/9 NA 1/5 4 1/8 1/3 1/2 1/2 2 1/5 3 6 3
D5 3 1/6 1/7 1/4 1/3 1/4 1/6 1/2 4 1/3 3 1/3 3 2 2

A4

D1 5 2 3 8 1/2 1 2 1 1/5 2 1 1/2 1 1/7 1/8
D2 4 2 5 6 1/2 1/2 2 2 1/5 3 3 1/2 1 1/9 1/9
D3 3 3 3 8 1 1 3 1 1/4 1 2 1/3 2 1/6 1/8
D4 8 1 5 7 1/3 1/2 1 3 3 3 3 1/4 1/2 1/8 1/6
D5 1 NA 5 9 1/3 1/3 1 2 1/2 4 1/3 1 1 1/9 1/9

A5

D1 2 1/3 2 1/2 1/6 1/5 1/4 1 1/9 2 5 1/2 3 1/3 1/9
D2 2 1/3 2 2 1/7 1/4 1/5 2 1/8 3 4 1/3 3 1/4 1/8
D3 4 3 4 1 1/8 1/3 1/4 2 1/8 2 6 1/2 4 1/5 1/7
D4 3 1/2 1 1/2 1/6 1 1/2 1 1/7 1 3 1 5 1/3 1/9
D5 3 1/2 1/2 1/2 1/7 1 NA NA 1/9 2 7 1/3 1 4 1/8

Table 5. Group priorities for assets estimated by each method

Assets A1 A2 A3 A4 A5

Ai of C1

AIP 0.263 0.489 0.083 0.057 0.108
Bayesian 0.263 0.496 0.081 0.055 0.106
AIP* 0.332 0.418 0.079 0.068 0.104

Bayesian* 0.305 0.448 0.078 0.061 0.108

Ai of C2

AIP 0.241 0.511 0.091 0.052 0.105
Bayesian 0.239 0.506 0.090 0.051 0.114
AIP* 0.274 0.480 0.090 0.048 0.108

Bayesian* 0.263 0.484 0.088 0.048 0.118

Ai of C3

AIP 0.272 0.467 0.114 0.050 0.098
Bayesian 0.257 0.480 0.104 0.050 0.110
AIP* 0.271 0.467 0.100 0.049 0.112

Bayesian* 0.256 0.479 0.094 0.050 0.120

of threats and vulnerabilities change for each asset. For example, T2 (hardware and
software breakdowns) is the most dangerous threat for A1, A3 and A4 (service, software
and hardware respectively), where it is the least dangerous threat for A5 (people).

Table 8 shows the mean square errors (MSE) of different prioritization methods for
each of the AHP models, in which the value of assets and then the danger degree of
threats and vulnerabilities are evaluated. WMSE is the weighted average of MSE’s,
which could be calculated as: WMSE = Σm

i=1wiMSEi/m, where wi is the weight of the
attribute and MSEi is the MSE of the group when comparing the alternatives in terms
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Table 6. Group priorities for threats estimated by each method

Threats T1 T2 T3 T4 T5 T6

Tj of A1

AIP 0.082 0.309 0.120 0.180 0.234 0.076
Bayesian 0.072 0.293 0.121 0.159 0.297 0.058
AIP* 0.084 0.278 0.146 0.229 0.177 0.085

Bayesian* 0.074 0.275 0.141 0.182 0.268 0.059

Tj of A2

AIP 0.041 0.110 0.158 0.305 0.314 0.072
Bayesian 0.037 0.098 0.155 0.287 0.359 0.065
AIP* 0.040 0.099 0.211 0.316 0.260 0.075

Bayesian* 0.036 0.092 0.185 0.305 0.319 0.063

Tj of A3

AIP 0.048 0.427 0.244 0.073 0.136 0.072
Bayesian 0.046 0.422 0.259 0.070 0.135 0.069
AIP* 0.050 0.473 0.201 0.103 0.108 0.065

Bayesian* 0.047 0.457 0.227 0.085 0.116 0.068

Tj of A4

AIP 0.142 0.411 0.062 0.034 0.108 0.243
Bayesian 0.144 0.412 0.054 0.033 0.101 0.257
AIP* 0.154 0.395 0.040 0.040 0.127 0.243

Bayesian* 0.148 0.397 0.040 0.034 0.108 0.273

Tj of A5

AIP 0.187 0.047 0.057 0.226 0.042 0.442
Bayesian 0.190 0.047 0.057 0.222 0.042 0.442
AIP* 0.203 0.044 0.070 0.189 0.059 0.435

Bayesian* 0.197 0.044 0.064 0.212 0.047 0.437

Table 7. Group priorities for vulnerabilities estimated by each method

Vulnerabilities V1 V2 V3 V4 V5 V6

Vk of A1

AIP 0.059 0.129 0.107 0.432 0.225 0.049
Bayesian 0.056 0.131 0.111 0.443 0.213 0.045
AIP* 0.056 0.128 0.147 0.469 0.137 0.062

Bayesian* 0.054 0.131 0.139 0.465 0.160 0.051

Vk of A2

AIP 0.054 0.103 0.129 0.365 0.221 0.129
Bayesian 0.051 0.101 0.122 0.378 0.221 0.127
AIP* 0.054 0.099 0.156 0.354 0.240 0.097

Bayesian* 0.051 0.098 0.139 0.369 0.234 0.108

Vk of A3

AIP 0.044 0.077 0.294 0.337 0.149 0.100
Bayesian 0.041 0.073 0.292 0.353 0.144 0.097
AIP* 0.036 0.092 0.368 0.254 0.141 0.109

Bayesian* 0.035 0.082 0.337 0.311 0.135 0.100

Vk of A4

AIP 0.276 0.114 0.128 0.060 0.080 0.342
Bayesian 0.273 0.100 0.131 0.056 0.062 0.377
AIP* 0.277 0.115 0.117 0.056 0.094 0.342

Bayesian* 0.273 0.100 0.123 0.054 0.069 0.381

Vk of A5

AIP 0.114 0.071 0.216 0.155 0.080 0.364
Bayesian 0.105 0.060 0.211 0.126 0.059 0.440
AIP* 0.113 0.076 0.228 0.119 0.131 0.333

Bayesian* 0.105 0.064 0.220 0.112 0.082 0.418
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Table 8. MSE values for each method

Methods AIP BPP AIP* BPP*

Ai

Con. 0.391 0.392 0.281 0.235
Int. 0.348 0.351 0.183 0.188
Ava. 0.348 0.352 0.265 0.281

WMSE 0.362 0.365 0.243 0.235

Tj

A1 0.578 0.414 0.510 0.317
A2 0.450 0.402 0.321 0.199
A3 0.382 0.379 0.312 0.222
A4 0.431 0.435 0.286 0.211
A5 0.293 0.293 0.330 0.266

WMSE 0.466 0.394 0.377 0.245

Vk

A1 0.486 0.478 0.301 0.190
A2 0.740 0.736 0.661 0.602
A3 0.510 0.514 0.513 0.396
A4 0.388 0.340 0.371 0.245
A5 0.516 0.452 0.645 0.378

WMSE 0.604 0.593 0.568 0.461

of the ith attribute. Among four approaches, BPP* generally provided the minimum
WMSE, and conventional approaches did not provide lower values ofWMSE than BPP*.
Consequently, BPP* results are selected for further implementation of risk evaluation.

Table 9 reflects the final value of all risk incidents (Rijk = (ai ×
√
tij × vik))

1/2, the
danger degree of threats for each asset

(
Rij = Σh

k=1Rijk/h
)
, and the danger degree order

of all assets (Ri) which could be determined by maximum, minimum or average value ofRij

for each asset. Here we used the equations of [14]. According to Table 9, the risk incidents
can be ordered as: R254 > R244 > R255 > . . . > R445 > R434 > R444, with the highest
value, 0.392 and the lowest, 0.051. It can be concluded that risk incidents associated
with A2 and A1 have higher values, where the ones associated with A4 have lower values.
For A2, the danger degree of Tj in descending order is T5 > T4 > T3 > T2 > T6 > T1,
which means that the “cyber attacks” and “ultra vires” are the most dangerous threat
for “data”. For A3, the order is T2 > T3 > T5 > T4 > T6 > T1, which means that
the “hardware and software breakdowns” and “malicious code” are the most dangerous
threats for “software”. Similar conclusions can be drawn from Table 9 for the remaining
cases.

For the whole system, the danger degree order of assets can also derived by comparing
the maximum, minimum or average value of Rij for each asset. Consequently, the danger
degree order of Ai is A2 > A1 > A5 > A3 > A4, which means that the assets for which
precautionary measures should be taken could be ranked in this order. The outputs given
in this table could support the company efficiently when making the information security
management decisions.

4. Conclusions. Risk management requires the use of more flexible approaches to mea-
sure information security risk. The AHP-GDM offers a technical support for risk analysis
by obtaining the judgements of managers and systematically calculating the relative risk
values.

The AHP-GDM is a powerful technique that is easy to understand and simple to oper-
ate. It is a flexible and practical tool for any organization to prioritize the risk incidents
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Table 9. Risk values of Rijk, Rij and Ri calculated by BPP*

V1 V2 V3 V4 V5 V6 Rij Ri

A1

T1 0.125 0.154 0.220 0.215 0.175 0.162 0.175
T2 0.173 0.214 0.305 0.299 0.242 0.225 0.243 0.243(max)
T3 0.147 0.181 0.258 0.253 0.205 0.190 0.206 0.166(min)
T4 0.156 0.193 0.275 0.269 0.219 0.203 0.219 0.208(aver)
T5 0.172 0.212 0.303 0.297 0.241 0.223 0.241
T6 0.118 0.146 0.208 0.204 0.165 0.153 0.166

A2

T1 0.139 0.164 0.178 0.228 0.203 0.168 0.180
T2 0.175 0.206 0.225 0.287 0.256 0.211 0.227 0.310
T3 0.209 0.246 0.268 0.342 0.305 0.252 0.270 0.180
T4 0.237 0.278 0.304 0.388 0.346 0.285 0.306 0.250
T5 0.240 0.282 0.307 0.392 0.350 0.288 0.310
T6 0.160 0.188 0.205 0.262 0.234 0.193 0.207

A3

T1 0.063 0.078 0.079 0.107 0.082 0.062 0.078
T2 0.111 0.138 0.140 0.189 0.145 0.109 0.139 0.139
T3 0.093 0.116 0.117 0.159 0.122 0.091 0.116 0.078
T4 0.073 0.091 0.092 0.124 0.095 0.072 0.091 0.101
T5 0.079 0.098 0.099 0.134 0.103 0.077 0.098
T6 0.069 0.086 0.087 0.118 0.090 0.068 0.086

A4

T1 0.111 0.086 0.091 0.074 0.079 0.121 0.093
T2 0.142 0.110 0.116 0.094 0.101 0.154 0.120 0.120
T3 0.080 0.062 0.066 0.053 0.057 0.087 0.067 0.065
T4 0.077 0.060 0.063 0.051 0.055 0.084 0.065 0.090
T5 0.102 0.080 0.084 0.068 0.073 0.111 0.086
T6 0.129 0.101 0.106 0.086 0.092 0.140 0.109

A5

T1 0.125 0.110 0.150 0.127 0.117 0.176 0.134
T2 0.086 0.076 0.103 0.087 0.081 0.121 0.092 0.164
T3 0.094 0.083 0.113 0.096 0.088 0.133 0.101 0.092
T4 0.127 0.112 0.153 0.129 0.119 0.179 0.137 0.120
T5 0.087 0.077 0.105 0.088 0.082 0.123 0.093
T6 0.152 0.134 0.183 0.155 0.143 0.215 0.164

recurrently. However, there might be some complexities to use the AHP-GDM in risk eval-
uation. Decision makers participated in the analysis may have limited expertise about the
problem domain or the AHP analysis. Also, they may have difficulties to make pairwise
comparisons efficiently because of the large number of assets, threats and vulnerabilities
which could result in incomplete or inconsistent judgements.
Considering the problems mentioned above, we propose using BPP based AHP for

information security risk assessment. It is assumed that consensus exists among the
decision makers with regard to the priorities for each element in this decision system. The
multiplicative model with log-normal errors is applied to the problem and the Bayesian
analysis is used. This is a process of weighted aggregation of individual priorities and
the weights are inversely proportional to the decision makers’ levels of inconsistency. We
compared the method with the conventional approaches used in the AHP-GDM.
The results show that the proposed methodology performs more robust manner and

calculates the final priorities with smaller MSE than the conventional approach. So, it
can be concluded that the proposed methodology aggregate the individuals’ judgements
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more effectively than the conventional method, especially after omitting the inconsistent
judgements in the pairwise comparison matrices. This method provides managers a flexi-
ble way to express their judgements, without forcing them to give complete and consistent
judgements and letting them completely focus on the risk management itself. Moreover, it
serves the practitioner since the judgements of decision makers directly enter the analysis
without any reducing or filtering process.

Any organization can easily adapt this method to their information security system by
updating all the elements in the illustrative model, i.e., list of most valuable information
assets, threats and vulnerabilities. This technique could be used alone or with any other
information security risk analysis methods as a support; and can easily be adapted to any
information security standard.

In this study, we applied BPP based AHP to prioritize and order risk incidents which
could satisfy the aim of risk management. This approach can also be used for many
multiple criteria group decision making problems such as project selection, facility location
selection, supplier selection or evaluation, diagnosis and treatment selection for disease
management, financial decision making and crisis forecasting, and evacuation selection
for emergency management.

Our study is based on the model from a non-informative Bayesian standpoint, where
the variances of error terms represented by the inconsistency levels of decision makers
are assumed to be known. In the future, this approach can be extended by taking the
variances of error terms as additional parameters, or by implementing an informative
Bayesian model in which a good estimate of prior distribution for the vector of log-
priorities is used.

This study is based on two assumptions. The first assumption is that there is a con-
sensus among the decision makers. Gargallo et al. [28] proposed a Bayesian estimation
procedure to determine the priorities where a prior consensus among them is not required.
The second assumption is that there is no interaction or dependence between the elements
in the decision system. We are currently working on the situations where this assumption
is not satisfied.
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