International Journal of Innovative
Computing, Information and Control ICIC International ©)2015 ISSN 1349-4198
Volume 11, Number 3, June 2015 pp. 1101-1112

DESIGN OF ROBUST SELF-TUNING CONTROL
SCHEMES FOR STOCHASTIC SYSTEMS DESCRIBED
BY INPUT-OUTPUT MATHEMATICAL MODELS

NABIHA TOUILJER AND SAMIRA KAMOUN

Laboratory of Sciences and Techniques of Automatic Control and Computer Engineering
National School of Engineering of Sfax
University of Sfax
BP 1173, 3038 Sfax, Tunisia
{ nabiha_ettouijer; kamounsamira }@yahoo.fr

Received May 2014; revised November 2014

ABSTRACT. This paper deals with the robust self-tuning control schemes for stochas-
tic systems, which can be described by the input-output Auto-Regressive Auto-Regressive
Moving Average with eXogenous (ARARMAX) mathematical model with unknown pa-
rameters in the presence of unmodelled dynamics. This explicit self-tuning control scheme
is based on the proposed modified filtering recursive least squares algorithm with dead zone
(m-F-RLS) in the step of estimation. We have applied the developed generalized min-
imum variance self-tuning requlator to a numerical simulation of a climate control in
building, in order to test its performances. The obtained numerical simulation results
are satisfactory.

Keywords: Stochastic systems, ARARMAX mathematical models, Recursive paramet-
ric estimation algorithms, Robust explicit self-tuning control schemes

1. Introduction. The description of a stochastic system by an ARARMAX mathemat-
ical model was studied in [1]. Wang and Ding [2] have proposed a recursive least squares
parametric estimation algorithm based on the filter input and system output (F-RLS),
in order to estimate the parameters of the stochastic system, which can be described
by an ARARMAX mathematical model. The F-RLS algorithm has been applied to the
Box-Jenkins system non-uniformly sampled [3].

A modified recursive least squares parametric estimation algorithm based on the filter
input and system output with dead zone approach (m-F-RLS) was proposed in [4], in
order to estimate the parameters of the stochastic systems, which can be described by the
ARARMAX mathematical models in the presence of unmodelled dynamics. Furthermore,
the robust regulation problem for the considered systems was solved on the basis of m-F-
RLS, where the minimum phase system was considered. In this case, an explicit scheme
of minimum variance self-tuning regulation was developed.

The minimum variance regulator was been developed in [5], which can be applied only
for minimum phase system. To overcome this problem, a generalized minimum variance
self-tuning control was developed in [6] in order to control the non-minimum systems. The
strategies of self-tuning control have been developed and applied to several systems (see
[5,7-12]). Chen et al. [13] have proposed robust adaptive inverse dynamics control schemes
for the trajectory tracking control of robot manipulator with uncertain dynamics. Wang
[14] has treated the adaptive tracking control problem for a class of uncertain MIMO
switched nonlinear systems.
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In this paper, we will focus on the study of the self-tuning control problems for dynam-
ical systems (minimum phase systems and non-minimum phase systems) in the presence
of unmodelled dynamics. The developed explicit schemes of self-tuning control can be ap-
plied to the linear stochastic systems described by the ARARMAX mathematical models
in the presence of unmodelled dynamics. The proposed recursive parametric estimation
algorithm m-F-RLS is used in the step of the system parameters estimation.

This paper is organized as follows. The second section is devoted to the description
of dynamical systems by a mathematical discrete input-output ARARMAX in the pres-
ence of unmodelled dynamics. Furthermore, a modified recursive parametric estimation
algorithm m-F-RLS with a dead zone will be studied. In the third section, an explicit
scheme of generalized minimum variance self-tuning regulation is analyzed and developed
based on the proposed parametric estimation algorithm to solve the problem of regulation.
Moreover, an explicit scheme of self-tuning control is analyzed and developed based on
the proposed parametric estimation algorithm to solve the problem of regulation-tracking.
In the fourth section we are going to use the simplified model of developed Mi2 building
model from physic law, which is available from CLIM2000, to show the performance of
the self-tuning regulation on the basis of the proposed recursive parametric estimation
algorithm m-F-RLS with dead zone. And we conclude in the last section.

2. Parametric Estimation. Let us consider a linear time-varying system, which can
be described by the following discrete-time ARARMAX mathematical model:

D —1

O el )
where u(k) and y(k) represent the input and the output of the system at the discrete-
time k, respectively, e(k) is a white noise with zero mean and constant variance acting on
the system, d is the dead-time (is an integral number of sample intervals), and A.(¢" !, k),
B.(q7', k), C(q¢™") and D(q™") are polynomials of degree n 4., ng., nc and np, respectively,
which are defined by:

Aclg " k)y(k) = ¢ "B(q ", k)u(k) +

Ac(q_l, k) =1+ al(k)q—l 4o+ anAC(k)q—nAc (2)
Bc(q_l’ k) = bl(k)q_l - anc(k)q—nBc (3)
Cla)=1+cqg "+ +cupqg ™ )
D(qil) = 1 —|— dqul _|_ e _|_ anqan (5)
where, for i =1,--- ,ng., and j =1,---,npg., we can write:
az(k) = a; + gai (k) (6)
bi(k) = b; + e, (k) (7)

where ¢,,(k) and £, (k) represent the unmodelled dynamics into parameters.

2.1. Formulation of the parametric estimation problem. The filtered mathemati-
cal model of the system is given by:

yr(k) = 07 0p(k) + ea(k) (8)

where
0F =ar...an,, bi...bng.] (9)
cp?(k) =[-yrk—1)... —yp(k —na.) uplk—d—1)...up(k —d—np.)] (10)
r(h) = Sy (1)
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Clq™)
ur(k) = u(k 12
$18) = hut (12)
The noise e,4(k) is defined as follows:
ca(k) = i (k)os (k) + e(k) (13)
where
eap(k) = [2a, (k) -0y (k) e, (k) .. ey, (K)] (14)
The output y(k) of the considered system can be defined as follows:
y(k) = 05 ps(k) + v(k) (15)
where
ol (k) =[-ylk—=1)... —y(k —na) ulk—d—1)...u(k —d—ng.)] (16)
D(q)
1
o) = G ealh (17)
We can write (17) as follows:
v(k) = 0L, (k) + eq(k) (18)
where
977;: [Cl---cno dlan] (]_9)
ol (k) =[-v(k—=1)...—v(k —neg) eqk—1)...eq(k —np)] (20)
The output y(k) of the system defined in (1) can be given by:

y(k) = 05 ps(k) + v(k) (21)

We consider in our work the two hypotheses presented in [15], which are: an upper
bound p of e4p(k) is known; the noise e(k) is bounded and the upper bound mg of e(k)
is known. Based on these hypotheses and the expression (13), the upper bound d(k) of
eq(k) is defined as follows:

d(k) = plles(F)[l +mo (22)

2.2. Recursive parametric estimation algorithm with dead zone. The proposed
parametric estimation algorithm m-F-RLS with dead zone is defined as:

Step 1: Estimation of the parameter vector 6, given by (9) using the following recursive
parametric estimation algorithm RLS with dead zone:

0,(k) = 0,(k — 1) + 6(k) Ly (k)& (k)

( ) = Pf(k D (k)
>+<pf< )PfUc D% (k) (23)
Py(k) = [ @f )| Py
( )=y (k )—eT( )o; (k)
where
0, if [&(k)| < Bd(k
o(k) = { ¥, 0tl|1e1(rvv)i|se, Wh((er(z v € lo,1/8 — 0] (24
(k) = o[ ()| +mo (25)
such as A
i) = G ) (26)
s (k) = %u(lﬂ) 27
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©; (k) = [—yf(k —1)...— yf(k —na.) upk—d—1)...up(k —d—np)] (28)
Step 2: Estimation of the parameter vector #,, given by (19) using the following recursive
parametric estimation algorithm RELS:

Ou(k) = b, (k — 1) + La(k) (k) — 63 (k — 1), (k)]

L(k) = APnk 13, (k)
k) = 1 a0 Pt — 1) (29)
() y(k) — () s(k)
e(k) = p(k )—9T(k—1)<,on(k)
such as:
or(k)=[—pk—1)...— p(k —nc) e(k—1)...e(k —np)] (30)

3. Robust Self-Tuning Control. In this section, we are going to develop the robust
generalized minimum variance self-tuning regulation and the robust self-tuning control
for the stochastic systems, which can be described by the mathematical model (1).

3.1. Robust explicit generalized minimum variance self-tuning regulation sche-
me. The regulation problem for the non-minimum phase system described by (1) is dis-
cussed. In this case, an explicit scheme of generalized minimum variance self-tuning
regulation was developed.

Therefore, we introduce the following criterion J(k + d + 1):

Jk+d+1)=FE[(y(k+d+1))* + a(u(k))?] (31)

where E denotes the expectation and « is a weighting coefficient.
Based on the mathematical model (1) of the considered system, the output y(k+d+1)
can be defined as follows:

y(k+d+1)=

M‘la:) Dl ) e(k+d+1) (32)

T, )u( )+ A(g™" k)C(g7)
We can write:

B.(q 1, k) k) G(q k)
AT T AT HC ()

where F(¢~', k) and G(q~', k) are solutions of the following polynomial equation:

yk+d+1) = e(k) + F(g ' k)e(k+d+1) (33)

D(qg ") = Aq " K)C(g HF (g k) + G k) (34)

with
F(g ' k) =1+ fu(k)g " + ...+ fa(k)g* (35)
Glg k) =g0(k) + g1(k)g " + .o+ Gnaerne 1 (k)g!maeme (36)

Using (1), we can write e(k) as follows:

q_dBC(q_lak)C(q_l AC(q_lak)C(q_l)

)
e(k) =— u(k) + y(k 37
(1 LA gy 4 ST (37)
and using (37), the output system y(k + d + 1) given by (33) can be rewritten as follows:
H(g "\ k Glg &
ylk+d+1) = Hla k) My(k) + F(g " ke(k+d+1) (38)

D(q™1) u(k) D(g™)
where

H(q ', k) =qB.(¢ ", k)C(q ) F(q " k) (39)
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Computing (38) in (31), the criterion J(k + d + 1) is defined as follows:

H(q™ ' k) Glq ' k) ?
7 TP y(’“)] (40)
+ [L+ fE(k) + -+ f1(k)] o + afu(k)]?

Jk+d+1) = [

Then, the searched control law is determined by minimizing the criterion (40), by using
the following derive of the criterion J(k + d + 1):

OJ(k+d+1) ) ({H(ql,k)u(k)+G(q1,k) (k)r

oty dulk)\ [ D(g™) D) (a1)
+ [+ fHk) + -+ fi(R)] 0® + a[u(k)]2>
Then, (41) is written as:
M’g:—w — 2y () (H(q ™ Yuk) + Gla™ (k) + 2aD(g Yu(k)  (42)
So, the control law is calculated by minimizing (42), which is given by:
such as:
20 = H™ D) + s D) (44)

The recursive algorithm of the explicit scheme of self-tuning control is formulated by
the following steps:
Step 1: Estimation of the parameters intervening of the ARARMAX mathematical model
(1) using the modified recursive parametric estimation algorithm m-F-RLS with dead zone
(23)-(29):
Step 2: Calculation of the parameters intervening in polynomials F(¢~', k) and G(q¢ ", k)
by solving the following polynomial equation:

D(g ' k) =A(g " k)C(g k) F(g k) + ¢ 'G(g k) (45)
Polynomials H(q~', k) and Z(q~', k) are defined by, respectively:
H(g ' k) =qB(q ', k)C(q¢ ', k)F(q ', k) (46)
Z(g k) = Hig L) + —~—D(q L k 47
(¢ k) (¢ k) () (¢ k) (47)

where: hy (k) = by (k) and z (k) = hi (k) + a/hi (k);
Step 3: Calculation of the control law u(k) by (43).
Noting that, if we have: b;(k) = 0, then we can choose, for example, hy(k) = 0.1.

3.2. Robust explicit self-tuning control scheme. The regulation-tracking problem
for the considered system is discussed. In this case, an explicit scheme of self-tuning
control was developed.

Therefore, we introduce the following criterion J(k + d + 1):

J(k+d+1)=E(S(g ) (y(k+d+1) =y (k+d+ 1)) +[Qg ") (u(k) — a(k))]*) (48)
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where E denotes the expectation, y,.(k + d + 1) is a bounded and desired output signal,
(k) is the average value of the control signal u(k) and S(¢~") and Q(¢™") are polynomials
of known order ns and ng, respectively, such as:

ak) = a(k — 1) + %[u(k _ 1) —a(k = 1)] (49)
S(g ) =1+s1¢g + 45,0 "™ (50)
Qe =aq+aq "+ 4 dngg™™ (51)

Based on the mathematical model (1) of the considered system, S(¢ !)y(k+d+1) can
be defined as follows:

S(g~")Be(¢g” ' k)
Aclg™, k)

S(¢")D(¢™")

S(g Yylk+d+1)=gq IR

u(k) +

e(k+d+1) (52)

We can write:

B.(q " k)S(q")
RPN

. Gla\b)
A(g 1 k)C(g)

where the polynomials F(¢~', k) and G(q™', k) are solutions of the following polynomial
equation:

Slg yk+d+1) =g
(53)

e(k) + F(q ' k)e(k+d+1)

Sa™)D(@™") = Acla™ " B)C(a ) F(a™" k) + a7 7' G a7 k) (54)
Using (37), the output system S(¢~')y(k + d + 1) given by (53) can be rewritten as
follows:
H(q ' k)
D(q")

where H(q ', k) is given by (39).
Computing (55) in (48), the criterion J(k + d + 1) can be defined as follows:

G(q ', k)

S(g Nylk+d+1) = D1

u(k) + y(k) + F(¢g " k)e(k +d+1)  (55)

Hg LK) . Gl ) y :
B0y + S 1) = sl + 1)

+ [+ f(R) + -+ fi (k)] o +[Q(g ) (u(k) — a(k))]?

Then, the searched control law is determined by minimizing the criterion (56), by using
the following derive of the criterion J(k + d + 1):

0J(k+d+1) 0 < [H(q_l)
Ou(k) du(k) \ [ D(q")

+@@*xmm—aw»P+u+fﬂm+-~+ﬁ@ﬂ#)

Jk+d+1)= { (56)

y(k) — S yr(k+d+1

)} (57)

Then, (57) is written as:

@ﬂgﬁggl=meﬂqwmm+Gmlw%> (58)

—D(q ")S(q Nyr(k+d+1)]+qD(q Qg ")[u(k) — a(k)]
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So, the control law, which is calculated by minimizing (58), is given by:
1

u(k) = 2Lk D(g~")S(g Yyr(k+d+1) 5
+ %D(ﬂ@(q—l)a(k) — G(g", k)y(k)
such as:
Z(¢7 k) = H(g™' k) + —=_D(¢™)Q(¢™) (60)

ha (k)

The recursive algorithm of the explicit scheme of minimum variance self-tuning regu-
lator is formulated by the following steps:
Step 1: Estimation of the parameters intervening of the ARARMAX mathematical model
(1) using the modified recursive parametric estimation algorithm m-F-RLS with dead zone
(23)-(29):
Step 2: Calculation of the parameters intervening in the polynomials F(¢~', k) and G(¢™!,
k) by solving the following polynomial equation:

S(g D¢ k) = Alg L k)Clg L R)F(g k) +q “Glg k) (61)
Polynomial H(q™', k) is given by (46) and polynomial Z(q~', k) is defined by:
27 K) = Hg™ B + 505D DR (62)

where hy (k) = by (k) and z (k) = hi(k) + ¢2/h1 (k).
Step 3: Calculation of the control law u(k), such as:

() = gy | D RSl +d+ 1) o
+ hlq(ok)b(ql, k)Q(g ha(k) — G(g ', k)y(k)

Note that, if we have: b (k) = 0, then we can choose, for example, hy(k) = 0.1 and

4. Numerical Simulation Example. This section presents an application of robust
self-tuning regulator to the air conditioning system in order to control the building climate.
The design of the self-tuning regulator described in last section is now applied to the
developed Mi2 building model from physical laws which are available from CLIM2000’s
component library (see [16,17]).

A simple synthesis of control model is given by:

1.025 + 1.195s
Guls) = = exp(—5/6) (64

The discrete-time form of (64) can be defined as follows:

- B¢ 0.2094¢ ' — 0.1799¢ 2
1 _ 1 .
Gl ) =4 Al 1—0.9712¢~" (65)

The used sampling period 7, is chosen, such that: T, = 600 sec.

The posed regulation problem is the application of the self-tuning regulation of the
temperature of room at reference temperature equal to 26°C. This room is affected by a
set of external noises such as the outside air inlets caused by the opening of doors and
windows, variation of the external temperature, the solar flux, the quality of the wall
and the energy delivered by the occupants of the building (called internal contribution).
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The considered air conditioning system, which operates in the stochastic environment and
in the presence of unmodelled dynamics, can be described by the following ARARMAX
mathematical model:

y(k) =0.9712y(k — 1) + 0.2094u(k — 2) — 0.1799u(k — 3)

e (B)y(k — 1) + e (B)ulk — 2) + 2 (k)ulk — 3) + v(k) (66)

where
v(k) = —0.1v(k — 1) — 0.15e(k — 1) + e(k) (67)
The external disturbance e(k) is a white noise sequence with zero mean and constant
variance o2 = 0.5%.
The unmodelled dynamics 41 (k), (k) and ej,2(k) are given, respectively, as follows:

£o1(k) = 0.01sin(0.15k) (68)
ep1 (k) = 0.01 cos(0.15k) (69)
epz(k) = 0.01 cos(0.2k) (70)

Using the simulation results of the self tuning regulator (¢« = 0) on the basis of the
proposed recursive parametric estimation algorithm m-F-RLS and on the basis of the
parametric estimation algorithm F-RLS, we are going to give the calculations of the
statistical average values m,, m,, M and myp, respectively, of the output y(k), of the
prediction error pu(k), of the regulation error te(k) and of the temperature T'(k) in Table
1, and the calculations of the variance of the prediction error O'Z and of the regulation
error o7, in Table 2.

TABLE 1. Statistical average values

m, M, Mre mr
F-RLS 3.0113 —0.0091 —0.0304 28.1343
m-F-RLS |2.9941 —-0.0024 —0.0065 25.9415
True values | 2.99 26°C

TABLE 2. Variance values

2 2
o Ote

I
F-RLS 0.0118 0.0253
m-F-RLS 0.0102 0.0117

From Tables 1 and 2, we conclude that the explicit scheme of self-tuning regulator on the
basis of the proposed recursive parametric estimation algorithm m-F-RLS is more robust
than the explicit scheme of self-tuning regulator on the basis of the recursive parametric
estimation algorithm F-RLS.

We are going to present the results of numerical simulation for the explicit generalized
minimum variance self-tuning regulation scheme with v = 0.25, on the basis of the pro-
posed recursive parametric estimation algorithm, by the solid line (control scheme (1)),
and the results of simulation for the explicit scheme of minimum variance self-tuning regu-
lation (« = 0), on the basis of the proposed recursive parametric estimation algorithm, by
the dashed line (control scheme (2)). Using a linear converter temperature to tension (the
temperature sensor used is of the type LM335), the reference output signal is: y, = 2.99v.
We will take 6,(0) = 0, 6,(0) = 0, Pf(0) = 10001, Pn(0) = I (where I is an identity
matrix), 5 =1 and v = 0.77.
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Figures 1 and 2 show, respectively, the evolution curve of the output y(k) in control
scheme (1) and in control scheme (2). Figures 3 and 4 show, respectively, the evolution
curves of the control law u(k) in control scheme (1) and in control scheme (2). Figure 5
shows the evolution curve of the output variance. Figure 6 shows the evolution curve of
the control law variance.
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FIGURE 1. Evolution curve of the output y(k) in control scheme (1)
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FIGURE 2. Evolution curve of the output y(k) in control scheme (2)

The statistical average values of the output m,, of the prediction error m,, of the
regulation error m;. and of the temperature are given in Table 3. The variances of the
input o, of the output o, of the prediction error o7, and of the regulation error o7, are

given in Table 4.
From Figures 1-6, and Tables 1 and 2, we can get the following conclusions:

i. The control scheme (1) can overcome the effect of transitional regime and the control

law can be applied in real time;
ii. The average of the temperature reaches the desired temperature in the control scheme
(1) contrary to the average of the temperature in the control scheme (2);
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FIGURE 3. Evolution curve of the control law u(k) in control scheme (1)
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FIGURE 5. Evolution curve of the output variance
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FIGURE 6. Evolution curve of control law variance

TABLE 3. Statistical average values

my, M, Mg mr

Control scheme 1 |2.9894 0.0448 0.0432 25.9384

Control scheme 2 | 3.0286 0.0185 0.0201 28.3636
Desired values 2.99v 26°C

TABLE 4. Variance values

2 2 2 2
fopm o, g, o},

Control scheme 1| 3.7507 0.8220 0.2434 0.6129
Control scheme 2 | 15.0619 0.4343 0.2479 0.2321

iii. The inconvenience of the control scheme (1) is observed in the evolution curve of the
output signal and the evolution curve of the output variance. This inconvenience has
effect on the statistical average and on the variance of the regulation error.

5. Conclusion. This paper has presented the robust generalized minimum variance self-
tuning control schemes for stochastic systems in the presence of unmodelled dynamics,
which are described by the ARARMAX mathematical models. The modified recursive
parametric estimation algorithm m-F-RLS with dead zone has been proposed to be used
in the step of the determination of the parameter estimation. The simulation results of the
control scheme applied to the simplified model of Mi2 building show the effectiveness of
the explicit scheme of generalized minimum variance of self-tuning regulator based on the
proposed modified recursive parametric estimation algorithm m-F-RLS with dead zone.
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