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Abstract. The regulation problem of the DC-DC boost converter with Sliding Mode
Controller (SMC) is a very challenging issue due to the non-minimum phase behavior
and the chattering problem of SMCs. A new sliding mode controller is developed to deal
with this behavior and at the same time aims at eliminating the chattering phenomenon.
The effectiveness and the robustness of this controller are demonstrated by comparison
with some controllers from the literature through computer simulations.
Keywords: Regulation, DC-DC boost converter, Sliding mode controller, Non-minimum
phase, Chattering phenomenon

1. Introduction. Robust nonlinear control applied to a DC-DC boost converter is one
of the modern research areas in power electronics and in automatic control.

The non-minimum phase output voltage behavior makes the DC-DC boost converter
one of complex systems. Therefore, the output voltage regulation is made indirectly
through the input current regulation.

Many controllers are developed in order to deal with the non-minimum phase prop-
erty. They usually provide a fast transient response and cope with the boost converter
parameter variations. In [5, 25], the Parallel Damped Passivity Based Controller (PD-
PBC) proved to achieve a fast response but at the same time was unable to maintain an
acceptable robust performance bound under load variations. However, the Backstepping
Controller (BC) in [4, 8, 15] proved to be robust. The comparison presented in [22] con-
cludes that the BC is better than the PD-PBC. In [26], a synergetic control approach
was applied to a boost converter and it was shown that in its simple version (with no
additional integrator), the synergetic control is not really robust with respect to load
variation. An additional integral term provides more robustness but unfortunately at the
expense of an acceptable settling time. In [24], optimization techniques for a feedback
controller design for DC-DC boost converter were applied and proved through simulation
results that they were not robust to a load resistance variation.
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Recently, Sliding mode controllers (SMCs) have attracted many researchers and are
reported to be robust and to give rise to fast response. Their application to a wide
variety of systems is due to the popularity among the control community. For instance,
the sliding mode strategy has been used for stochastic systems [33, 34, 35], time delay
systems [32, 38], switched system [30, 31] and Markovian jump systems [36, 39, 40].

Especially for a DC-DC converter, many sliding surface forms have been proposed in
the literature, for example, the classic sliding mode controller (CSMC) with a classic
sliding surface as in [8, 9], the generalized PI sliding mode controller (GPISMC) with a
PI sliding surface as in [2, 3], the sliding mode controller based on extended linearization
(SMCBEL) proposed in [10].

Unfortunately, they exhibit a chattering phenomenon which could lead to low control
accuracy, high wear of moving mechanical parts and high heat losses in electrical power
circuits [23]. Thus, many solutions have been proposed to overcome this problem such
as combining SMC with other controllers such as Generalized PI SMC in [3], fuzzy SMC
in [11], Backstepping SMC in [12]. However, these controllers are still not able to deal
with the non-minimum phase behavior of the boost converter [17]. Another solution
presented in [13, 14] involves a second order SMC by using the super twisting algorithm.
The approach is able to reduce the chattering phenomenon but the choice of the super
twisting parameters is still arbitrary. In [18], the double integral SMC was shown to have
a good behavior compared to a simple integral SMC approach. The obtained results with
a double integral SMC controller show a reduction of the chattering phenomenon which
remains still unsatisfactory. In [21], an augmented sliding mode observer approach was
proposed and it succeeds to achieve less chattering phenomenon compared to the integral
sliding mode proposed in [20].

A sliding mode controller with a new non linear sliding surface (PSMC) proposed in
[7], has the merit to address both issues, that is, the non-minimum phase behavior as well
as the chattering phenomenon.

In order to test the effectiveness and the robustness of the proposed controller, a compar-
ison with other controllers (PD-PBC, BC, CSMC, GPISMC and SMCBEL) is presented
in this paper. The issue of load resistor variation is also addressed.

It is worth noting that other controllers based especially on the fuzzy logic have ad-
dressed in particular the chattering phenomenon, with less or more success, see for instance
[16, 19, 28] and the reference therein. These kinds of controllers are not considered in this
work.

Moreover, switched system has been adopted as a possible description of the behavior
of a DC-DC converter. For instance, a description as a switched system is given in [29]
where the control law is the switching sequence allowing the DC-DC converter to switch
from a mode to another. The DC-DC converter has in fact two modes as described in
Section 2.

The paper is organized as follows. Section 2 presents the boost converter model. Section
3 is devoted to the design of the proposed sliding mode controller. A comparison between
the PSMC, the PDPBC and the BC is given in Section 4. Section 5 is reserved to a
comparison between the PSMC and the CSMC, the GPISMC and the SMCBEL and
Section 6 contains the conclusion.

2. Boost Converter Model. The boost converter as shown in Figure 1 is made of:

• A DC voltage source E from photovoltaic panels that power the circuit.
• A MOSFET which is a field effect transistor and for which the control is a voltage.

It requires only a low energy (insulated gate) and its drive current is almost zero
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(pulse). The MOSFET is periodically conductive with a duty cycle at a frequency
F .

• Passive components such as reactive inductance L and capacitance C.
• A resistor R which represents the load of the converter.

Figure 1. Boost converter

The state model of the Boost converter is given by the following equations:

L
diL(t)

dt
= −(1 − µ(t))Vs(t) + E

C
dVs(t)

dt
= (1 − µ(t))iL(t) − Vs(t)

R
(1)

where iL is the input current and Vs is the output voltage.
The average Boost converter model is defined by formally replacing the discontinuous

control function µ in (1) by a continuous piecewise smooth function u [1]

L
dx1(t)

dt
= −(1 − u(t))x2(t) + E

C
dx2(t)

dt
= (1 − u(t))x1(t) −

x2(t)

R
(2)

where x1 is the average value of the input current and x2 is the average value of the output
voltage.

Letting X1r be a constant input current reference value, the equilibrium values of the
state components x1(t) and x2(t) are then given by x1∞ = X1r and x2∞ = X2r. The
control u(t) tends to u∞ = U , with 0 < U < 1. As a consequence in the equilibrium
point, we have the following equations:

X1r =
E

R(1 − U)2
(3)

X2r =
E

1 − U
(4)

which implies the constraint X2r =
√

X1rRE.
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3. The Proposed Sliding Mode Controller. The proposed non linear sliding surface
is given by the following expression:

SNL(t) = K1(ẋ1(t) − Ẋ1r) + K2(x1(t)
2 − X2

1r). (5)

It can be rewritten by replacing ẋ1 and ẋ2 by their expressions given in (2).

SNL(t) = −K1(1 − u(t))
x2(t)

L
+ K1

E

L
+ K2(x1(t)

2 − X2

1r). (6)

3.1. Existence condition. The existence condition of sliding mode implies that SNL(t)

→ 0 and ṠNL(t) → 0 when t tends to infinity, which means that the dynamic of the
system will stay into the sliding surface. The existence condition of the sliding mode is

SNL(t)ṠNL(t) < 0. (7)

The reaching law is selected as follows:

ṠNL(t) = −η(SNL(t) + ωsignSNL(t)) (8)

SNL(t)ṠNL(t) = −ηSNL(t)2 − ηωSNL(t)signSNL(t)) (9)

with η > 0, ω > 0.
From (9) we are able to conclude that (7) holds ∀t. Moreover, it is obvious that to

achieve the existence condition (7), condition (8) is mandatory. An adequate choice of
the control law in (6) is the key solution to achieve (7). This is the subject of the next
subsection.

3.2. The control law. The derivative of the sliding surface given by (6) is:

ṠNL =
−K1(1 − uNL)

L
ẋ2 +

K1x2

L
u̇NL + 2K2x1ẋ1 (10)

which, by taking into account (8), can be rewritten as:

ṠNL = −η(SNL(t) + ωsignSNL(t)). (11)

From (10) and (11) we get the derivative of the control law as follows:

u̇NL =
L

x2K1

(

K1(1 − uNL)

L
ẋ2 − 2K2x1ẋ1 − η(SNL(t) + ωsignSNL(t))

)

. (12)

It can be rewritten by replacing ẋ1 and ẋ2 by their expressions given in (2):

u̇NL =
(1 − uNL)2

C

x1

x2

− (1 − uNL)

RC
+

2K2x1

K1

(1 − uNL) − 2K2x1

K1

E

x2

− L

K1x2

η(SNL(t) + ωsignSNL(t)). (13)

The control law given by (13) allows the sliding surface to comply with (11). It also infers
to the sliding surface a decaying behavior or, in other words, an asymptotic stability
feature. As a consequence, the sliding surface will go to zero when the time goes to
infinity.
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3.3. Stability condition. The stability of the system is guaranteed if the dynamic of
the system in the sliding regime is directed toward the desired equilibrium point. In the
preceding subsection, we proved that with the chosen control law (13), the sliding surface
will reach the steady state SNL(t) = 0 for t greater than a time tr which corresponds to
the settling time of the system described by (11). Our aim is to determine the dynamic of
the variable state errors e1 and e2 when the sliding regime is reached, with e1 = x1 −X1r

and e2 = x2 − X2r.
Let VNL = 1

2
e2

1
be a candidate Lyapunov function. Its first derivative is

V̇NL = e1ė1

= e1ẋ1. (14)

In order to insure that V̇NL < 0, the product e1ẋ1 must be negative. The expression of
ẋ1 is deduced from (5) with the constraint SNL(t) = 0 as follows:

ẋ1 = −K2

K1

(x2

1
− X1r

2).

It is worth noting that assuming SNL(t) = 0 means that the sliding regime is reached and
this is ensured by the choice of the control law (13).

The derivative of VNL is then given by

V̇NL = e1ẋ1 = (x1 − X1r)

(

−K2

K1

(x2

1
− X1r

2)

)

= −K2

K1

(x1 − X1r)
2(x1 + X1r).

The stability of x1(t) is guaranteed if K1 and K2 are positive. Therefore, x1(t) → X1r and
ẋ1(t) → 0. By replacing ẋ1(t) by its expression given by (2), we deduce that if ẋ1(t) → 0
then x2(t) → ( E

1−U
) = X2r which implies the stability of x2(t). The choice K1 > 0 and

K2 > 0 implies that the state x(t) goes to the equilibrium point when the time t goes to
infinity. This choice is the stability condition for the closed loop system.

4. Comparison with Other Non-SMC Controllers. In this section we aim at pre-
senting a comparison between the Backstepping Controller (BC), the Parallel Damped
Passivity-Based Controller (PDPBC) and the proposed approach developed in Section 3
which is defined as the PSMC approach.

4.1. Backstepping Controller. The backstepping approach is a recursive design meth-
odology. It involves a systematic construction of both feedback control law and associated
Lyapunov function:

V (x) =
1

2
z2

1
+

1

2
z2

2
(15)

with z1 = x1 − X1r and z2 = a2x2 − 1

1−u
(k1bz1 + a2E).

In order to have a negative derivative of the Lyapunov function, the control law has to
satisfy:

u̇ = −(1 − u)2 (k1b(x1 − X1r) + a2E)−1
(

(1 − u)2 − k2

1b

)

(x1 − X1r)

−(k2b + k1b)(1 − u)

(

a2x2 −
1

(1 − u)
(k1b(x1 − X1r)

+a2E) + a2d(1 − u)x2 − a2a1x1(1 − u)2

)

(16)

where a1 = 1

C
, a2 = 1

L
and d = 1

RC
.
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4.2. Parallel-Damped Passivity-Based Controller (PD-PBC). The nonlinear pa-
ssivity-based control (PBC) aims at modifying the energy of the system and injecting
damping in order to modify the dissipation structure of the system. This damping injec-
tion can be made in series when the damping is added to the input current or in parallel
when the damping is added to the capacitor voltages [6]. A simplified Parallel-Damped
Passivity-Based Controller (PD-PBC) has been proposed in [5].

Following the expression for U in (4), the controller will assume the form:

u = 1 − E

x2d

(17)

ẋ2d = −f(x2d, ed) (18)

where x2d(t) stands for the desired trajectory for x2(t). Moreover when ẋ2d = 0, it is
required that ed∞ = 0 and x2d∞ = X2r.

The function f(x2d, ed) is given by:

f(x2d, ed) =
K1p + K2p

C
x2d +

K2p

C
x2d +

K1p

C
X2r (19)

with K1p + K2p > 0.
As a consequence we get

ẋ2d = −K1p + K2p

C
x2d +

K2p

C
x2d +

K1p

C
X2r. (20)

4.3. Simulation results. In order to test the effectiveness and the robustness of the
proposed sliding mode controller compared to other controllers, the average model of the
DC-DC converter has been simulated using the Matab/Simulink software.

The simulations were performed with the following parameter’s values:

R = 30Ω, L = 10mH, C = 100µF, E = 15V, Te = 50µs, X2r = 30V.

The initial values are:

x1(0) = 0.6A, x2(0) = 16V, u(0) = 0.1.

4.3.1. Simulation results without variation. Table 1 contains the design parameters values
for the three considered methods: PSMC, BC and PDPBC.

Table 1. Design parameters for PSMC, BC and PDPBC

PSMC BC PDPBC
K1 = 0.0048 K1b = 1100 K1p = 0.3692

K2 = 0.4 K2b = 11000 K2p = 0.4733

Table 2. Comparison of results obtained from PDPBC, BC and PSMC

PDPBC BC PSMC
Rise time (ms) 77.5149 257.4079 147.6051

Settling time (ms) 284.4814 448.1615 257.0769
Settling min (A) 1.8649 1.8599 1.8601
Settling max (A) 2.0668 1.9986 2
Overshoot (A) 3.3418 0 0

Peak (A) 2.0668 1.9986 2
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Figure 2. Simulation results of (a) PDPBC, (b) BC and (c) PSMC

Table 3. Parameters of PSMC, BC and PDPBC under load resistor variation

PSMC BC PDPBC
K1 = 0.0065 K1b = 1200 K1p = 0.3692

K2 = 0.4 K2b = 12000 K2p = 0.4733

4.3.2. Simulation results under load resistor variation. In order to compare the robustness
of the PSMC with the PDPBC and BC, a load resistor change is applied from R = 30Ω
(the nominal value) to R = 45Ω at t = 0.05s. Table 3 contains the parameters values of
PSMC, BC and PDPBC under load resistor variation.

4.3.3. Results discussion. From Table 2, it is noticeable that the rise time reaches its
minimum for the PDPBC approach and its maximum in the case of the BC. The PSMC
approach achieves the minimum settling time. In addition, the PSMC shows the best
tracking of the input current because the current reaches its desired value (2A) without
overshoot. As a consequence, it can be concluded that the proposed controller, that is
the PSMC approach, fulfills better performance than the other approaches.

It is clear from Figure 2 that the output voltage obtained for the three methods, the
PDPBC, the BC and the PSMC performs good tracking of the reference (30V). However,
the zoomed parts in Figure 2 show clearly that the non-minimum phase behavior is
eliminated especially in the case of the PSMC.

Figure 3 shows that the BC behavior under load variation is better than the PDPBC
in accordance with [22]. We can say that all tested controllers are robust and the output
voltage tracking is achieved in all cases. However, it is noticeable from the duty ratio
curves that the PSMC has the best behavior under load variation (the small peak visible
in the case of the BC could be an undesirable behavior).

5. Comparison with Other SMC Approaches. In this section we compare our pro-
posed SMC approach to the classic sliding mode approach (CSMC) [9], the approach
based on a generalized PI Sliding Mode Control (GPISMC) proposed in [2, 3] and the
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Figure 3. Simulation results of the PDPBC, the BC and the PSMC under
load resistor variation

Sliding Mode Controller Based on an Extended Linearization (SMCBEL) as proposed in
[10].

5.1. Classic sliding mode controller. In [9], a cascade control structure is applied to
control the boost converter, which leads to solving the control problem using two control
loops: the output voltage loop generates the reference current from the voltage error and
the inner current loop controls the inductor current via a classic sliding mode controller:

u =

{

1 for S < 0,
0 for S > 0.

The sliding surface is:

S = K ′
1h(x2 − X2r) + K2h(x1 − X1r) (21)

with

K ′
1h = K1h −

K2hX2r

RE
. (22)

The existence and stability conditions are verified if

K ′
1h

K2h

<
RCE

X2rL

where K1h and K2h are positive scalars.

5.2. Generalized PI sliding mode control. The feedback control of the GPISMC
described in [2, 3] uses only the output capacitor voltage measurement, as well as the
available input signal, represented by the switch positions:

ug(τ) =

{

1 for S(ε2, ug) > 0,
0 for S(ε2, ug) < 0.
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The GPISMC sliding surface is:

S(ε2, ug, ε3) =

∫ ρ

0

(1 − ug(ρ)ε2(ρ))dρ

−Vd
2

Q
+ k0ε3 (23)

with

ε̇3 = z2 − Vd, ε3(0) = 0 (24)

where ε2 = x2

E
, τ = t√

LC
, Q = R

√

C
L
, ug = 1 − u, z1 = x1

E

√

L
C

, z2 = x2

E
, 0 < k0 < 1

Vd

and

Vd = X2r
E

.

5.3. Sliding mode controller based on extended linearization. The design tech-
nique is based on an approximate linearization of the average model about parametrized
equilibrium points [10]. The obtained linear system is then used with a classic sliding sur-
face where the design parameters are chosen in order to guarantee the asymptotic stability
of the autonomous ideal sliding mode dynamical system. The parametrized nonlinear slid-
ing manifold is then constructed yielding the construction of the equivalent control and
the definition of the sliding mode switching logic.

The proposed non linear sliding surface is:

S = b(z1 − Z1) +
1

2
c1(z

2

1
− Z2

1
) +

c1 − 2w1

2
(z2

2
− Z2

2
). (25)

The equivalent control is given by:

Ueq = 1 − b(b + c1z1) − w1(c1 − 2w1)z
2

2

w0(b + c1x1) − w0(c1 − 2w1)z1z2

. (26)

Then, the sliding mode controller is:

u =
1

2
(1 + signS) (27)

with
z1 = x1

√
L, Z1 = X1r

√
L, z2 = x2

√
C, Z2 = X2r

√
C,

w0 =
1√
LC

, w1 =
1

RC
, b =

E√
L

and c1 > 0 is the controller parameter.

5.4. Simulation results. In order to test the effectiveness and robustness of the pro-
posed sliding mode controller, the average model of the DC-DC converter is used. The
simulations are carried out using the Matlab/Simulink software. The simulations were
performed with the same parameter values used in Section 4.3. A comparison of the
PSMC (the proposed method) with the GPISMC, the CSMC and the SMCBEL is given.

5.4.1. Simulation results. Table 4 contains the design parameters values for the four ap-
proaches, that is, the PSMC, the GPISMC, the CSMC and the SMCBEL.

Table 4. Parameters of PSMC, GPISMC, CSMC and SMCBEL

PSMC GPISMC CSMC SMCBEL
K1 = 0.0048 K0 = 0.1 K1h = 0.025 c1 = 300

K2 = 0.4 K2h = 0.5
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Figure 4. Simulation results of (a) CSMC, (b) GPISMC, (c) SMCBEL
and (d) PSMC

Table 5. Comparison of results obtained from CSMC, GPISMC, SMC-
BEL and PSMC

CSMC GPISMC SMCBEL PSMC
Rise time (ms) 29.0261 15.1449 74.2235 147.6051

Settling time (ms) 800.6222 800.6194 800.5517 257.0769
Settling min (A) 1.8312 1.9442 1.7509 1.8601
Settling max (A) 2.0667 2.0958 2.0512 2
Overshoot (A) 2.4681 3.3418 0 0

Peak (A) 2.0667 2.0958 2.0512 2

Table 6. Parameters of PSMC, GPISMC, CSMC and SMCBEL under
load resistor variation

PSMC GPISMC CSMC SMCBEL
K1 = 0.00048 K0 = 7 K1h = 0.07 c1 = 3000

K2 = 0.03 K2h = 0.5

5.4.2. Simulation results under load resistor variation. In order to test the robustness of
the PSMC in comparison with the CSMC, the GPISMC and the SMCBEL, a load resistor
change is applied from R = 30Ω (the nominal value) to R = 45Ω at t = 0.3s. Table 6
contains the parameters values of the PSMC, the GPISMC, the CSMC and the SMCBEL.

5.4.3. Results discussion. Table 5 shows clearly that the rise time is minimum for GPIS-
MC and maximum in the case of the PSMC. However, the settling time is at its minimum
value for the PSMC which can be interpreted as a good behavior. Indeed, a small rise time
will need a large control but it does not imply a small settling time. If instead we have
a bigger rise time giving rise to a moderate control but at the same time enough control
allowing the system to settle rapidly. In addition, it can be noticeable, that the input
current tracking with the PSMC is better because it reaches its desired value without
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Figure 5. Simulation results of the CSMC, the GPISMC, the SMCBEL
and the PSMC under load resistor variation

overshoot. Thus, it can be concluded that the proposed controller is the one that behaves
well with respect to all aspects.

The zoomed parts in Figure 4 of the input current and the sliding surface show that
the chattering phenomenon is totally eliminated in the case of the PSMC while the other
approaches fail to do the same. Moreover, the PSMC is able to overcome the problem of
the non-minimum phase compared to the GPISMC, the CSMC and the SMCBEL. Thus,
a good output voltage tracking is obtained with the PSMC.

It can be seen from Figure 5, that the GPISMC and the PSMC are able to deal with the
load variation. However, the CSMC and the SMCBEL exhibit a steady state error in the
output voltage. The figure shows clearly that the PSMC behavior against a load variation
is better than that of the GPISMC. This can be explained by the fact that the sliding
surface used in the GPISMC contains an integral term which, in general, participates to
slow down the system.

As a conclusion, the PSMC is able to deal efficiently with the problem of the output
voltage steady state error as presented in [26] without requiring an adaptation of control
parameters.

6. Conclusions. In this paper, a proposed sliding mode controller (PSMC) is compared
to some existing controllers from the literature. The comparison is made first with two
controllers which are not based on a sliding mode strategy, that is, the parallel damped
passivity-based controller (PDPBC) [5] and the Backstepping Controller (BC) [4, 8, 15].
The second comparison is made with some controllers which are based on a sliding mode
control strategy, that is, the classic sliding mode controller (CSMC) from [9], the gener-
alized PI sliding mode controller (GPISMC) from [2, 3] and the sliding mode controller
based on extended linearization (SMCBEL) from [10].

Through comparative computer simulations, the PSMC has been shown to have an
improved performance and a robust stability and it is able to eliminate the chattering
phenomenon and the non-minimum phase problem.
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