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Abstract. To exhibit the leading/lagging relationship among groups in a VAR process,
we construct a three-group causal path (an extended Granger causality) as well as an
identification procedure for the pathway which includes the independent, the intermediate
and the dependent groups. In addition, we impose the unidirectional restriction on the
pathway. Consequently, our method can organize more detailed and practical causal
structure in a dynamic system than the conventional methods. The property concerning
the impulse response function is derived when the three-group causality occurs in the
VAR model. Finally, we show that these techniques can be easily implemented in the
U.S. economic model consisting of the stock return, the inflation rate and the industrial
production growth rate.
Keywords: Vector autoregressive process (VAR), Granger causality, Three-group causal
path, Impulse response analysis

1. Introduction. For many years, the following question has been discussed in the fields
of both academy and business: What kind of causalities can be used to make meaningful
predictions concerning the economic system? Answers to this question have been provided
with various economic theories and statistical methods. Several studies dealt with this
question, relating it to the measure of the causality via spectral decomposition in a VECM
model [1], to the causal connectivity analysis in neural mechanisms [2] or to frequency-
modified causality of the network structure in a non-linear system [3]. Recently, the
identification of the causality has applications in bidirectional function learning method
[4], the dynamic economic models [5], the knowledge acquisition [6] and many others.

However, Granger’s [7] causality has become a fairly popular technique to measure
dynamic relationship between groups of variables in the time series process. It has been
widely used in economics [8,9] since the 1960s, and its applications in neuroscience [10-12]
have been in favor in the last years.

The concept of Granger causality is based on two-group framework in which all variables
are partitioned into two groups x and z. We say that x is Granger-causal for z if x is useful
in forecasting z. In this setting, the information set for forecasting z contains two groups
x and z. However, in order to extend the idea of the two-group framework, Lütkepohl
[13] and Dufour and Renault [14] considered a higher dimensional system in which all
variables are partitioned into three groups, say x, z and w. In the three-group setting,
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the question that whether x is Granger-causal for z is reconsidered while the information
set adds the auxiliary group w besides the original groups x and z.
Although Lütkepohl [13] and Dufour and Renault [14] suggested a three-group frame-

work involving x, z and w, their concept still focused on the causality between the two
groups x and z. The remaining group w is only used to expand the information set but is
excluded from the causality we concerned. As a matter of fact, the framework they had
proposed should be viewed as a two-group causal structure.
The idea of our research is different from those of Lütkepohl [13] and Dufour and

Renault [14]. We intend to construct a complete causal link by employing all of the three
groups x, z and w in a real dynamic system. That is, the third group w is used not
only to expand the information set but also to join the causality link. Correspondingly,
the truly three-group causality, which will present more detailed causal relationship, is
actually motivated by the ‘causal pathway’ of the Structural Equation Model (SEM).
In addition, we provide an identification procedure to detect whether there exists a

three-group causality in a VAR model. We also investigate the impulse response function
between the two variables yjt and ykt deriving from different groups under the three-group
pathway. Moreover, it’s demonstrated that there is no reaction of yjt to an impulse in ykt
if the group of yjt leads the group of ykt.
The remainder of the paper is organized as follows. Section 2 briefly introduces the

concept of Granger causality and the leading relationship between groups. Section 3
discusses in detail the construction of the three-group causal path in a VAR model. A
procedure which can judge the existence of the three-group causality is discussed in Section
4. The impulse response analysis for the three-group causality is investigated in Section
5. Section 6 shows an empirical application of the three-group causality. The final section
illustrates the conclusion and issue about this research.

2. Granger Causality and Leading Relationship. Granger causality is a statistical
concept of causality that is based on whether one process is useful in forecasting another
process. Let Ωz = (zt, zt−1, . . . , z1) and Ωxz = (xt, zt, xt−1, zt−1, . . . , x1, z1) denote the
information sets, where xt and zt refer to the groups of variables, and let zt(h |Ω) be
the optimal predictor of zt+h based on the available information set Ω. If zt(h |Ωxz ) has
smaller prediction error than zt(h |Ωz ) for any h, then x is said to be Granger-causal for
z. In other word, Granger causality is used for examining whether eliminating {xt} from
the information set Ωxz will enlarge the prediction error or not.
Granger causality is particularly easy to be dealt with in the pth-order VAR model

written by

Yt = v +

p∑
i=1

AiYt−i + εt, εt ∼ WN(0,Σε), t = 1, . . . , T, (1)

where Yt is a (K × 1) random vector and Ai is a (K × K) coefficient matrix for i =
1, 2, . . . , p. To partition Yt into two groups zt and xt, the V AR(p) model can also be
represented in the following form[

zt
xt

]
=

[
v1
v2

]
+

p∑
i=1

[
A11,i A12,i

A21,i A22,i

] [
zt−i

xt−i

]
+

[
ε1t
ε2t

]
, (2)

where zt and xt areM×1 and (K−M)×1 random vectors, respectively. Granger causality
can be determined only through the coefficient submatrices in Model (2) because of the
following property:

zt(h |Ωxz ) = zt(h |Ωz )⇔ A12,i = 0 for i = 1, . . . , p.
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It implies that xt is Granger causal for zt, if there exists at least one non-zero matrix
among the set of matrices A12,i, i = 1, . . . , p.

Usually, we have a two-way (bidirectional) causality between xt and zt in Granger sense,
i.e., xt is Granger causal for zt and zt is Granger causal for xt, too. This phenomenon is
called a feedback in which the roles of cause and effect can exchange with each other. In a
V AR(p) model, feedback indicates that the following conditions are held simultaneously:

(a) there exists at least one nonzero matrix among A12,i, i = 1, . . . , p, and
(b) there exists at least one nonzero matrix among A21,i, i = 1, . . . , p.

In empirical studies Grange causality has been frequently used to describe the lead-
ing/lagging relationship between variables for a period of time. Hence, a feedback system
implies that zt leads xt and xt leads zt, too, while this will induce contradiction in chronol-
ogy with the Granger’s claiming.

Since a two-way causality will make more conflicting results than that of a one-way
(unidirectional) causality in some applications, our research will focus on the investigation
of the latter. We define the leading relationships between the two groups zt and xt based
on the one-way case. For simplicity, we form the two conditions to be:

C1 : A12,i = 0, for i = 1, . . . , p, and

C2 : A21,i = 0, for i = 1, . . . , p
(3)

and further evaluate the conditions for their true or false. Note that if C1 is false, it
indicates that there exists at least a nonzero matrix among A12,i, i = 1, . . . , p. Similarly, if
C2 is false, it indicates that there exists at least a nonzero matrix among A21,i, i = 1, . . . , p.

Definition 2.1. (Leading Relationship) The two groups zt and xt are defined in Model
(2). With the true or the false for C1 and C2 defined in (3), the variety of the leading
relationship between zt and xt are defined in the following table:

Table 1. Leading relationship between zt and xt

case
condition

conclusion symbol
C1 C2

1 F F failing to judge leading relationship z→← x
2 T T z is irrelevant to x z ∥ x
3 T F z leads x z → x
4 F T x leads z x→ z

In this definition, we use the term ‘lead ’ instead of ‘Granger-causes ’ to represent a more
strict causal link. Case (1) in Table 1 just represents a feedback system which is treated
as a controversy case. So, we say that we can not judge the leading relationship between
zt and xt. In Case (2), zt and xt do not affect each other. We accordingly hold that z
is irrelevant to x. In Case (3), zt is a Granger-causal for xt but not vice versa. For the
one-way causality, we say that z leads x.

Example 2.1. Let’s consider a VAR(2) model y1t
y2t
y3t

 =

 2 0 0
0 3 0
0 0 1

 y1t−1

y2t−1

y3t−1

+

 1 0 0
0 3 0
0 2 6

 y1t−2

y2t−2

y3t−2

+

 ε1t
ε2t
ε3t

 . (4)
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We want to detect the leading relationship between (y1t, y2t) and y3t, where (y1t, y2t) refers
to the one group containing the variables y1t and y2t. As in (3), we set the conditions:

C1 : A12,1 = A12,2 =

[
0
0

]
and

C2 : A21,1 = A21,2 =
[
0 0

]
.

To judge true/false of C1 and C2, the actual values of related coefficient matrices are
derived from Model (4):

A12,1 =

[
0
0

]
, A12,2 =

[
0
0

]
, A21,1 =

[
0 0

]
, A21,2 =

[
0 2

]
.

It is easily found that C1 is true while C2 is false. These are corresponding to Case (3)
in Table 1. Thus, we claim that the group (y1t, y2t) leads y3t in the VAR model, denoted
by (y1, y2)→ y3.

3. Three-Group Causal Path. In order to analyze a complete causality system in a
higher dimensional situation, we propose a three-group causal structure by the use of SEM.
SEM is originally a statistical technique to show causal dependency between variables,
which can be represented as a path diagram. For example, the path diagram x→ w → z
indicates a specific causality with the independent variable x, the intermediate variable
w and the dependent variable z.
Hence, we make a three-group causal path with three types of groups: (a) the inde-

pendent group, (b) the intermediate group and (c) the dependent group. Giving a simple
example to illustrate the application of the three-group causality, assume that there is a
3th-order VAR model with three variables, investment (y1), income (y2) and consumption
(y3). Our goal is to identify which one is independent, which one is intermediate and
which one is dependent among them. If the causal path is presented with the following
form:

income y2 → investment y1 → consumption y3,

(independent) (intermediate) (dependent)

we call it a Three-Group Causal Path with the independent group y2, the intermediate
group y1 and the dependent group y3.
Let us illustrate the background of our picture for processing three-group causality

problem. As in the representation (1), let Yt be divided into three groups y1t, y2t and y3t.
Then we have y1t

y2t
y3t

 =

 v1
v2
v3

+

p∑
i=1

 A11,i A12,i A13,i

A21,i A22,i A23,i

A31,i A32,i A33,i

 y1t−i

y2t−i

y3t−i

+

 ε1t
ε2t
ε3t

 , (5)

where it is assumed that y1t, y2t and y3t are independent, intermediate and dependent
groups with M × 1, L× 1 and (K −M − L)× 1 random vectors, respectively, and could
be diagramed as

y1 → y2 → y3. (6)

In terms of intuitive thinking for the three-group case, it is reasonable to suppose
that the pathway (6) satisfies the following conditions for the leading relationship as in
Definition 2.1:

(a) The independent group y1t leads the group (y2t, y3t) which contains both intermediate
and dependent ones. It can be diagramed as y1t → (y2t, y3t).
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(b) The group (y1t, y2t) containing both independent and intermediate ones leads the
dependent group y3t. It is diagramed as (y1t, y2t)→ y3t.

In the following paragraphs, we are going to explain the mathematical aspects of the
both conditions separately.
Condition (a): y1t → (y2t, y3t).

The leading relationship is originally defined in the two-group framework. Hence, when
considering Condition (a), we take the coefficient matrices Ai in (5) as the following 2× 2
partitioning form

Ai =
∗ A12,i A13,i

A21,i ∗ ∗
A31,i ∗ ∗

where the symbol ‘*’ means that the submatrix of coefficients located in the corresponding
position need not to be used in the analysis process. Then, from Case (3) in Table 1 we
obtain

[
A12,i A13,i

]
= 0 for i = 1, 2, . . . , p, and

there exists at least one non-zero matrix among

[
A21,i

A31,i

]
, i = 1, . . . , p.

(7)

Condition (b): (y1t, y2t)→ y3t.
We partition the coefficient matrix Ai as

Ai =
∗ ∗ A13,i

∗ ∗ A23,i

A31,i A32,i ∗

and from Case (3) in Table 1, we have
[
A13,i

A23,i

]
= 0 for i = 1, 2, . . . , p, and

there exists at least one non-zero matrix among
[
A31,i A32,i

]
, i = 1, . . . , p.

(8)

We believe that (7) and (8) will hold simultaneously if the three-group causal path (6)
exists. Thus, the intersection of (7) and (8)

A12,i, A13,i and A23,i are zero matrices for i = 1, 2, . . . , p,

there exists at least one non-zero matrix among

[
A21,i

A31,i

]
, i = 1, . . . , p, and

there exists at least one non-zero matrix among
[
A31,i A32,i

]
, i = 1, . . . , p;

(9)

should be treated as the background for defining the causal path (6).
In order to further analyze Rule (9), we design a 3 × 3 grid to convey the conditions

related to the submatrix Ajk,i. That is, if the (j, k)th entry of the grid is equal to 0, it
means Ajk,i = 0 for i = 1, . . . , p. Alternatively, if the (j, k)th entry is identical to ‘N ’,
then it means there exists at least one non-zero matrix among Ajk,i, i = 1, . . . , p. For
example, if a grid is given below

0
0

N

it means that the three conditions hold simultaneously: (a) A12,i = 0 for i = 1, 2, . . . , p,
(b) A22,i = 0 for i = 1, 2, . . . , p and (c) there exists at least one non-zero matrix among
A31,i, i = 1, . . . , p.
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In the following, we present the way to employ the grid tool to demonstrate Rule (9).
It can be found that there are five types of grids satisfying Rule (9) in total, which are
shown in the figure below.

Figure 1. Five types of grids satisfying Rule (9)

Notice that Case (4) in Figure 1 presents two relationships (a) y1 → (y2, y3) and (b)
(y1, y3) → y2 simultaneously, which can be checked according to Table 1. That invites a
pathway

y1 → y3 → y2. (10)

Similarly, another pathway
y2 → y1 → y3. (11)

can also be suggested from Case (5) in Figure 1. We treat (10) and (11) as distinct causal
paths from (6). As discussed in Section 2, we do not allow the irrational causality in
which a variety of pathways occur at one time, such as feedback in the two-group case.
Rule (9), therefore, seems to reveal the problem with contradiction in chronology.
In order to avoid these conflicting problems, we need to give the three-group causal

path more refined descriptions than Rule (9). Specifically, we must exclude Cases (4) and
(5), which generate extra conflicting pathways, when making the formal definition of the
three-group causal path y1 → y2 → y3.

Definition 3.1. (Three-Group Causal Path) Suppose that Yt follows a V AR(p) pro-
cess as in (5) and that A12,i, A13,i and A23,i are zero submatrices for i = 1, 2, . . . , p. For
the following two conditions:

(a) There exists at least one non-zero submatrix among A21,i, i = 1, 2, . . . , p, and there
exists at least one non-zero submatrix among A32,i, i = 1, . . . , p.

(b) A21,i = 0 and A32,i = 0 for i = 1, . . . , p, and there exists at least one non-zero
submatrix among A31,i, i = 1, . . . , p.

If the condition (a) or (b) holds, then this system is called a three-Group Causality with
the pathway y1 → y2 → y3, where y1 is an independent group, y2 is an intermediate group
and y3 is a dependent group.

In Definition 3.1, Condition (a) implies that Case (1) or Case (2) in Figure 1 remains,
while Condition (b) implies that Case (3) holds. Hence, Cases (4) and (5) have been
excluded from the definition of the three-group causality.
Note that Definition 3.1 is devoted to recognizing the pathway y1 → y2 → y3. However,

it can still be used to investigate another type of pathway, such as y2 → y1 → y3, as
long as the random vectors and the coefficient matrices in Model (5) are rearranged. For
instance, if we want to check the existence of the causal path y2 → y1 → y3, we need to
rearrange the random vectors and coefficient matrices as

Y ∗
t =

 y2t
y1t
y3t

 , A∗
i =

 A22,i A21,i A23,i

A12,i A11,i A13,i

A32,i A31,i A33,i

 , i = 1, . . . , p. (12)
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Then the detecting work can be implemented through Definition 3.1, based on the new
VAR model organized with Y ∗

t and A∗
i .

4. An Identification Procedure for the Three-Group Causal Path. When using
Definition 3.1 to detect whether a pathway exists or not, the detected pathway must be
explicitly specified in advance. However, in practical applications researchers often have
no idea about how to specify a causality of interests before performing the detecting work
of Definition 3.1.

To overcome such an inconvenience, we present a procedure which can identify the
existing causality without specifying a pathway in advance. This procedure involves the
following three steps:
Step 1: Detecting the leading relationship for each combination.

At this step, by partitioning y1, y2 and y3 we set up three types of combinations:

(a) y1 vs (y2, y3), (b) (y1, y2) vs y3 and (c) y2 vs (y1, y3).

Then the leading relationship for each combination can be decided according to the rule
in Definition 2.1. In the following is the example to illustrate the work.

Example 4.1. Referring to Example 2.1, we find the leading relationship for each com-
bination.
(a) y1 vs (y2, y3):

As in (3) we set the conditions:

C1 :
[
A12,1 A13,1

]
=

[
A12,2 A13,2

]
=

[
0 0

]
and

C2 :

[
A21,1

A31,1

]
=

[
A21,2

A31,2

]
=

[
0
0

]
,

which can be rewritten as
C1 : A12,i = A13,i = 0 for i = 1, 2, and

C2 : A21,i = A31,i = 0 for i = 1, 2.

In terms of the actual values of those submatrices from Model (4), it is easy to find that
C1 and C2 are both true. Corresponding to Case (2) in Table 1, we get the conclusion
that y1 is irrelevant to (y2, y3), denoted by y1 ∥ (y2, y3).
(b) (y1, y2) vs y3:

For this combination, we refer to the conclusion in Example 2.1. The conclusion is that
(y1t, y2t) leads y3t, denoted by (y1, y2)→ y3.
(c) y2 vs (y1, y3):

Here, we make rearrangement for random vectors and coefficient matrices as in (12),
and then obtain a new VAR model. Hence, the conditions are set as

C1 :
[
A21,1 A23,1

]
=

[
A21,2 A23,2

]
=

[
0 0

]
and

C2 :

[
A12,1

A32,1

]
=

[
A12,2

A32,2

]
=

[
0
0

]
,

which can be rewritten as
C1 : A21,i = A23,i = 0 for i = 1, 2, and

C2 : A12,i = A32,i = 0 for i = 1, 2.

With the actual values of coefficient matrices from Model (4), we can find that C1 is
true while C2 is false. Corresponding to Case (3) in Table 1, the conclusion is that y2
leads (y1, y3), denoted by y2 → (y1, y3).

The results are gathered in Table 2.
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Table 2. Leading relationships in Model (4)

combination condition conclusion

(a) y1 vs (y2, y3)
C1: A12,i = A13,i = 0, i = 1, 2 T

y1 ∥ (y2, y3)C2: A21,i = A31,i = 0, i = 1, 2 T

(b) (y1, y2) vs y3
C1: A13,i = A23,i = 0, i = 1, 2 T

(y1, y2)→ y3C2: A31,i = A32,i = 0, i = 1, 2 F

(c) y2 vs (y1, y3)
C1: A21,i = A23,i = 0, i = 1, 2 T

y2 → (y1, y3)C2: A12,i = A32,i = 0, i = 1, 2 F

Step 2: Searching a pathway from two combinations
At this step, we are going to look for a pathway with the results of Step 1. We try to

select two among the three combinations so that a three-group pathway can be derived by
merging conclusions of the two selected combinations. If we could not find such a pathway
from any two combinations, it indicates that a three-group causal path does not exist in
the VAR system and we shall stop the identifying procedure. Otherwise, we continue to
go to Step 3. In the following is the example using to explain the foregoing work.

Example 4.1. (continued) From Table 2, we decide to select Combination (b) and
(c), because their conclusions (y1, y2) → y3 and y2 → (y1, y3) can deduce the three-group
pathway y2 → y1 → y3. This step can be diagramed as

(b).

(
y1
y2

)
→ y3

(c). y2 →
(

y1
y3

) ⇒ y2 → y1 → y3.

Step 3: Confirming the pathway to be valid
After obtaining a pathway from Step 2, further we confirm its validity by checking the

conclusion of ‘the remaining one combination’ – note that the other two combinations have
been used to search the pathway among all three combinations at the previous step. If the
conclusion of the remaining one combination is ‘failing to judge leading relationship’ or
‘being irrelevant each other’, then the pathway found out at Step 2 is definitely confirmed
to be a valid three-group causal path. Otherwise, the three-group causal path does not
exist. Finally the identification procedure comes to an end.
Note that at Step 3 the conclusion ‘failing to judge leading relationship’ just corresponds

to Case (1) or (2) in Figure 1, and the conclusion ‘being irrelevant with each other’
corresponds to Case (3). This two conclusions induce a valid one-way causality. Besides,
other conclusions will correspond to Case (4) or (5) which results in a conflicting two-way
pathway.

Example 4.1. (continued) Since Combination (b) and (c) have been used to find out
a pathway at Step 2, we need only to check Combination (a) at Step 3. The conclusion of
Combination (a) is that y1 and (y2, y3) is irrelevant from Table 2. So, we verify that the
pathway y2 → y1 → y3 is a valid three-group causal path. Finally we obtain a three-group
causality with the independent group y2, the intermediate group y1 and the dependent
group y3 in Model (4).
Figure 2 illustrates the identifying procedure for a three-group causality.
We also show the case of absent three-group causality in the following example.
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Figure 2. Flowchart of the procedure for identifying the three-group
causal path

Example 4.2. Consider a VAR(2) model

 y1t
y2t
y3t

 =

 2 0 0
1 3 4
0 0 1

 y1t−i

y2t−i

y3t−i

+

 1 0 0
0 3 1
0 0 6

 y1t−i

y2t−i

y3t−i

+

 ε1t
ε2t
ε3t

 . (13)

The procedure for identifying the three-group causal path is as follows.
Step 1: For Model (13), the examination of the leading relationship for each combination
is demonstrated at Table 3.

Table 3. Leading relationship for each combination

combination condition conclusion

(a) y1 vs (y2, y3)
C1 : A12,i = A13,i = 0, i = 1, 2 T

y1 → (y2, y3)C2 : A21,i = A31,i = 0, i = 1, 2 F

(b) (y1, y2) vs y3
C1 : A13,i = A23,i = 0, i = 1, 2 F

y3 → (y1, y2)C2 : A31,i = A32,i = 0, i = 1, 2 T

(c) y2 vs (y1, y3)
C1 : A21,i = A23,i = 0, i = 1, 2 F

(y1, y3)→ y2C2 : A12,i = A32,i = 0, i = 1, 2 T
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Step 2: From Table 3, the pathway y3 → y1 → y2 can be derived by merging the conclusions
of Combination (b) and (c). It can be diagramed as

(b). y3 →
(

y1
y2

)
(c).

(
y1
y3

)
→ y2

⇒ y3 → y1 → y2.

Step 3: Since the conclusion of Combination (a) is neither ‘failing to judge leading re-
lationship’ nor ‘being irrelevant each other’, we finally claim that the three-group causal
path does not exist in Model (13).

Note that in Example 4.2, if we select Combination (a) and (c) at Step 2, then a
different pathway is derived:

(a). y1 →
(

y2
y3

)
(c).

(
y1
y3

)
→ y2

⇒ y1 → y2 → y3.

Continue to see Step 3, at present ‘the remaining one combination’ refers to Combi-
nations (b), and its conclusion is neither ‘failing to judge leading relationship’ nor ‘being
irrelevant each other ’. Hence, it is still claimed that the three-group causal path does not
exist. We obtain the same final result although making different selection at Step 2.

5. Impulse Response Analysis for Three-Group Causal Path. We are frequently
interested in investigating the relationship between two variables in a system that in-
volves a number of other variables. In a VAR model the impulse response analysis is for
quantifying the reaction of one variable to an impulse in another variable with all other
variables held constant. To carry out the impulse response analysis for the two variables
yjt and ykt, the VAR model in (1) is rewritten in a MA(∞) representation as

Yt = µ+
∞∑
i=0

Θiwt−i, wt ∼ WN(0, Ik),

where

Θi = ΦiQ

Φi =


Ik i = 0
i∑

j=1

Φi−jAj i = 1, 2, . . . , Aj = 0, j > p,

. (14)

and the nonsingular lower triangular matrix Q is derived from Choleski decomposition
Σε = QQ′, and Aj and Σε have been defined in (1). Then the (j, k)th element of the
matrix Θi just represents the reaction of the variable yjt+i to an impulse in the variable
ykt, i.e.,

{Θi}jk = ∂yjt+i/∂ykt for i = 1, 2, . . . . (15)

Especially when ∂yjt+i/∂ykt = 0, it indicates that ykt does not affect yjt+i. It should be
kept in mind that the impulse response analysis focuses on the relationship between ‘vari-
ables’, while Granger causality focuses on the relationship between ‘groups of variables’.
With the impulse responses analysis, we study the relationship between two variables

which belong to different groups in a three-group causality. We provide the following
property.
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Property 5.1. Suppose that two variables yjt and ykt belong to different groups in the
VAR model with a three-group causal path. If under the pathway the group to which yjt
belongs is located in front of the group to which ykt belongs, then there is no reaction of
yjt+i to an impulse in ykt for i = 1, 2, . . .; hence, the impulse response function is

∂yjt+i/∂ykt = 0, i = 1, 2, . . . .

Proof: Let three groups y1t, y2t and y3t be g-, s- and (k − g − s)-dimensional random
vectors, respectively. And without loss of generality, we assume that the three-group
causal path is with the independent group y1, the intermediate group y2 and the dependent
group y3. Then the coefficient matrix Ai in (1) can be represented in the following form:

Ai
k×k

=


iA11
g×g

0
g×s

0
g×(k−g−s)

iA21
s×g

iA22
s×s

0
s×(k−g−s)

iA31
(k−g−s)×g

iA32
(k−g−s)×s

iA33
(k−g−s)×(k−g−s)

 , i = 1, 2, . . . , p,

and the lower triangular matrix Q in (14) can also be represented in the similar form

Q
k×k

=


Q11
g×g

0
g×s

0
g×(k−g−s)

Q21
s×g

Q22
s×s

0
s×(k−g−s)

Q31
(k−g−s)×g

Q32
(k−g−s)×s

Q33
(k−g−s)×(k−g−s)

 .

When we perform matrix operation on Ai and Q involving addition, subtraction and
multiplication, the resulting matrix will has the same form as Ai and Q. Since the
matrix Θi in (14) is derived by mixing the three operations: addition, subtraction, and
multiplication on Ai and Q, therefore, Θi must has the following representation form:

Θi
k×k

=


Θ11,i
g×g

0
g×s

0
g×(k−g−s)

Θ21,i
s×g

Θ22,i
s×s

0
s×(k−g−s)

Θ31,i
(k−g−s)×g

Θ32,i
(k−g−s)×s

Θ33,i
(k−g−s)×(k−g−s)

 , i = 0, 1, 2, . . . (16)

If the group to which yjt belongs is located in front of the group to which ykt belongs in
the pathway y1 → y2 → y3, the matrix element {Θi}jk for every i ≥ 1 must fall within
the scope of the three zero matrices in (16). Hence, from (15) we obtain

∂yjt+i/∂ykt = 0 for i = 1, 2, . . . .

The property is important in presenting the impact of any variable on others in the
three-group system. We give an example to illustrate the application of Property 5.1.

Example 5.1. Continuing to consider Example 4.1, we have found the three-group causal
path y2 → y1 → y3 in Model (4). Suppose that the two variables yjt and ykt come from
the two groups y2 and y3, respectively. Based on Property 5.1, we can claim that there is
no reaction of yjt+i to an impulse in ykt for i = 1, 2, . . . since the group y2 is located in
front of the group y3 in the pathway y2 → y1 → y3. To give a visual impression, it can be
simply diagramed as

y2 → y1 → y3
⇑ ⇑
yjt 8 ykt

.
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Similarly, if we suppose that yjt and ykt come from the two groups y1 and y3, respectively,
then there is no reaction of yjt+i to an impulse in ykt for i = 1, 2, . . ., diagramed as

y2 → y1 → y3
⇑ ⇑
yjt 8 ykt

.

6. Empirical Study. In order to demonstrate the usefulness of the proposed techniques,
in this section we investigate the causal relation by taking the stock return, the inflation
rate and the industrial production growth rate in a VAR model. We adopt quarterly data
from 2001:IV to 2008:III with the three variables: the stock return (MARKET) is the
continuously compounded return on S & P 500 index, the inflation rate (INF) refers to the
continuously compounded growth rate of U.S. CPI, and the industrial production growth
rate (IPG) is the continuously compounded growth rate of U.S. industrial production.
The data over this period is displayed in Figure 3.

Figure 3. Time series plots of MARKET, INF and IPG

A VAR(2) model is fitted with MARKET (y1t), INF (y2t) and IPG (y3t), and the
estimated results are presented by the expression

Yt=


−0.508
(0.026)

0.015
(0.004)

0.004
(0.005)

+


0.158
(0.196)

3.742
(1.623)

3.582
(1.206)

0.009
(0.026)

−0.532
(0.220)

−0.094
(0.163)

−0.039
(0.039)

−0.028
(0.323)

−0.041
(0.240)

Yt−1+


0.128
(0.179)

0.481
(1.530)

1.406
(0.832)

−0.006
(0.024)

−0.403
(0.207)

−0.212
(0.113)

0.009
(0.035)

0.241
(0.305)

0.224
(0.165)

Yt−2+ε̂t,

where the value in the parentheses is the estimated standard deviation of the coefficient.
However, because the coefficients are all unknown in the empirical example, we do not

have the actual values but their estimated values. Here the condition Ci (i = 1, 2) cannot
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be correctly evaluated to be true or false. In fact, this problem can be easily overcome
by employing the statistical testing technique. First, let’s treat C1 and C2 as the null
hypotheses. And then Wald Test is used to decide whether Ci is accepted or rejected for
each i = 1, 2 with the significance level α.

With the hypothesis testing, the procedure to identify the three-group causal path is
described as follows.
Step 1: The testing result of the leading relationship for each combination is displayed in
Table 4.

Table 4. Test for the three-group causal path for MARKET/INF/IPG

combination null hypothesis p-value decision conclusion

(a) y1t vs (y2t, y3t)
H

(1)
0 : A12,i = A13,i = 0, i = 1, 2 0.003 reject

(y2, y3)→ y1
H

(2)
0 : A21,i = A31,i = 0, i = 1, 2 0.868 accept

(b) (y1t, y2t) vs y3t
H

(1)
0 : A13,i = A23,i = 0, i = 1, 2 0.002 reject

y3 → (y1, y2)
H

(2)
0 : A31,i = A32,i = 0, i = 1, 2 0.824 accept

(c) y2t vs (y1t, y3t)
H

(1)
0 : A21,i = A23,i = 0, i = 1, 2 0.325 accept

y2 ∥ (y1, y3)
H

(2)
0 : A12,i = A32,i = 0, i = 1, 2 0.168 accept

Table 4 includes six hypotheses testing. In each testing the null H
(i)
0 will be rejected if

the p-value is less than the significant level α = 0.05.
Step 2: From Table 4, the conclusions of Combination (a) and (b) imply the pathway
y3 → y2 → y1, diagramed by

(a).

(
y2
y3

)
→ y1

(b). y3 →
(

y1
y2

) ⇒ y3 → y2 → y1.

Step 3: Since Combination (c) reveals the irrelevance of relationship between two groups
y2t and (y1t, y3t), we conclude that there exists a three-group causal path with the inde-
pendent variable IPG (y3), the intermediate variable INF (y2) and the dependent variable
MARKET (y1), denoted as

IPG→ INF→ MARKET. (17)

The causal path indicates that the industrial production growth rate and the inflation
rate will lead the stock return, but not vice versa.

In order to further realize the dynamic interactions among IPG, INF and MARKET
in the three-group causality, we also present the impulse responses analysis for the three
variables.

According to Property 5.1, Pathway (17) imposes the restriction that

∂yjt+i/∂ykt = 0 for i = 1, 2, . . .

when (ykt, yjt) = (MARKET, INF), (MARKET, IPG) and (INF, IPG). We can see such
restriction at the three bottom-left panels of Figure 4. Therefore, the impulse response
analysis shows that MARKET does not affect INF and IPG, as well as that INF does not
affect IPG.
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Figure 4. Impulse responses of the MARKET/INF/IPG system (impulse
→ response)

7. Conclusion. In this paper, we have constructed a three-group causality for capturing
the leading/lagging relationship among groups in a VAR process, and the identification
procedure for the pathway also has been proposed. Furthermore, we have shown that
these techniques can be easily implemented in an U.S. economic model.
This research extends the previous studies with the following points:

(1) Different from Lütkepohl [13] and Dufour and Renault [14], we construct a truly three-
group causal link by employing all groups; hence, a more detailed causal relation can
be represented in a dynamic system.

(2) SEM is originally used in psychological and educational research. To avoid contra-
diction in chronology, we impose one-way direction on the causality. This imposition
will make SEM popularized to the field of economics instead.

There are several issues of interest which might be studied in the future.

(1) To consider a VECM (Vector Error Correction Model), which is a nonstationary VAR
process with cointegration, the construction of a three-group causality in the VECM
model will be a appealing topic.

(2) The six hypotheses testing, shown in Section 6, for identifying the causal link can be
grouped as one multiple hypothesis testing in the simultaneous sense. How to find
an appropriate familywise error rate in the entire multiple skeleton, instead of the
significance level α in each individual testing, will be an important issue.
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