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Abstract. Data envelopment analysis (DEA) is a useful tool based on which inefficient
decision-making units (DMUs) can perform a benchmarking process to improve their per-
formance. However, several practical problems need to be addressed in benchmark target
selection. One issue discussed in this research is that it might not be feasible for an inef-
ficient DMU to achieve its target’s efficiency in a single step, especially when the DMU is
far from the benchmark target DMU. To resolve this problem, various methods of stepwise
benchmarking have been proposed. Most of these methods, however, only consider the ef-
ficiency score in selecting benchmark targets and ignore various practical aspects that
should be considered. In this paper, we propose a new method of stepwise benchmarking
based on three criteria: preference, direction and similarity. The first criterion, prefer-
ence, is used for selecting an ultimate benchmark target; the second criterion, direction
is used in selecting intermediate benchmark targets which are located more closely to the
improving path; and the third criterion, similarity is used for determining intermediate
benchmark targets which are similar to the DMU under evaluation. Considering these
three criteria, we develop a method of constructing a more practical and feasible sequence
of benchmark targets.
Keywords: Data envelopment analysis (DEA), Benchmarking, Efficiency

1. Introduction. The problem of benchmark target selection has been recognized as
one of important factors that organizations need to consider in the process of improving
their efficiency. This issue has been studied in previous research of various fields such
as public administration [1], production and design [2,16], and business management [3].
In general, a benchmarking process consists of three steps. First, the best performer is
identified. Second, the activities and objectives of benchmarking are set. Finally, best
practices are implemented to achieve the benchmarking objectives [4]. Benchmarking re-
quires an effective methodology for finding the best performer, which entails evaluation of
the relative efficiencies of the competitors in terms of multiple input and output factors.
Identifying the best performer is considered the most important step of benchmarking
processes. To identity the best performer, data envelopment analysis (DEA), a methodol-
ogy for measuring the relative efficiencies of homogeneous decision making units (DMUs),
has been popularly used [5]. A DEA study provides a reference set of benchmark targets
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for an inefficient DMU along with the corresponding efficiency gap (the degree to which
that DMU must be improved so as to be rendered efficient). Several practical problems
need to be addressed in benchmark target selection using DEA for inefficient DMUs. One
of the problems to be discussed in this research is that it might not be feasible for an in-
efficient DMU to achieve its target’s efficiency in a single step, especially when that DMU
is far from the target DMU on the frontier. To resolve this problem, various methods of
stepwise benchmarking have been proposed in the literature.
Alirezaee and Afsharian [6] proposed a layered efficiency evaluation model that provides

a strategy by which an inefficient DMU can move to a better layer. This model, however,
does not provide any information on how to choose the reference DMU in each layer.
Shaneth et al. [7] proposed a proximity-based target selection method to provide the
optimal path to the most efficient frontier DMU using self-organizing map (SOM) and
reinforcement learning. This method, however, does not consider the reference set of
inefficient DMUs, but focuses on practical target DMUs based on the similarity of input
patterns for the benchmarking path. Park et al. [8] proposed a method of stepwise
benchmarking which involves both stratifying DMUs into several performance levels and
clustering DMUs based on the similarity of input patterns.
Stepwise benchmarking methods are considered to be more practical and more effective

than conventional DEA based approaches, and various methods for stepwise benchmark-
ing have been proposed in the literature. However, they are limited to some extent in
that they do not consider various practical aspects that should be addressed for securing
the practical feasibility of benchmarking process for inefficient DMUs.
In this paper, we propose a new method of stepwise benchmarking which incorporates

three criteria for selecting a practical and feasible sequence of benchmark targets. Our
approach considers multiple criteria (preference, direction and similarity) in selecting
benchmark targets, while most of previous models considered only efficiency scores. This
is the unique feature of the proposed approach compared with the previous ones. The
first criterion, preference, is used for selecting an ultimate benchmark target; the second
criterion, direction, is used for selecting intermediate benchmark targets which are located
more closely to the improving path aimed for the ultimate benchmark target; and the
third criterion, similarity, is used for determining intermediate benchmark targets which
are similar to the DMU under evaluation in terms of the factor levels.
In order to illustrate the proposed method, we apply the proposed method to a set of

East Asian container terminals and discuss the results. This paper is organized as follows.
Section 2 provides an overview of DEA and SOM. Section 3 discusses the proposed method
and Section 4 details our empirical study. Finally, Section 5 summarizes our work.

2. Background.

2.1. Data envelopment analysis (DEA). DEA is a linear programming based model
that evaluates the relative efficiencies of DMUs in terms of multiple inputs and outputs
[9]. The mathematical model of DEA is given by the following:

max

s∑
r=1

uryrk

m∑
i=1

vixik

s.t.
s∑

r=1
uryrj

m∑
i=1

vixij

≤ 1; j = 1, . . . , n

ur, vi ≥ 0; r = 1, . . . , s; i = 1, . . . ,m

(1)
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This is a basic DEA model developed by Charnes, Cooper and Rhodes [10], called CCR
model. In this model, ur is the weight given to the r-th output, vi is the weight given to
the i-th input, n is the number of DMUs, s is the number of outputs, m is the number
of inputs, k is the DMU being evaluated, yrj is the amount of the r-th output produced
by DMU j, and xij is the amount of the i-th input used by DMU j. DEA models can be
either input-oriented or output-oriented, depending on the rationale for conducting DEA.
Input-oriented models minimize inputs while producing at least the same output levels,
whereas output-oriented models maximize outputs while using at most the same input
levels.

DEA is a useful tool for performance improvement through efficiency evaluation and
benchmarking, specifically by providing a reference set which is a set of efficient units
that can be utilized as benchmarks for improvement. The reference set can be obtained
by dual model as shown in (2).

min θ − ε

 m∑
i=1

s−i +
s∑

r=1

s+r


s.t.

n∑
j=1

λjxij − θxik + s−i = 0, i = 1, 2, . . . ,m,

n∑
j=1

λjyrj − yrk − s+r = 0, r = 1, 2, . . . , s,

λj, s
−
i , s

+
r ≥ 0, j = 1, 2, . . . , n

(2)

In model (2), θ is the efficiency score λj is the dual variable and ε is a non-Archimedean
infinitesimal. By solving model (2), we can identify a composite DMU (a linear combina-
tion of DMUs) that utilizes less input than the DMU under evaluation while maintaining
at least the same output levels. The optimal values of the dual variable λj. are the coef-

ficients for this linear combination of units. The set of units involved in the construction
of the composite DMU can be utilized as benchmarks for improvement of the inefficient
DMU under evaluation. If a DMU is given an efficiency score of ‘1’, it is considered to be
efficient; an efficiency score less than ‘1’ indicates inefficiency.

2.2. Stratification of DMUs in DEA. In some DEA variants or applications, such as
Seiford and Zhu [11], DMUs are stratified (or layered) into different efficiency levels. Let
J1 = {DMUj, j = 1, . . . , n} be the set of all n DMUs and iteratively define J l+1 = J l−El,
where El = {DMUk ∈ J l|θ∗(l, k) = 1}, and θ∗(l, k) is the optimal objective value of the
following linear programming model in which DMUk is under evaluation.

θ∗(l, k) = min
λj ,θ(l,k)

θ(l, k)

s.t.
n∑

j∈F (J l)

λjxij ≤ θ(l, j)xik

n∑
j∈F (J l)

λjyrj ≥ yrk

λj ≥ 0,
j ∈ F (J l)

(3)

Here, j ∈ F (J l) means DMUj ∈ J l, which is to say, F (·) represents the corresponding
subscript index set and El consists of all the efficient DMUs on the l-th level best practice
frontier.
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When l = 1, model (3) becomes the original input-oriented CCR model, and the DMUs
in set El define the first-level efficient frontier. When l = 2, model (3) yields the second-
level efficient frontier after the exclusion of the first-level efficient DMUs. The model is
solved iteratively until all of the DMUs are excluded. By this process, we can identify
several levels of efficient frontiers. The following algorithm accomplishes the stratification
process.
Step 1 : Set l = 1, and J l is the set of all DMUs.
Step 2 : Evaluate the set of DMUs, J l, by model (3) to obtain the l-th level efficient
DMUs, set El.
Step 3 : Exclude the efficient EMUs from future DEA runs. J l+1 = J l−El. (If J l+1 = Ø
then stop.)
Step 4 : Evaluate the new subset of “inefficient” DMUs, J l+1, by model (3) to obtain a
new set of efficient DMUs El+1 (the new best practice frontier).
Step 5 : Let l = l + 1. Go to Step 2.
Stopping rule : If J l+1 = Ø, the algorithm stops.

2.3. Self-organizing map (SOM). SOM developed by Kohonen [12], is an unsuper-
vised clustering algorithm and the main feature is the visualization of its clustering results.
It clusters high-dimensional data points into groups and depicts the relationships among
the clusters on a map consisting of a regular grid of processing units called “neurons”.
Each neuron is represented by an n-dimensional weight vector, where n is equal to the
dimension of the input features. The weight vector of each neuron is updated in the
course of iterative training with input data points. SOM tends to preserve the topological
relationship among the input data points so that similar input data points are mapped
onto nearby output map units.

3. Methodology.

3.1. Problems with the conventional DEA-based and the stratification DEA-
based benchmarking. In this section, we demonstrate some problems of the conven-
tional DEA-based and the stratification DEA-based benchmarking, and then we propose
a new stepwise benchmarking method to resolve the problems.
The sample data in Table 1 is utilized to explain the procedure proposed in this paper.

The data set consists of 12 supermarkets and each supermarket consumes two inputs and
yields one output. The two inputs are the number of employees (unit: 10) and the floor
area (unit: 1000m2) and the output is the sales (unit: $100,000). We will apply the
input-oriented CCR model to evaluate the efficiencies of the 12 supermarkets, where each
supermarket is viewed as a DMU. Since the problem involves only two inputs and one
output, we can depict the efficiency evaluation process on a two-dimensional plane, as
shown in Figure 1.
Figure 1 shows the results of applying DEA to the set of DMUs. Let DMU L be a unit

that wants to improve its performance and we will call this unit the ‘evaluated DMU’.
Then the rest of the DMUs are called ‘compared DMUs’. The reference set of DMU L

Table 1. Supermarket example

Store A B C D E F G H I J K L
Employee (x1) 2 4 8 3 4 5 5 6 7 6 6 7
Floor area (x2) 4 2 1 6 3 2 6 3 3 9 4 7

Sales (y) 1 1 1 1 1 1 1 1 1 1 1 1
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Figure 1. Benchmark targets provided by the conventional DEA

Figure 2. Benchmark targets provided by the stratification DEA

consists of efficient DMUs A and B and DMU L is compared with a hypothetical composite
unit (HCU), a convex combination of DMUs A and B, to determine its efficiency score.
DEA itself can be effective in that it provides benchmark targets for inefficient DMUs. In
many practical situations, however, it might not be feasible for an inefficient DMU to reach
its benchmark target at once especially when the inefficient DMU is far removed from the
efficient frontier. To resolve this problem, various methods of stepwise benchmarking
have been proposed in the literature based on a stratification of DMUs. If we apply the
stratification method discussed by Zhu [9] to the supermarket example, we obtain the five
layers as shown in Figure 2. DMU L can improve its efficiency by traversing a sequence
of layers. Even though this approach may resolve, in part, the impracticality problem
of the conventional DEA-based benchmarking, it does not provide any concrete criteria
for selecting benchmark targets among the DMUs in each of the layers. We claim that
three criteria can be used for that selection purpose which will be discussed in subsequent
sections.

3.2. Target selection based on preference structure. The first criterion, ‘prefer-
ence’, is used for determining the ultimate benchmark target. Thanassoulis and Dyson
[13] proposed the incorporation of a weightbased preference structure into DEA models
with fixed and controllable inputs which is represented by model (4). The preference
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model overcomes the limitation of the conventional input-oriented CCR model by attach-
ing different degrees of importance to the individual input levels of inefficient DMUs in
selecting benchmark targets. Here, zr is the r-th output factor and pi is the i-th input
proportion; w+

r and w−
i are user-specified weights to be attached to factor zr and propor-

tion pi, respectively. The user specifies the weights w+
r and w−

i that reflect the relative
degree of improvement of the corresponding input-output levels. R0 is the set of output
factors, and ID0 and IF are controllable input factors and exogenously fixed input factors,
respectively. ĪD0 and R̄0 are the complements of ID0 and R0, respectively. By changing
the values of w+

r and w−
i attached to zr and pi, the suitability of a benchmark target for

the inefficient DMU can be changed.

max
∑
r∈R0

w+
r zr −

∑
i∈ID0

w−
i pi + ε

 ∑
i∈ĪD0

d−i +
∑
r∈R̄0

d+r


s.t. zryrj0 −

n∑
j=1

βjyrj = 0, r ∈ R0,

pixij0 −
n∑

j=1

βjxij = 0, i ∈ ID0,

n∑
j=1

βjyrj − d+r = yrj0 , r ∈ R̄0,

n∑
j=1

βjxij + d−i = xij0 , i ∈ ĪD0,

n∑
j=1

βjxij + d−i = xij0 , i ∈ IF ,

zr ≥ 1 ∀r ∈ R0, pi ≤ 1 ∀i ∈ ID0, βj ≥ 0 ∀i,
pi, zr free ∀i ∈ I0 and r ∈ R0,
d−i , d

+
r ≥ 0 ∀i ∈ Ī0 and r ∈ R̄0

(4)

In model (4), if z∗r = p∗i = 1 ∀r ∈ R0 and i ∈ ID0 as well as d+∗
r = d−∗

i = 0 ∀r ∈ R̄0

and i ∈ ĪD0 of i ∈ ĪF then DMUj0 is relatively efficient. Otherwise DMUj0 is relatively
inefficient and the suitable benchmark target for the inefficient DMU can be arrived at
by Equation (5).

(x′′
ij0
, i = 1, . . . ,m, y′′rj0 , r = 1, . . . , s)

where
y′′rj0 = z∗ryrj0 ∀r ∈ R0,
y′′rj0 = yrj0 + d+∗

r ∀r ∈ R̄0,
x′′
ij0

= p∗ixij0 ∀i ∈ ID0,
x′′
ij0

= xij0 − d−∗
i ∀i ∈ ĪD0 or ∀i ∈ ĪF

(5)

3.3. Target selection based on direction. The second criterion, ‘direction’, is used in
selecting intermediate benchmark targets that are located closer to the evaluated DMU’s
improving direction towards the ultimate benchmark target. Two vectors from the eval-
uated DMU are computed. One is the direction vector from the evaluated DMU’s input
patterns to the ultimate benchmark target’s input patterns. Another is the direction
vector from the evaluated DMU’s input patterns to a compared DMU’s input patterns.
To evaluate this criterion of the j-th DMU, the angle of these two vectors is calculated
using the following formula:

δ′j = cos−1

m∑
r=1

(xE
r − xT

r )(x
E
r − xC

r )√
m∑
r=1

(xE
r − xT

r )
2

√
m∑
r=1

(xE
r − xC

r )
2

(6)
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δ
′
j in model (6) is the angle between the two direction vectors from the evaluated DMU.

xE
r is the r-th input level of the evaluated DMU, xC

r is the r-th input level of the compared
DMU j, and xT

r is the r-th input level of the ultimate benchmark target. When evaluating
the direction criterion, we actually use δj, which is calculated by the following formula,
instead of δ

′
j:

δj = 1−
 δ

′
j

max(δ
′
j)

 , (7)

where δj in model (7) indicates the relative magnitude of δ
′
j, which has the value between 0

and 1. DMU j, which has the maximum δj, means that it is closest DMU to the direction
from the evaluated DMU to the ultimate benchmark target.

3.4. Target selection based on similarity. The third criterion, ‘similarity’, is used to
select intermediate benchmark targets that have similar input patterns with the evalu-
ated DMU. For this purpose, we classify DMUs into several similarity groups by SOM.
The closer the locations of the two groups are on the map, the higher the degree of sim-
ilarity between the two groups. We assume that the distance between the two DMUs
belonging to the same group is 0.5 and the distance between two DMUs belonging to
the adjacent groups is 1. Based on the above assumption, the distance can be calculated
by Euclidean distance. For example, in Figure 3, the distance between Group 1 and
Group 2 is calculated as 1 and the distance between Group 1 and Group 5 is calculated
as

√
2(=

√
12 + 12).

Figure 3. Example of SOM

The similarity between the evaluated DMU and DMU j is calculated using the following
formula:

dj = 1−
√
a2 + b2

P
, (8)

where dj in model (8) is the degree of similarity between the group containing the evalu-
ated DMU and the group containing the j-th compared DMU, a is the horizontal distance
between the group containing the evaluated DMU and the group containing the compared
DMUs, and b is the vertical distance between the group containing the evaluated DMU
and the group containing the compared DMUs. P is the maximum distance value among
the groups (e.g., if the map generated by SOM is 4 ∗ 4, P is 4.24 (=

√
32 + 32)). The

formula
√
a2+b2

P
indicates the relative distance of each group and is the Euclidean distance

between the group of the evaluated DMU and the group of the compared DMUs divided
by the maximum Euclidean distance between all groups.
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3.5. The proposed benchmark selection method. In this section, a method is pro-
posed for the selection of stepwise benchmark targets considering preference, direction and
similarity criteria. Direction and similarity criteria are used to find intermediate bench-
mark DMUs to benchmark ultimate target, and ultimate benchmark target is determined
considering preference criterion. To find intermediate benchmark DMUs, a weighted av-
erage of the degrees of direction and similarity is calculated using the following formula:

ej = δjw1 + djw2, j ∈ F (J)
w1, w2 ≥ 0, w1, w2 ≤ 1, w1 + w2 = 1,

(9)

where j ∈ F (J) means DMUj ∈ J , i.e., F (·) represents the correspondence from a DMU
set to the corresponding subscript index set J . w1 and w2 are weights attached to the
direction and similarity criteria, respectively. Different weights can be given to the degree
of direction or similarity to impart more emphasis, and the sum of each weight must be
equal to 1. The procedure of the proposed method is described in detail below where J
is a set of DMUs in higher efficiency levels than the evaluated DMU.
Step 1 : Measure the relative efficiencies of DMUs and select the evaluated DMU.
Step 2 : Select the ultimate benchmark target of the evaluated DMU using model (4).
Step 3 : Cluster DMUs into several similarity groups in terms of input patterns by SOM.
Step 4 : Measure δj and dj using models (7) and (8) for all j ∈ F (J).
Step 5 : Evaluate ej using model (9), for all j ∈ F (J).
Step 6 : Determine the next intermediate benchmark DMU by choosing the maximum
value of ej.
Step 7 : Substitute the intermediate benchmark DMU determined in Step 6 for the
evaluated DMU.
Step 8 : If the intermediate benchmark DMU is equal to the ultimate benchmark target,
terminate the procedure. Otherwise, go to Step 4.
To illustrate the proposed method discussed in this section, we apply the method to the

data in Table 1. NNclust which is an Excel-based SOM program is used to cluster DMUs
into several similarity groups in terms of input patterns. The input variables for the SOM
run are ‘Floor Area’ and ‘Employee’ from Table 1. The parameters chosen for the SOM
run are that the training cycle is 100, the learning parameters are 0.9 for the starting point,
and 0.1 for the ending point, and the map size is 4 by 4. After measuring the efficiencies of
DMUs, DMU L is chosen to be the evaluated DMU. To determine the ultimate benchmark
target, we use the DEA model with a preference structure, represented by model (4).
We assume that the respective weights on x1 and x2 are 20 and 80, which means more
preference is given to x2. Using model (4) p∗1 and p∗2 are calculated to be 0.571 and 0.2857,
respectively. If p∗1 and p∗2 are used in model (5), DMU B (x1 = 4, x2 = 2) is selected as
the ultimate benchmark target for DMU L. The results of the SOM run are displayed in
Figure 4.
The group numbers are shown at the bottom left corner of cells. We use the same

weight, 0.5, both to the w1 and w2. The values of dj, δj and ej for DMUs in efficiency
levels higher than DMU L are shown in Figure 5. The maximum value of ej is attained by
DMU K, and thus DMU K is determined to be the first intermediate benchmark target
for DMU L. Now, DMU K becomes the evaluated DMU.
The values of dj, δj and ej for DMUs in efficiency levels higher than DMU K are shown

in Figure 6. The maximum value of ej in Figure 6 is attained by DMU B and thus DMU
B is determined to be the second intermediate benchmark DMU for DMU L. Since DMU
B is equal to the ultimate benchmark target of DMU L, the procedure is terminated.
On the other hand, if we give different weights 80 and 20 to x1 and x2, respectively, in

order to give more preference to x1, DMU A is selected as the ultimate benchmark target
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Figure 4. Clustering of DMUs by SOM

Figure 5. The values of ej with DMU L being the evaluated DMU

Figure 6. The values of ej with DMU K being the evaluated DMU

for DMU L. Following the same procedure as described above, the intermediate benchmark
DMUs for DMU L are determined to be DMU G and DMU A. In other words, DMU L
should benchmark DMU G first and then DMU A. Figure 7 shows the two benchmarking
paths which have different ultimate benchmark targets; L-K-B and L-G-A. If the ultimate
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Figure 7. Benchmarking paths when ultimate benchmark targets are
DMU A and DMU B

benchmark target determined is DMU B, then the first intermediate benchmark DMU for
DMU L is DMU K in Group 4. Note that DMU K is more similar to DMU L in terms
of input patterns than the others. And if the ultimate benchmark target determined is
DMU A, then the first intermediate benchmark DMU is DMU G, which belongs to Group
8.
In the proposed method, different similarity groups can result depending on the val-

ues of the SOM parameters (learning parameters and training cycle), and then different
benchmarking paths can be derived. In other words, if the values of the training cycle
and learning parameters are increased, the number of intermediate benchmark DMUs is
decreased, and if the values of the training cycle and learning parameters are decreased,
the number of intermediate benchmark DMUs is increased. Also the intermediate bench-
mark DMUs can be changed according to the different weights that are given to the two
criteria, direction and similarity.

4. Case Study. For a case study, relevant data are collected about 21 East Asian con-
tainer terminals by accessing such data sources as Containerization International Year
Book 2005. There have been many studies concerning operational efficiency assessment
of ports and container terminals using DEA: Roll and Hayuth [14] used the CCR model
to evaluate 20 ports with three inputs (manpower, capital and cargo uniformity) and four
outputs (cargo throughput, level of service, user satisfaction, ship calls); Tongzon [15] eval-
uated four Australian and 12 international container ports using the CCR and an additive
model with six inputs (number of cranes, number of container berths, number of tugs,
terminal area, delay time and labor) and two outputs (cargo throughput and ship working
rate). See also Hirashima [17]. In this paper, the efficiencies of the container terminals are
evaluated in terms of the number of berths, the length of berths (m), the total port area
(km2) and the number of cranes as inputs, while the total container traffic (TEU) data
are used as a output. Four terminals Hongkong, Shanghai, Shenzhen and Xiamen are de-
termined to be efficient and the remaining 18 inefficient. Kobe, Kwangyang and Taizhong
are particularly inefficient DMUs. Among these inefficient DMUs, Kwangyang is selected
as the evaluated DMU. To determine the ultimate benchmark target for Kwangyang, the
DEA model with a preference structure is used with the same weights (25%) on the four
inputs. Shenzhen is determined to be the ultimate target DMU for Kwangyang. The
SOM program, NNclust, is used to cluster DMUs into several similarity groups. The
input variables used for the SOM run, are the number of berths, the length of berths, the
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Figure 8. Clustering East Asian container terminals by SOM

total port area and the number of cranes. The results of the SOM run with 5 by 5 map
configuration are shown in Figure 8.

We give the same weight, 0.5, to both of the criteria of direction and similarity. The
values of dj, δj and ej for DMUs in higher efficiency levels than Kwangyang are shown
in Table 2. Since Tianjin attains the maximum value of ej, 0.87 it is selected as the first
intermediate benchmark DMU for Kwangyang. Then, Tianjin now becomes the evaluated
DMU. The values of dj, δj and ej for DMUs in higher efficiency levels than Tianjin are
calculated and shown in Table 3. Since Lianyungang attains the maximum value of ej,
0.94, it is selected as the second intermediate benchmark DMU for Kwangyang. Then,
Lianyungang now becomes the evaluated DMU. The values of dj, δj and ej for DMUs
in higher efficiency levels than Lianyungang are calculated and shown in Table 4. Since
Shenzhen attains the maximum value of ej, 0.91 among the compared DMUs, it is selected
as the third intermediate benchmark DMU for Kwangyang. Since Shenzhen is the ultimate
benchmark target for Kwangyang, the procedure is terminated. The benchmarking path
for Kwangyang consists of firstly Tianjin, next Lianyungang and finally Shenzhen.

If we apply the conventional DEA approach to determining benchmark targets for
Kwangyang, three benchmark targets including Hongkong, Shanghai, Shenzhen and Xia-
men would be chosen because they are included in the reference set. However, it might be
confusing for Kwangyang to benchmark simultaneously these four terminals and practi-
cally infeasible to achieve its efficiency improvement in a single step. The stepwise feature
of the proposed methodology will be effective for overcoming this difficulty. If we apply
the stepwise method proposed by Park et al. [8] to determining a benchmarking path for
Kwangyang, three terminals including Tokyo, Ningbo and Shenzhen would be chosen as
intermediate benchmark targets. Their method, however, does not have any systematic
scheme for choosing intermediate targets that are more practically feasible for Kwangyang
to benchmark. Actually, it is more practically feasible for Kwangyang to benchmark Tian-
jin and Lianyungang than Tokyo and Ningbo since those are more similar to Kwangyang
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Table 2. The values of ej with Kwangyang being the evaluated DMU

DMU j
Hong Shang Shen

Busan
Kaoh Qing

Ningbo Tianjin
Guang

kong hai zhen siung dao zhou
δj 0.93 1.00 0.87 0.92 0.69 0.93 0.98 0.69 0.93
dj 0.75 0.61 0.61 0.61 0.61 0.61 0.75 0.61 0.75
ej 0.73 0.84 0.80 0.74 0.76 0.65 0.77 0.87 0.65

DMU jTokyoXiamenDalianNagoyaOsakaKeelung Incheon
Lianyun
gang

δj 0.68 0.90 0.48 0.43 0.24 0.22 0.60 0.74
dj 0.61 0.61 0.82 0.61 0.91 0.75 0.82 0.75
ej 0.64 0.75 0.65 0.52 0.58 0.49 0.71 0.75

Table 3. The values of ej with Tianjin being the evaluated DMU

DMU j
Hong Shang Shen

Busan
Kaoh Qing Ning Kee Lianyun

kong hai zhen siung dao bo lung gang
δj 0.99 0.00 1.00 0.00 0.99 0.95 1.00 0.93 0.98
dj 0.82 0.91 0.82 0.47 0.82 0.47 0.82 0.65 0.91
ej 0.91 0.46 0.91 0.23 0.91 0.71 0.91 0.79 0.94

Table 4. The values of ejwith Lianyungang being the evaluated DMU

DMU j Hongkong Shanghai Shenzhen Kaohsiung Ningbo Keelung
δj 0.99 0.00 1.00 0.91 0.96 0.40
dj 0.82 0.91 0.82 0.82 0.82 0.65
ej 0.90 0.46 0.91 0.87 0.89 0.52

Table 5. Benchmarking paths obtained by varying weights

w1 w2 Benchmarking path w1 w2 Benchmarking path

0.1 0.9
Kwangyang→ Dalian→ Tianjin→

0.6 0.4 Kwangyang→ Tianjin→ Shenzhen
Shenzhen

0.2 0.8 Kwangyang→ Tianjin→ Shenzhen 0.7 0.3 Kwangyang→ Tianjin→ Shenzhen
0.3 0.7 Kwangyang→ Tianjin→ Shenzhen 0.8 0.2 Kwangyang→ Tianjin→ Shenzhen
0.4 0.6 Kwangyang→ Tianjin→ Shenzhen 0.9 0.1 Kwangyang→ Shenzhen
0.5 0.5 Kwangyang→ Tianjin→ Shenzhen 1.0 0.0 Kwangyang→ Shenzhen

than these in terms of factor levels. The methodology proposed in this paper can resolve
this issue by incorporating the multiple criteria, preference, direction, and similarity, in
the stepwise benchmark target selection process.
Table 5 shows different benchmarking paths obtained for Kwangyang with varying

weights given to the criteria of direction and similarity. As shown in the table, when
the weights on direction and similarity criteria are 0.1 and 0.9, respectively, the stepwise
benchmark targets for Kwangyang are firstly Dalian, next Tianjin and finally Shenzhen.
By contrast, when the weights on direction and similarity are 0.9 and 0.1, respectively,
Shenzhen is the only stepwise benchmark target for Kwangyang.
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5. Conclusions. In this paper, we have proposed a new DEA-based method of stepwise
benchmarking, which considers three criteria, preference, direction and similarity, for
selecting benchmark targets. First, for the preference criterion, we consider weights that
can be attached to each of the input factors to select the ultimate benchmark target of
an inefficient DMU among the DMUs. Second, for direction we develop a target selection
method that can find the closest efficient DMU in the direction in which the inefficient
DMU targets the final predetermined benchmark. Third, similaritybased target selection
by SOM is considered. As dictated by our method, we analyze the similarity based on
the input factors of every DMU.

Considering these three criteria, we have developed a method of constructing a more
practical and feasible sequence of benchmark targets. This is a new method that is
formulated to remedy the drawbacks of the existing benchmarking methods which only
consider the influence of efficiency when an inefficient DMU has to achieve its target using
DEA. As an application of the proposed method, benchmarking of an East Asian container
terminal was tested in the present study. The results show that the stepwise benchmarking
path of an inefficient DMU can be found. This hybrid method is effective also in that it
can suggest alternative benchmarking paths and targets according to changed condition
variables and weights used for direction and similarity.

In spite of the above mentioned advantages of the proposed methodology, we find that
it has two major deficiencies. First, this proposed method does not consider the number
of benchmarking steps for an inefficient DMU to reach the ultimate target. If there are
too many intermediate targets to benchmark on a benchmarking path for an inefficient
DMU, it may create a significant practical difficulty for the DMU in accomplishing the
benchmarking schedule. Therefore, how to control the number of targets on a benchmark-
ing path could be a future research issue. Second, although the three criteria, preference,
direction, and similarity, could be evaluated from both perspectives of input and output
factors, the current paper focuses only on input factors. This issue is worth consideration.
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