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Abstract. Traffic accidents cause tragic loss of life, property damage and substantial
congestion to transportation systems. A large percentage of crashes occur at or near
intersections. Therefore, traffic signals are often used to improve traffic safety and op-
erations. The objective of this study is to present a significant and effective method
of determining the optimal investment involved in retrofitting signals with light emitting
diode (LED) units. In this study, the reliability and risks of each unit are evaluated using
a variance-covariance matrix, and the effects and expenses of replacement are analyzed.
The mean-variance analysis is formulated as a mathematical program with the objectives
of minimizing the risk and maximizing the expected return. Finally, a structural learning
model of a mutual connection neural network is proposed to solve problems defined by
mixed-integer quadratic programming, and this model is employed in the mean-variance
analysis. Our method is applied to an LED signal retrofitting problem. This method
enables us to select results more effectively and enhance decision-making.
Keywords: Boltzmann machine, Hopfield network, Mean-variance analysis, Structural
learning

1. Introduction. Traffic accidents cause tragic loss of life, property damage and substan-
tial congestion to national transportation systems. A large percentage of traffic accidents
occur at or near intersections [1]. Pernia indicates that intersection-related crashes are
responsible for very high percentage of the total number of crashes in the roadway system.
Traffic signals are often used to improve traffic safety and operations at intersections [2].
Light emitting diodes (LEDs) are often preferred due to their operational and low energy
consumption advantages [3]. Despite their excellent performance, several barriers hinder
more rapid retrofitting of signals, such as high retrofitting costs and capital constraints.
Thus, one of the most significant challenges in deciding a retrofitting strategy is to select
which intersection signal to replace with LEDs and which to leave as they are.

Strong progress has been made in artificial neural network research in recent years. Neu-
ral networks have been applied to various fields, such as pattern recognition, forecasting,
robotic, data mining, multiple-objective decision-making, and combinatorial optimization
[4-7]. In this study, we applied a neural network to solve the portfolio selection problem
efficiently. Boltzmann machines (BMs) are interconnected neural networks first proposed
by Hinton [8]. These machines represent an improvement on the Hopfield network, which
uses a probability rule to update the state of a neuron and its energy function. Thus, the
energy function of a BM hardly ever falls into a local minimum.
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In this study, we propose an investment decision method that uses data regarding the
accident number at intersections. Mean-variance analysis addresses the mathematical
problem of allocating a given amount of money among several alternative investments.
Here, we define a portfolio as an investment made at certain intersections using a given
amount of money. Markowitz originally proposed and formulated the mean-variance ap-
proach based on the portfolio selection problem [9,10]. This method is formulated as a
mixed-integer quadratic programming problem. We formulate a two-layered neural net-
work comprising both a Hopfield network and a BM to effectively and efficiently select
a limited number of units from those available. The Hopfield network is employed in
the upper layer to select a limited number of units, and the BM is used in the lower
layer to determine the optimal solution/units from the limited number of units selected
by the upper layer. In this study, by building a double-layered BM, both layers are op-
timally configured by structural learning. The results obtained enable us to reduce the
computational time and cost, and to more easily understand the internal structure.
The following section briefly introduces mean-variance analysis. Section 3 introduces

the Hopfield and the BM, and Section 4 explains the double-layered BM. Section 5 provides
descriptions of LED signal retrofitting and the mean-variance problem, and presents a
numerical example to illustrate these. In Section 6, the practical use and the simulation
results are discussed. Finally, conclusions are presented in Section 7.

2. Mean-Variance Analysis. Mean-variance analysis, originally proposed by H. Marko-
witz during the early 1950s [9], is a widely used investment theory. It assumes that most
decision-makers have an aversion to risk, even if this lowers their expected return. How-
ever, it is difficult to identify a utility function because individual decision-makers have
different utility structures. Hence, Markowitz formulated mean-variance analysis as the
following quadratic programming problem, under the restriction that the expected return
rate must be greater than a specified amount.
In this study, the following formulation has been developed.

maximize
n∑

i=1

µimixi (1)

minimize
n∑

i=1

n∑
j=1

σijmiximjxj (2)

subject to
∑

mixi = 1 (3)

n∑
i=1

mi = S (4)

mi ∈ {0, 1} (i = 1, 2, . . . , n) (5)

xi ≥ 0 (i = 1, 2, . . . , n) (6)

Here, S denotes the desired number of units to be selected in the portfolio, mi is the
decision variable for unit i (mi is 1 if any unit i is held, 0 otherwise), σij is the covariance
between units i and j, µi is the expected return rate of unit i, and xi is the investment
rate for unit i. The developed formulation is a mixed integer quadratic programming
problem with two objective functions, i.e., the expected return rate and the degree-of-
risk. In mixed integer quadratic programming, it is almost impossible to obtain the
optimal solution from a large set of possible combinations. Thus, this study intends to
obtain the optimal solution to this problem by employing the combination of a Hopfield
network and a BM.
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3. Hopfield Network and Boltzmann Machine. The Hopfield network is a fully
connected, recurrent neural network, which uses a form of the “generalized Hebb rule”
to store Boolean vectors in its memory. In any situation, combining the state of all units
leads to a global state for the network. This global state is the input, together with other
prototypes, which are stored in the weight matrix based on Hebb’s postulate, formulated
as

wij =
1

P

P∑
p=1

xp
ix

p
j (7)

where wij is the weight of the connection from neuron j to neuron i, P is the number
of training patterns and xp

i is the p-th input for neuron i. The Hopfield network cab be
use to minimize an energy function during its operation. The simplest form of the energy
function is given by the following:

E =
1

2

N∑
j=1

N∑
i=1

wjixjxi (8)

Here, wij denotes the strength of the influence of neuron j on neuron i. The weights
wij are created using Hebb’s postulate as mentioned above and belong to a symmetric
matrix with the main diagonal containing only zeroes. Because of this useful property, the
Hopfield network can also be used to solve combinatorial optimization problems. However,
Hopfield networks suffer from the major disadvantage that they sometimes converge to
a local rather than the global minimum. To overcome this problem, a modification was
made to the BM [8].

The BM can be seen as a stochastic, generative counterpart of the Hopfield network.
In the BM, probability rules are employed to update the state of neurons and the energy
function as follows:

If Vi(t+1) is the output of neuron i in the subsequent time iteration t+1, then Vi(t+1)
is 1 with probability P and 0 with probability 1− P , where

P = f

(
ui(t)

T

)
(9)

Here, f(·) is a sigmoid function, ui(t) is the total input to neuron i shown in (10), T is
the network temperature, and

ui(t) =
N∑
j=1

wijVi(t) + θi (10)

where wij is the weight of the connection from neurons i to neuron j, θi is the threshold
of neuron i and Vi is the state of unit i. The energy function, E, is written as follows:

E =
1

2

N∑
i=1

N∑
j=1

wijViVj −
N∑
i=1

θiVi (11)

In this study, the combination of a Hopfield network and a BM offers a solution to the
problem of finding the optimal number of units in the neural network. Accordingly, this
study proposes a double-layered BM, which we discuss in detail in the following section.

4. Double-Layered Boltzmann Machine. Following is a brief an explanation on how
to transform the mean-variance model formulated as the energy function of the BM [11,12].
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The objective function is transformed, shown as (1) and (2), into the energy function in
(11)

E = −1

2

(
n∑

i=1

n∑
j=1

σijxixj + 2
n∑

i=1

n∑
j=1

xixj

)
+ 2

n∑
i=1

xi +K

n∑
i=1

µixi (12)

where K is a real number not less than 0. If K is set to a large value, the expected return
is emphasized much more than the risk. If K = 0, the BM converges to the problem
of minimizing the risk. When the energy function of the BM described in this section
converges to the global minimum, the investment rate for each intersection is obtained as
the output of each unit.
The double-layered BM model deletes the units of the lower layer, which are not selected

in the upper layer, in its execution. Then the lower layer is restructured using the selected
units. Because of this feature, the double-layered BM converges more efficiently than a
conventional BM. The double-layered BM just described converts the objective function
into the energy functions of two components, namely the upper layer, Eu, and the lower
layer, El, as described below.
Upper layer

Eu = −1

2

n∑
i=j

n∑
j=1

σijsisj +Ku

n∑
i=1

µisi (13)

Lower layer

El = −1

2

(
n∑

i=1

n∑
j=1

σijxixj + 2
n∑

i=1

n∑
j=1

xixj

)
+ 2

n∑
i=1

xi +Kl

n∑
i=1

µixi (14)

Here Ku and Kl are the weights of the expected return rates of the upper and lower layers,
respectively, and si is the output of the i-th unit of the upper layer.
This paper also proposes a model that allows for noise injection. Therefore, the double-

layered BM is tuned such that the upper layer influences the lower layer with weight 0.9,
and the lower layer influences the upper layer with weight 0.1. The double-layered BM is
iterated with

Ui = 0.9yi + 0.1xi (15)

for the upper layer, and

Li = xi(0.9yi + 0.1) (16)

for the lower layer, where Ui and Li denote noise-injected stimulus. Here, the value Ui

in the upper layer is transferred to the corresponding nodes in the upper layer, and the
value Li in the lower layer is a value transferred to the corresponding nodes in the lower
layer. The value yi represents the present state of node i in the upper layer, and xi is
the value of the present state of node i in the lower layer. A value for Li would indicate
that 90% of the value is determined from the value of node i in the upper layer. When
Ui is 1, Li = xi; otherwise, when yi is 0, 10% of the value of xi is transferred to the other
nodes. On the other hand, Ui has an influence of 10% on the lower layer. Therefore, even
if the upper layer converges to a local minimum, the disturbance from the lower layer
causes the upper layer to escape from this local minimum. When the local minimum
possesses a large energy barrier, dynamic behavior may be used (by changing 0.9 and 0.1
dynamically); this phenomenon is similar to simulated annealing where many proofs of
convergence of simulated annealing in the literature [13].
Figure 1 illustrates the structure and the algorithm of the double-layered BM is as

follows:
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Step 1: Set the number of units
Set the initial value of each unit
Set the value h
Set the start, restructure and end of the control parameter T (temperature)
Set the control parameter update frequency;

Step 2: Input Ku and Kl;
Step 3: Execute the upper layer (start running the Hopfield network in the upper

layer);
Step 4: If the output value of a unit in the upper layer is 1, then add h to the

corresponding unit in the lower layer. Execute the lower layer;
Step 5: After executing the lower layer at a constant frequency, decrease the tem-

perature;
Step 6: If the output value for certain units are sufficiently large, then add h to the

corresponding unit in the upper layer;
Step 7: Iterate from Step 3 to Step 6 until the temperature reaches the restructuring

temperature;
Step 8: Restructure the lower layer using the selected units in the upper layer;
Step 9: Execute the lower layer until the termination condition is reached.

Figure 1. Double-layered BM

5. Numerical Examples of LED Signal Retrofitting. Ten intersections areas, for
which accident data from the previous ten years were available, were chosen to analyze and
optimize portfolios of retrofitting. In this study, the trade-off between the mean number
of accidents and variance was analyzed using mean-variance analysis and a double-layered
BM, which becomes considerably more efficient as the number of intersections increases.
The simulation parameters are employed in the following steps:
Upper layer:

1: The change is carried out using 0.001 inter-arrival temperatures.
2: Each unit is set to an initial value of 0.1.
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3: The constant K is simulated taking the values 0.3, 0.5, 0.7 and 1.0.
Lower layer:

1: The temperature T of the BM is changed from 100 to 0.0001.
2: The change is carried out using 0.001 inter-arrival temperatures.
3: Each unit is set to an initial value of 0.1.
4: The constant K is simulated taking the value 0.3, 0.5, 0.7 and 1.0.
5: As the BM behaves probabilistically, the result is taken to be the average of the

final 10, 000 times.
The proposed method is implemented using the following five steps:
Step 1. Identifying the Correct Uncertainty – Security
Identifying the correct uncertainties is the first step in mean-variance analysis. Uncer-

tainty characteristics that that differentiates one asset from another should be included
in the analysis. Security is just one source of differentiating uncertainty; policy, market
conditions and manufacturing capability are others.
Step 2. Quantifying Individual Uncertainties – Accident numbers
Uncertainty identified based on security is quantified using accident data from the

previous ten years. Table 1 shows the historical accident numbers of ten intersections.
Other uncertainties might not be so straightforward to quantify.

Table 1. Accident numbers at intersections

‘00 ‘01 ‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 Mean
IS1 11 15 2 8 10 7 6 13 11 9 9.20
IS2 5 3 7 5 6 8 10 4 2 2 5.20
IS3 11 13 2 8 7 5 8 7 10 11 8.20
IS4 3 6 7 1 4 5 6 3 5 2 4.20
IS5 1 6 7 8 10 4 7 5 10 6 6.40
IS6 3 4 9 4 4 3 4 5 7 5 4.80
IS7 15 13 10 6 4 9 7 10 14 8 9.60
IS8 3 8 4 9 6 7 8 6 3 6 6.00
IS9 2 10 15 14 3 4 11 9 12 8 8.80
IS10 6 5 7 8 8 6 8 7 4 9 6.80

Step 3. Post-processing the Uncertainties – Covariance matrix
The covariance matrix represents the relative independence and uncertainty of the

assets. The matrix is created by placing the variance of the assets on the diagonal and
the pair-wise covariance (calculated using (17)) on the off-diagonals. Table 2 shows the
covariance matrix of the 10 intersections that were used in the case study described here.

σx1,x2 = ρx1,x2σx1σx2 (17)

Step 4. Applied Mean-variance Theory – Mean-variance analysis
To enable the decision maker to retrofit LED signals a set of assets is used that maximize

return while considering risk aversion. The specific class of optimization used is quadratic
optimization, which is based on an appropriate balance of risk and return. Such risks and
returns are typically derived from historical accident numbers at the intersections. The
quadratic programming problem can be solved using the mean-variance analysis method,
which employs double-layered BM efficiently.
As shown in Table 3, given K = 0.3, IS2 should be allocated 21.4 percent, IS4 21.1

percent, IS5 20.1 percent, IS7 13.7 percent and IS8 23.7 percent, out of the total budget.
Other intersections, which are not included in the list of units after restructuring, should
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Table 2. Covariance matrix representing 10 intersections

IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS9 IS10
IS1 18.16 –5.04 15.36 –1.64 –3.08 –7.56 5.28 3.40 –12.16 –2.76
IS2 –5.04 1.76 –4.64 0.36 1.12 1.84 –2.32 –1.60 0.84 1.04
IS3 15.36 –4.64 14.16 –2.24 –5.08 –6.76 7.28 2.60 –9.16 –2.76
IS4 –1.64 0.36 –2.24 4.56 0.32 3.04 2.68 –1.60 2.44 –1.16
IS5 –3.08 1.12 –5.08 0.32 9.04 1.68 –11.24 3.80 5.48 2.28
IS6 –7.56 1.84 –6.76 3.04 1.68 4.56 –0.68 –1.40 7.56 0.36
IS7 5.28 –2.32 7.28 2.68 –11.24 –0.68 17.04 –4.20 –3.28 –4.28
IS8 3.40 –1.60 2.60 –1.60 3.80 –1.40 –4.20 5.20 5.20 0.40
IS9 –12.16 0.84 –9.16 2.44 5.48 7.56 –3.28 5.20 29.36 0.76
IS10 –2.76 1.04 –2.76 –1.16 2.28 0.36 –4.28 0.40 0.76 1.36

Table 3. Simulation result in investment rate for each intersection

Intersection K = 0.3 K = 0.5 K = 0.7 K = 1.0
IS1
IS2 0.214 0.253 0.271 0.297
IS3
IS4 0.211 0.097 0.052 0.038
IS5 0.201 0.207 0.155 0.041
IS6 0.027
IS7 0.137 0.179 0.198 0.213
IS8 0.237 0.251 0.264 0.278
IS9 0.013 0.046 0.079
IS10 0.014 0.027

Table 4. Expected return rate and risk

K Expected Return Rate Risk
0.3 19.2580 0.0108
0.5 19.3010 0.0129
0.7 19.3970 0.0140
1.0 19.4290 0.0151

not receive any investment. When K = 0.5, six intersections were selected in the list
of units after restructuring; when K = 0.7, seven intersections were selected, and when
K = 1.0, eight intersections were selected. From this result, it can be concluded that the
number of intersections selected is directly proportional to K.
Step 5. Determining the Optimal Maintenance Strategy – Selection of K

Indifference curves typically take the mathematical form shown algebraically in (18).
In (18), V represents the expected return or value of a system, where σ2 is the uncertainty
of the portfolio and V0 is an initial value for the expected return or value of the system
when uncertainty is zero.

V = V0 + kσ2 (18)

The expected return rate and risk are calculated as shown in Table 4, which also
indicates four different levels of risk aversion, the value of K, and reflect various decision
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Table 5. Comparison of double-layered and conventional BMs

Computational Times (sec.)
No. of Intersections Conventional BM Double-layered BM Computing Efficiency (%)

10 7.75 6.86 11.48
20 11.87 7.59 36.06
40 13.88 8.22 40.78
80 22.01 9.52 56.75
160 41.55 11.61 72.06
320 101.54 16.58 83.67
640 223.33 33.80 84.87

Table 6. Comparison of the double-layered BM and the conventional BM
in terms of expected return rates, risk and the number of selected units

Expected return rate Risk No. of Selected Intersections
No. of

CBM DBM CBM DBM CBM DBM
Intersections

10 19.2579 19.2580 0.0108 0.0108 5 5
20 19.2599 19.2599 0.0131 0.0131 5 6
40 19.2678 19.2679 0.0199 0.0200 7 7
80 19.2796 19.2797 0.0267 0.0266 6 9
160 19.2887 19.2888 0.0351 0.0349 4 10
320 19.2999 19.3000 0.0419 0.0417 5 12
640 19.3615 19.3617 0.0525 0.0526 6 14

Note: CBM: Conventional BM, DBM: Double-layered BM

maker preferences. When K is set to a larger value, the solution is obtained for high
return rates and high risk.
Table 5 compares the double-layered and conventional BMs, employing various sizes

from 10 intersections to 640 intersections. Computational efficiency is given by the fol-
lowing equation:

Ce = (tBM − tDBM)/tBM × 100 (19)

where Ce denotes computational efficiency, tDBM the computation time of the double-
layered BM, and tBM the computation time of a conventional BM. The computing time
of the double-layered BM is dramatically shorter. This is because the double-layered
BM deletes useless units during the restructuring step. In contrast, a conventional BM
computes all units until the termination condition is reached. The double-layered BM is
therefore more computationally efficient.
Table 6 shows that the conventional BM and double-layered BMs provide similar results

in term of expected return rates and risk. For number of selected unit/intersections, the
table illustrates that the proposed method is more efficient than the conventional method
because when the number of the total unit increases, the number of the selected units
also increases. This follows the portfolio theory from the risk aversion a perspective.

6. Discussions. LED traffic signals have many advantages over conventional traffic lights
including significantly reduced electric power consumption, dramatically lower mainte-
nance costs and improved safety due to greater brightness. Despite their excellent per-
formance, several barriers hinder more rapid retrofitting, such as high retrofit costs and
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capital constraints. Thus, one of the most significant challenges in retrofitting strategy is
the decision-selecting which intersection to signalized with LEDs, which to keep on the
table. We provide a method for selecting intersections that is not based on traditional
effectiveness measures such as cost and performance, but rather on a quantitative analy-
sis of the uncertainty embedded in each potential intersection. In this method, cost and
performance remain central issues in decision making, but uncertainty serves as the focal
point to identify potentially powerful combinations of intersections to explore concur-
rently in decision phases. We present here a method to identify and quantify uncertainty
in intersections and a means to manage it using mean-variance analysis and optimiza-
tion. Perhaps best known to economists and investors, mean-variance analysis is based
around the objective of maximizing return, subject to the risk aversion of the decision
maker. This simple concept and the theoretical accuracy with which the theory has been
converted to practice are presented as the means of exploring the retrofitting strategy of
potential intersections around the main theme of uncertainty.

Due to the requirement for safety at traffic signals, we first and foremost consid-
ered accident numbers at intersections. Conventional methods might decide the order
of retrofitting intersections based on their accident ranking. In practice, however, more
accidents may unexpectedly occur than before in intersections that have not been re-
newed. Thus, regardless of the order of LEDs selected for retrofitting, uncertainty (risk)
will remain. Clearly, the existence of uncertainty has to be considered in the analysis of
rational retrofitting strategies.

We studied 10 intersections and their 10-years accident data, from which portfolios of
retrofitting could be analyzed and optimized. We proposed an effective retrofit strategy
where risk (measured by the variance in accident numbers) is considered together with
the mean number of accidents. Our analysis of the trade-off between the mean number
of accidents and variance employs mean-variance analysis and double-layered BM, which
becomes considerably more efficient as the number of intersections dramatically increases.

It appears obvious that investors are concerned with risk and return and that these
parameters should be measured for the portfolio as a whole. Variance (or standard devia-
tion), was considered as a measure of portfolio risk. Because the variance of the portfolio
(the variance of a weighted sum) involved all covariance terms, the approach appeared
more plausible. Because two criteria existed (i.e., expected return and risk), the natural
approach for an economics program was to imagine the investor selecting a point from
the set of optimal expected return and variance of return combinations, now known as
the efficient frontier. In this section, we employ double-layered BM as an efficient model
to solve this trade-off problem.

The implementation of the proposed method uses the following five steps:
Step 1. Identifying the correct uncertainty
Step 2. Quantifying individual uncertainties
Step 3. Post-processing the uncertainty
Step 4. Implementing Portfolio Theory
Step 5. Determining the optimal maintenance strategy
We have demonstrated that proposed method has several advantages. The results show

that the double-layered BM can select and determine an optimum investment rate for in-
tersections using less computation time than conventional BMs, thereby decreasing costs.
The results also demonstrated that our proposal for incorporating structural learning
into the BM is effective and can enhance the reliability of a traffic signal light retrofitting
problem.
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7. Conclusions. In this study, an innovative proposal based on mean-variance analysis
was presented to compute the optimal cost investment strategy for a traffic signal system.
A double-layered BM was proposed to solve the mean-variance analysis problem. Fur-
thermore, to evaluate the proposed method, a case study was performed to illustrate how
the method generates a quantitative prediction of the effective allocation of investment
costs in implementing intersection LED signal retrofitting, based on the time-series data
available for a ten-year period. The calculation of the costs associated with maintenance
becomes as important as the computation of the reliability itself. This study observed
that the proposed method can deal with these types of problems much more effectively
than conventional methods and demonstrated its effectiveness in dealing with the un-
certainties in the case study. The results obtained demonstrated that the selection and
investment expense rates of the intersections could be extended to enhance traffic safety.
The results also demonstrated that our proposed method is effective and can enhance
the decision-making process. The simulation showed that computational times are sig-
nificantly shorter than those required for a conventional BM and its can be prolonged to
increase cost savings.
In the future, we will further investigate the reliability of the proposed method, along

the following lines:

1) Because the system is restructured after reaching a certain temperature, the dynamics
of the inner structure is important. By studying the inner structure of the double-
layered BM, it might be possible to find a way to improve the accuracy of the proposed
method.

2) The method will be compared with other method or packages that have been developed,
such as ILOG CPLEX, to compare the performance of the proposed method.

3) The proposed method will be applied to various engineering problems.
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