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Abstract. A knowledge representation method for local search algorithms that are suit-
able for solving real-time vehicle routing problems in urban distribution is proposed in the
research. The first part of this method is using rules to represent policies obtained from
experienced schedulers to link the situations of disruptions to the choice of algorithms,
while the second part is using seven components to modularize an algorithm and con-
structing a generic procedure to control the flow of algorithms. With the algorithms
represented by the method, the decision support system for real-time vehicle routing can
handle different disruptions occurring under different distribution states in real time.
Moreover, the method can facilitate the process of real-time modeling and the mainte-
nance of algorithms in a Decision Support System for real-time vehicle routing.
Keywords: Knowledge representation, Algorithm, Decision support system, Real-time
vehicle routing

1. Introduction. Real-time vehicle routing is important in supporting supply chain ex-
ecution systems, and in minimizing the related logistics risks [1], as unexpected events,
such as demand changes, time window changes and vehicle breakdowns, constantly occur
during the process of urban distribution. Giaglis et al. [1] have demonstrated that a good,
near-optimal, distribution plan is necessary but not sufficient for high performance dis-
tribution. This needs to be complemented by the capability of making and implementing
sophisticated decisions in real time in order to respond effectively to unexpected events.

As unexpected events are diversified and distribution states change constantly with the
plan-executing process, different optimization models and algorithms will be used by the
decision process of real-time vehicle routing. For example, for the breakdown of vehicle
v1 occurring under the distribution state shown by Figure 1(a), the policy of inserting
remaining tasks of 9, 13, 11, 4, 7, and 2 to the other two routes is applicable, which will
use Relocate algorithm to optimize the insertion process. For the breakdown occurring
under the distribution state shown by Figure 1(b), the policy of dispatching the unused
vehicle v2 to finish task 2, is applicable, which will use the Dijkstra’s algorithm to find
out a shortest path between the depot and the task 2. For the breakdown of vehicle
v2 and the disabled road 6—16 occurring under the distribution state shown by Figure
1(c), the policy of inserting remaining tasks of 17, 10 to the other two routes and the
policy of searching for another feasible road instead of the disabled one are applicable
respectively. In the former policy, Relocate algorithm will be used, while in the latter
policy, the intra-route algorithm, such as 2-opt Exchange or Or-Opt will be used. We
name the unexpected events which will disrupt the current distribution plan disruptions.
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Figure 1. Unexpected events occurring under different distribution states

The above examples indicate that sometimes different algorithms are needed for solving
the same kind of disruption occurring under different distribution states, and sometimes
the same algorithm is needed for solving different kinds of disruptions.
Therefore, linking the situation of disruption to the choice of algorithms is a key problem

for real-time rerouting. Hence, one of the objectives of knowledge representation is to
support the process of identifying the situation of disruption and choosing an appropriate
algorithm.
Furthermore, in practice, when a disruption occurs, the original problems’ constraints

would be violated and feasible solutions could not be obtained, in which case constraints
relaxing and objective conceding are inevitable, in order to obtain an operable solution.
Usually, a distribution plan with on-time deliveries is prior to the one with time-violation
deliveries, while the one with time-violation deliveries is prior to the one with none de-
liveries. How to relax constraints and concede other objectives is the key issue in the
process of modeling, in which an algorithm plays an important role. An algorithm could
be utilized from two aspects in this process. It could be firstly used to check if a feasible
solution satisfying current constraints could be obtained by a test run. If it could not,
relaxed constraints would be checked. The process iterated until the final objective and
constraints were identified. Secondly, with the final running, it could find out the near
optimal solution based on the identified objective and constraints. How these two aspects
could be realized in a decision-making process depends on how algorithms are represented
in a Decision Support System (DSS).
Therefore, the second objective of knowledge representation method for algorithms in

the DSS for real-time vehicle routing is to make them be efficiently and effectively utilized
by the decision process.
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This paper presents a knowledge representation method for algorithms in DSS for real-
time vehicle routing in urban distribution, which achieves the two objectives mentioned
above. The remaining part of the paper is organized as follows. Related work is reviewed
in Section 2. The problem that the research concerns is stated, and the preconditions of the
research are defined in Section 3. The knowledge representation method for algorithms is
proposed in Section 4. In Section 5, computational experiment is done and the advantages
of the proposed method are discussed. Finally in Section 6, conclusions are drawn and
future work is introduced.

2. Related Work. In most DSS for optimization problems, algorithms are represented in
procedural scheme. Closely related with the specific problem to be solved, the procedural
representation is efficient when an algorithm runs. However, as an algorithm represented
by the procedural scheme is problem-specific, once the disruption to be handled is changed,
its code has to be changed, which is inflexible for the reuse of the algorithm by different
disruptions. Besides the procedural representation method, the similar research branch for
modeling and solving optimization problems is the algebraic modeling language, which was
pioneered by GAMS [2], AMPL [3], AIMMS [4,5], and followed by some complementary
methods, like AMPL extension language [6] and MILANO [7]. These representation
methods separated the part of the data from a model, which made parameters be input
flexibly so that the model could be used by different problems of the same kind. However,
efficient methods for solving real-time vehicle routing problems are local search heuristics,
which embody some parts of constraints and objectives of algebraic models implicitly in
heuristic knowledge, so the algebraic modeling method cannot be used directly by this
kind of problem. A different knowledge representation method for this kind of algorithms
is needed.

Existing literature on Real-time Vehicle Routing Problems (RVRP) focuses on the
following aspects: algorithms, models, strategies and DSS. With respect to new customer
requests, Ichoua et al. [8] proposed a vehicle diversion strategy and employed Tabu
search algorithm to solve it. Yang et al. [9] proposed a mixed-integer programming
formulation for the offline version of the problem and then considered and compared five
rolling horizon strategies for the real-time version. Fang et al. developed an Isochrone-
based decision method for determining the vehicle on road that can immediately respond
to the new request [10]. With respect to vehicle breakdowns, Li et al. [11,12] developed
a Lagrangian relaxation based-heuristic to get the strategy for rescheduling one or more
vehicles to serve that trip and other service trips originally scheduled for the disabled
vehicle. Besides the literature purely focusing on algorithms and models, there are some
researches involving the design of DSS for real-time vehicle routing or rerouting, such
as the systems of Li et al. [13], Zeimpekis and Giaglis et al. [14-16], Giaglis et al. [1],
Fleischmann et al. [17], Du et al. [18] and Hu et al. [19]. In these DSSs, the core modules
are also algorithms and models. In summary, these researches are gradually improving the
optimization techniques in the area of RVRP. However, few of them can handle various
disruptions occurring under different distribution states, as they usually use a specific
model and algorithm to solve a specific kind of problem under a predefined distribution
state. In order to equip the DSSs with the capability of handling different kinds of
disruptions, organizing different kinds of algorithms in an efficient way to facilitate the
real-time modeling process is the key issue.

3. Problem Statement and Preconditions. As vehicle routing problems have many
variants, in the paper, we confine the problem to the following conditions. There is
one distribution center, which owns enough homogenous goods and several homogenous
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vehicles. Dispatched vehicles are redundantly loaded before starting their tasks for dealing
with unexpected demands. The total demands of the customers in one route are less than
or equal to the capacity of a vehicle. The service for customer i should start within a time
window [ei, li] requested by the customer. The discussed problem is when a scheduled
plan is being executed, an unexpected event that disrupts the current plan occurs, in
which case, the decision process for handling the disruption by real-time rerouting is
needed. Before presenting the knowledge representation method, some preconditions are
necessary.
Precondition 1. Only local search algorithms will be used by the decision process for

handling disruptions.
In this research, only local search algorithms will be considered. Larsen et al. argued

that in dynamic settings, waiting for a long time in order to get a high quality solution
is not possible, because the dispatcher wishes to know the solution to the current prob-
lem as soon as possible (preferably within minutes or seconds) [20]. The running-time
constraint implies that rerouting and reassignments are often done by using local improve-
ment heuristics like insertion and k-interchange [20]. Giaglis et al. also had the similar
viewpoint that local plan adjustment may provide more cost-effective solutions without
unnecessarily disturbing the overall initial plan [1]. Although the outcome of local search
algorithms depends on initial solutions, it is not a limitation here, as the initial solution
is the current distribution plan with high quality produced by a metaheuristic algorithm,
e.g., Tabu search, genetic algorithms, evolution strategies [21]. More specifically, local
search algorithms can be divided into two categories [22]: intra-route algorithms, which
exchange or insert nodes or links within a route; and inter-route algorithms, which in
contrast do that between routes. Bräysy and Gendreau’s survey [23] also grouped most
popular local search algorithms by the two categories. Table 1 summarizes the categories
of local search algorithms mentioned by Bräysy and Gendreau [23].
Precondition 2. The real-time distribution state is represented by the method of three-

layer tree structure of <Object—State—Set>.
The kind of the disruption and the distribution state when the disruption occurs deter-

mine which algorithm should be used by the policy for handling the disruption. Further-
more, the distribution state provides the algorithm with most of the input parameters.
Hence, it is necessary to obtain the distribution state in real time before handling the
disruption. The <Object—State—Set> tree structure shown in Figure 2 can be used to
obtain the distribution state in real time.

4. Knowledge Representation Method for Algorithms.

4.1. Knowledge representation for selecting algorithms. Policies obtained from
experienced schedulers for handling different disruptions should be specifically defined to
link the situations of disruptions to the choice of algorithms, which is the first part of the
knowledge representation for algorithms.

Table 1. Categories of local search algorithms mentioned by Bräysy and
Gendreau [23]

Algorithm Category Algorithms

Inter-route improvement
2-opt*, Relocate, Exchange, CROSS-Exchange,
GENI-Exchange, Cyclic Transfer

Intra-route improvement 2-opt Exchange, Or-Opt
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Figure 2. Representation of the real-time distribution state

Schedulers’ policies are categorized by five kinds of disruptions occurring frequently
during the distribution process. They are demand increasing (DI), order cancelling (OC),
road unusability (RU), time violation (TV), and vehicle disability (VD). P-DI, P-OC,
P-RU, P-TV, and P-VD are the corresponding policy sets for handling the five kinds of
disruptions. Each policy set contains several specific rules used to link the specific situ-
ations of disruptions to the choice of algorithms. For example, parts of specific rules in
P-DI policy set are as follows:

IF the initial task of the current customer has been finished, AND there is a single
vehicle’s redundant load could satisfy the increased demand, THEN insert this demand
into one of the remaining routes.

IF the initial task of the current customer has been finished, AND there is not any
vehicle’s redundant load could satisfy the increased demand, THEN split this demand
and insert those split parts to the remaining routes one by one.

. . .

These rules are represented by Horn clauses in PROLOG (Programming In Logic) lan-
guage as follows.

p DI(Operation,C no,Quantity,Current vehicle):-
demand increasing disruption(C no,Increased demand),
customer(C no, ,Increased demand, Current vehicle,1),
vehicle(Route no, ,Redundant load,1),
Route no\=Current vehicle,
Redundant Load>=Increased demand,
Quantity=Increased demand,
Operation=“Relocate”.
p DI(Operation,C no,Quantity,Current vehicle):-
demand increasing disruption(C no,Increased demand),
customer(C no, ,Increased demand,Current vehicle,1),
Quantity=Increased demand,
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Operation=“Relocate-split”.
. . .

In a rule, the premises define the situations, and the conclusion provides the operation
which may include an algorithm and the other parameters to be transferred to the algo-
rithm. After a rule is matched successfully, further optimization may needed, which will
be realized by the algorithm.

4.2. Knowledge representation for using algorithms in real-time modeling. Lo-
cal search algorithms have the common process for generating a new distribution plan
when they are used by policies for handling disruptions, which is shown in Figure 3. Fig-
ure 3 has two parts. The dashed lines in the middle of the figure relate the two parts. The
left part indicates the common process, in which each rectangle and the rhombus stand
for a step. The right part lists the core component that is needed by each step to fulfill
its task.
Step 1 defines the initial solution, which is the start point of a local search algorithm.

The component INITIALIZATION is used to obtain the necessary parameters. It is the
basic input of an algorithm. The component is necessary for separating the data from the
flow of an algorithm.
Step 2 generates the neighborhood solutions. This task needs an OPERATOR to define

how a neighborhood solution is created. Different algorithms have different operators.
For example, swap (ri − ci, rj − cj) and insert (ri − ci, rj − c(j−1) − cj) are two different
operators that respectively belong to swap algorithm and insertion algorithm. For local
search algorithms, all operations can be summarized into two categories, deleting roads,
i.e., links, from the current routes, or adding roads to the current routes. Therefore, we

Figure 3. The common process of local search algorithms and the core components
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use two facets, “Deleted-roads” and “Added-roads”, which are the sets that aggregate the
deleted roads and the added roads respectively, to describe this component.

Step 3 selects the feasible solutions from the neighborhood solutions. The fulfillment
of the task depends on the component of FEASIBILITY, which is used to check if the
constraints can be satisfied by a neighborhood solution. The content of the component is
determined by the constraints of the problem.

Step 4 selects a most suitable solution from the feasible solutions as the next current
solution for generating next neighborhood solutions. The component of EVALUATOR is
used to compare the feasible solutions with the current solution and find out the better
one. The content of the component is determined by the optimization objective of the
problem.

Step 5 checks whether the recursive condition has been reached or not, as algorithms
will recursively run until some condition is reached. The component of RECURSIVE-
CONDITION defines the condition. Its data type is Boolean, in which “true” means
continuing the recursion, while “false” means stopping the recursion.

Step 6 confirms the finally selected solution as the current solution if the recursive
condition is true. This task will be fulfilled by the component of OUTPUT.

Besides the six components mentioned above, the identifier of an algorithm is necessary.
We use NAME as an algorithm’s identifier. It is used to link the conclusion of a rule with
the corresponding algorithm, and to locate the other six components of the algorithm.

The above analysis shows that a local search algorithm can be made from the seven
components, NAME, INITIALIZATION, OPERATOR, FEASIBILITY, EVALUATOR,
RECURSIVE-CONDITION, and OUTPUT. Besides, a generic procedure is needed for
controlling the flow of algorithms. As frames provide a convenient way to combine dec-
larations and procedures within a knowledge representation scheme, it is suitable for
representing algorithms. Hence we created a frame-based representation method. As

Table 2. Modularization of relocate algorithm

NAME
<Relocate>

INITIALIZATION
Customer-to-be-relocated: @x
Quantity-to-be-relocated: @q
Untraveled-roads: {[@start-node,@end-node,@vehicle-id]}

OPERATOR
For [@i,@j,@k]∈Untraveled-roads
Deleted-roads: {[@i,@j,@k]}
Added-roads: {[@i,@x,@k], [@x,@j,@k]}
Flag [@i,@j,@k]
/* Flag marks those elements that have been examined in the set of untraveled-roads.*/

RECURSIVE-CONDITION: Boolean
If ∃[@i,@j,@k]∈Untraveled-roads hasn’t been examined, True;
Otherwise, False

FEASIBILIT: Boolean
Check @C

EVALUATOR: real
Calculate @O

OUTPUT(@Untraveled-roads)
Untraveled-roads deduct Deleted-roads plus Added-roads

/*Variables C and O stand for the constraints and objectives respectively. */
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analyzed above, the representation should contain two parts. One part is the seven com-
ponents used to modularize an algorithm. The other part is a generic procedure used to
control the flow of algorithms. The generic procedure will be instantiated by the seven
components of an algorithm when the algorithm is confirmed by a policy.
Table 2 takes the Relocate algorithm as an example to show the modularization of an

algorithm, in which the sentences between /* and */ are explanations, and @ is prefixed
to variables.

5. Advantages of the Representation. The knowledge representation method has
three advantages from the perspective of supporting the decision process of handling
disruptions in real time.
1) Algorithms represented by it can be flexibly used by the decision process to efficiently

handle different disruptions under different distribution states.
2) It facilitates real-time modeling and problem-solving process.
3) It facilitates the maintenance of algorithms.
In order to prove these advantages, computational experiments and results analysis

have been done in the following sections.

5.1. Computational experiment. Two sets of disruption problems were generated ran-
domly based on Professor Cordeau’s VRP benchmark problems. One set is DI disruptions,
and the other set is OC disruptions. The benchmark problems for Capacitated Vehicle
Routing Problem with Time Windows (CVRPTW) are used, which include 56 problem
description files (http://neo.lcc.uma.es/radi-aeb/WebVRP/dat a/instances/cordeau/C-
vrptw.zip) and 56 solution files (http://neo.lcc.uma.es/radi-aeb/WebVRP/data/instances
/cordeau/C-vrptw-sol.zip). These problems are grouped by C type, R type and RC type.
Problem sets C have the clustered customers. Sets R have the customers whose locations
were generated uniformly and randomly over a square. Sets RC have a combination of
randomly placed and clustered customers. We selected C101 and C104 from C type, R104
and R107 from R type, RC104 and RC108 from RC type. The reason for selecting these
problems is that their solutions contain the same amount of routes, 10, which needs 10
vehicles to serve. As in practice a distribution center or corporation usually owns a limited
number of vehicles, we assume that this number is 10. Before a disruption occurs, the
distribution plan will be executed following the 10 routes. As disruptions occur randomly,
in order to ensure an environment close to the real world, the time when and the position
where the disruption will occur will also be generated randomly. Table 3 shows some part
of the generated data.
The experiment was conducted in a computer with the 32 bits Windows 7 operating

system running on the following hardware: CPU – Intel Dual Core with 2.8 GHz, 2.00
GB of RAM.

5.2. Computational results. As algorithms are modularized by the knowledge repre-
sentation method, the components of INITIALIZATION, OPERATOR and RECURSIVE-
CONDITION could be used by a test run for checking if a feasible solution satisfying cur-
rent constraints could be obtained. If it could not, relaxed constraints would be checked.
Figure 4 describes a part of this constraint-checking process, in which Otd stands for the
objective of “minimizing travel distance”; Otv stands for the objective of “minimizing time
violation”; Cc stands for the constraint of “capacity” and Ctw stands for the constraint
of “time windows”. The output of the test run is the identified constraints and objec-
tives. Hence, when no solutions can be obtained by complying with initial constraints,
constraints will be relaxed and another objective may also be conceded by the test run of
the algorithm with the proposed knowledge representation, while the traditional method
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Table 3. Some part of the generated data

Problem
Type

DI OC
Route
No.

Position
Occurring

Time
Increased
Demand

Route
No.

Position
Occurring

Time
C101 9 75 105 24 4 15 278
C101 8 93 116 12 6 89 681
C101 7 37 520 70 10 70 281
. . . . . . . . . . . . . . . . . . . . . . . .
C104 10 75 753 34 3 15 278
C104 9 93 116 12 1 89 681
C104 6 37 520 70 8 70 281
. . . . . . . . . . . . . . . . . . . . . . . .
R104 9 75 78 48 9 75 31
R104 10 93 31 67 10 93 34
R104 10 37 27 78 6 83 1
. . . . . . . . . . . . . . . . . . . . . . . .
R107 1 75 200 48 1 43 21
R107 6 93 178 112 4 51 26
R107 8 37 121 70 6 84 71
. . . . . . . . . . . . . . . . . . . . . . . .

RC104 8 75 92 114 8 75 96
RC104 6 93 199 83 9 89 16
RC104 7 37 163 70 7 43 48
. . . . . . . . . . . . . . . . . . . . . . . .

RC108 2 75 118 90 2 75 136
RC108 5 93 216 83 3 48 74
RC108 7 37 3 70 3 89 1

Figure 4. A part of the test run of an algorithm in the modeling process
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used to solve disruptions never allows constraints to be relaxed. Computational results
were obtained by the two methods respectively.
Table 4 compared the results of the proposed method with those of the traditional

method from the following 4 criteria when they are used to handle DI disruptions. The
results of the two different methods are aggregated respectively by the six problems in
this table.

Table 4. The comparison between the aggregation results of 100 DI cases
obtained respectively by the proposed method and traditional method

Problem
type

Total
increased
demands

Method
À Average

cost

Á Average
amount of
the affected
customers

Â Total
rejected
demands

Ã Rejected
rate

CPU(S) MIN/
MAX/AVG

C101 5567 Proposed 63.24 0.9 119 2.14%
0.0090/0.0316/

0.0188
Traditional 44.69 0 4825 86.67%

C104 5443 Proposed 73.81 1.92 109 2.00%
0.0095/0.0289/

0.0197
Traditional 28.42 0 5087 93.46%

R104 6070 Proposed 34.33 0.43 0 0.00%
0.0159/0.0289/

0.0186
Traditional 27.40 0 2813 46.34%

R107 6830 Proposed 35.06 0.26 105 1.54%

Traditional 29.47 0 1802 26.38%
0.0092/0.0287/

0.0195
RC104 5233 Proposed 50.72 0.53 47 0.90%

Traditional 33.56 0 2867 54.79%
0.0095/0.0434/

0.0185
RC108 5887 Proposed 61.17 0.62 100 1.70%

Traditional 32.49 0 3688 62.65%
0.0101/0.0378/

0.0197

À “Average cost”: It means that for the 100 DI disruptions in a problem, the average
increased travel distance of the 100 solutions achieved respectively by the two methods,
compared with the original solution.

Á “Average amount of the affected customers”: In a solution to a DI disruption, in
order to satisfy all demands, some customers’ time windows have to be violated. This
kind of customers is defined as the affected customers. The criterion compares the average
amount of the affected customers of the 100 solutions achieved respectively by the two
methods.

Â “Total rejected demands”: Limited by the capacity of a vehicle and the amount of
vehicles, some of the increased demand cannot be satisfied in the current distribution
period, which has to be rejected. This criterion compares the total rejected demands of
the 100 solutions achieved respectively by the two methods.

Ã “Rejected rate” = total rejected demands/total increased demands × 100%.
Besides, the “CPU seconds” (CPU(S)) is used to measure the running time of CPU for

achieving a solution by the proposed method. Among the 100 CPU seconds for the 100
solutions, MIN records the shortest one, and MAX records the longest one, while AVE
calculates the average value of them.
Table 5 compared the results of the proposed method with those of the traditional

method from the two criteria, Average cost and Average amount of the affected customers,
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Table 5. The comparison between the aggregation results of 100 OC cases
obtained respectively by the proposed method and traditional method

Problem
type

Method
À Average

cost

Á Average
amount of
the affected
customers

CPU(S)MIN/MAX/AVG

C101 Proposed 3.98 2.51 0.0152/0.0912/0.0445
Traditional 0.00 6.03

C104 Proposed 10.06 1.26 0.0153/0.1246/0.0448
Traditional 0.00 1.97

R104 Proposed 9.34 1.73 0.0154/0.0952/0.0295
Traditional 0.00 2.55

R107 Proposed 11.26 1.47 0.0152/0.0994/0.0333
Traditional 0.00 1.97

RC104 Proposed 14.31 1.35 0.0152/0.1287/0.0379
Traditional 0.00 1.8

RC108 Proposed 7.49 1.13 0.0152/0.0949/0.0386
Traditional 0.00 1.36

when they are used to handle OC disruptions. As there are no solutions to OC disruptions
by rerouting if no constraints are allowed to be violated, the best way to handle this kind
of disruption in tradition is to keep the original solutions, which results in no cost. “CPU
seconds” is also recorded for the proposed method.

5.3. Discussions. Table 4 indicated that when handling DI disruptions, the proposed
method used little cost to handle almost all increased demands, while the traditional
method rejected almost all demands. For example, for C101, the total increased demands
are 5567. The proposed method cost 63.24 and violated 0.9 customer’s time window in
average, while just rejected the amount of demands, 119, with the rejected rate of 2.14%.
However, although the traditional method cost 44.69, less than that of the proposed
method, and violated 0 customer’s time window in average, it rejected the amount of
demands, 4825, with the rejected rate of 86.67%, which is very high and will lead to
great customer dissatisfaction in the long run. Table 5 indicated that when handling OC
disruptions, the proposed method just used little cost to greatly induce the amount of
affected customers in average, while the traditional method affected more customers. For
example, for C101, the proposed method just cost 3.98 in average and reduced the amount
of affected customers from 6.03 to 2.51 compared with the traditional method. The results
of the proposed method are preferable in practice to those of the traditional one, because
the latter affects more customers, which leads to more customer dissatisfaction and thus
does harm to the distribution corporation in the long run.

The above results indicate that the algorithms represented by the proposed method
can efficiently handle different disruptions under different distribution states. As the
objectives and constraints could be flexibly relaxed by the representation method, the
solutions obtained by the proposed method are more practical and operable than those
obtained by the traditional method.

The CPU(S) in Tables 4 and 5 shows that the minimum running time for handling DI
disruptions is 0.0090, the maximum one is 0.0434, while the minimum running time for
handling OC disruptions is 0.0152 and the maximum one is 0.1287. This indicates that
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the modeling and problem-solving process can be achieved in real time. Hence the second
advantage of the proposed method has been proved.
Besides the above mentioned advantages, the maintenance of local search algorithms in

DSS for RVRP becomes simple with the algorithm representation method. For example,
when some customers in a disabled route need to be inserted to the other routes, an
algorithm should firstly delete a customer from its current route and then insert it to
another route. In this case, the algorithm will be achieved by inheriting the Relocate
algorithm based on the frame-based representation. Table 6 shows the new algorithm.

Table 6. The delete-insertion algorithm

NAME
<Delete-Insertion>
ISA<Relocate>

OPERATOR
Deleted-roads: ∪{[@ax,@x,@rx],[@x,@px,@rx]}
Added-roads: ∪[@ax,@px,@rx]

/*@ax stands for the anterior customer of customer x, and @px stands for the posterior
customer of it in a route.*/

By the inheriting feature of the frame scheme, all components in the Relocate algorithm
frame are duplicated automatically by the function of “ISA<Relocate>”. The only
changed thing is the additional elements in the sets of Deleted-roads and Added-roads,
which is realized by the “∪” operation. The generic procedure is applicable to the new
algorithm without any changes.
The example obviously demonstrates that the representation method compresses the

code of algorithms, which means that some algorithms can be realized by inheriting exist-
ing relative algorithms. The code of son algorithms only records the different parts from
their ancestors. Moreover, the separation of the control flow and algorithms’ components
facilitates the maintenance process, too. When altering an algorithm, people do not need
to care its flow, but focus on the components of it. The characteristics of inheritance and
separation greatly decrease the labor for the maintenance of algorithms.

6. Conclusions and Future Work. The research proposes a knowledge representation
method for the algorithms suitable for real-time vehicle routing, which firstly uses rules
to represent policies obtained from experienced schedulers to link the situations of dis-
ruptions to the choice of algorithms, and then uses seven components to modularize an
algorithm and a generic procedure to realize the control flow of algorithms. The knowledge
representation method has the following three advantages.
1) Algorithms represented by the knowledge representation method can be used to

handle different disruptions occurring under different distribution states. The objectives
and constraints could be flexibly relaxed by the representation method, and thus more
practical results could be achieved, which overcomes the deficiency of traditional method
that just uses a fixed model and algorithm to solve a specific kind of problem under a
predefined distribution state and thus usually cannot obtain operable solutions in practice.
2) It facilitates the real-time modeling process for supporting the decision process of

real-time vehicle routing. The computational results show that the running time of the
problem-solving process is short enough for real-time modeling. This advantage equips
the DSS for RVRP with the capability of automated or semi-automated modeling in real
time.
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3) Moreover, it facilitates the update and maintenance of algorithms. First of all, some
algorithms can be achieved by inheriting existing relative algorithms. This compresses the
code of algorithms, as the code of son algorithms only needs to record the different parts
from their ancestors. Secondly, as the control flow and the components of an algorithm
are separated, when people modify an algorithm, they do not need to change the whole
algorithm’s structure or care the algorithm’s flow, but only to modify the corresponding
components of it. This advantage is particularly important for the DSS for real-time
vehicle routing in urban distribution, in which many algorithms need to be managed.

In order to efficiently and effectively utilize the algorithms represented by the proposed
method, future work includes two aspects. As knowledge is different for different kinds of
disruptions, the development of knowledgebase is a time-consuming task. In this research,
only the knowledge for algorithms used to handle two kinds of disruptions, DI and OC,
has been gathered and represented. Hence one aspect of the future work is to try to
perfect the modeling system for handling all kinds of disruptions. The other one is the
design of the man-machine interaction system for the acquirement and maintenance of
algorithms.
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