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Abstract. We present an analytic investigation of the bullwhip effect developing in
production-distribution chains. All common considered causes of the effect are excluded
and the only mean to induce a bullwhip type of instability is the adoption of an inventory
replenishment policy involving a variable target level. The policy is designed to maintain
a safety stock that is proportional to the actual demand. In order to achieve our goals we
develop a particular discrete model of supply chains by introducing some fresh concepts
into the field of supply chain stability. The basic idea is to derive an update scheme
describing the status of the whole chain over the entire time-space (period-stage) domain
of interest. We prove that the strategy of demand driven target inventory inherently
leads to an instability developing in the chain, which is precisely a manifestation of the
bullwhip effect. Following the identification of the source and the nature of the instability,
we propose a new production plan, which is stable and does not exhibit the bullwhip effect
at all. Thus, the amplitude of the variation of the production rate never exceeds the
amplitude of the oscillation of the market demand within the entire supply chain.
Keywords: Order-up-to policy, Supply chain, Stability, Bullwhip effect

1. Introduction. In the increasing global competition supply chain management has
become a critical factor [1]. In principle, a supply chain is composed of a set of sequentially
connected production or distribution units, giving rise to information and material flow
between its members. At the beginning of the chain the market demand acts as the
driver of the dynamic processes evolving in the system, while at the end the producer of
raw materials provides the material input. Typically, the market demand for a product
exhibits different types of variations:

• small stochastic oscillations around a mean value (random changes of the demand),
• rapid changes with large amplitude (caused by promotions),
• slow variations with large amplitude (due to seasonal, economical tendencies).

A common observation is that these variations have an amplifying effect on the order
and the production rate upwards in the chain. A large number of reports and case studies
indicate that even small perturbations of the market demand can cause huge variations in
the order and the production rates. Practical experience implies that the higher a stage
is situated in the supply chain, the larger the variations are. This is the essence of the
bullwhip effect, which is an undesired feature of modern supply chains. As a result, the
members of the chain might experience the following consequences:

• inefficient utilization of production and inventory resources,
• increased shipping costs,
• decreasing level of customer service,

5885
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• lost revenues.

It may even happen that a factory has to close temporarily, just to be forced to increase
its regular production by several factors in the following period. Due to these reasons the
investigation of the bullwhip effect has been in the focus of extensive research for more
than a decade. Probability theory [2, 4], control theory [5, 6], delay differential equations
[7], linear stability analysis [8], high order autoregressive demand process [9], fuzzy [10, 11]
and chaos perspectives [12] are put into work to handle the phenomenon. Although it
seems that in a number of models the underlying driving forces have been identified,
the complete understanding of their nature, and the treatment of the bullwhip effect
still remain the subject of active research. The work of Lee et al. [2] elegantly clarified
that the bullwhip effect can be induced by a number of conceptually different triggering
mechanisms. The possible triggers identified so far are:

• demand signal forecasting,
• non-zero lead time,
• order batching,
• rationing game,
• promotions.

What rarely receives attention is that these five causes do not automatically trigger
the bullwhip effect. Instead, the mechanisms are brought to play by human decisions,
which are channelled through inventory management and ordering policies. These policies
contain a number of parameters, which govern the significance of the individual triggers,
or even may introduce new triggering mechanisms. Therefore, it is also reasonable to
consider the inventory replenishment policy itself as a possible cause of the bullwhip effect.
A general replenishment policy widely employed in the literature is due to John et al. [3].
It is called the automatic pipeline, inventory and order-based production control system
(APIOBPCS). According to APIOBPCS, the placed order is the sum of the following
three components:

• an average demand, usually smoothed over a given time period (its role is to cover
the current demand),

• a fraction of the difference between the actual and the target inventory level (its role
is to move the actual inventory level towards its target value),

• a fraction of the difference between the actual and the target work in process (WIP)
(its role is to move the WIP towards its target value).

It is a quite popular choice to assume that the target level of the inventory is constant,
calculated by some statistical methods. In the present paper we omit this assumption to
improve the realism of the model. Our interest goes exclusively into the triggering of the
bullwhip effect by a variable target inventory depending on the actual demand. Since in
the considered model this inventory management policy can be directly translated into a
production plan, we will use the latter term throughout this study. All other causes listed
above, including delay effects (consequently WIP terms) are neglected. Nevertheless, as
results indicate, the bullwhip effect clearly appears even in this fairly simple scenario.
The particular model of supply chains that we study in this paper was investigated

experimentally by Buchmeister and his co-workers in [13, 14, 15]. Our choice has the
following three reasons. First, in the model the only possible triggering mechanism of
the bullwhip effect is the production plan involving a variable target stock. Second, the
authors of [13, 14, 15] based their work on a series of spread sheet simulations, which has
an experimental nature with limited concluding power. We improve upon their results by
means of mathematical analysis. Third, the model lends itself for a simple introduction
of a new methodology that we propose for the study of supply chain stability. In the
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presented model the market demand is served by the first stage of K sequentially linked
stages of a supply chain (see Figure 1). Buchmeister et al. focused on the appearance
of the bullwhip effect in 2-stage and 4-stage chains, as the market demand was following
different patterns (sudden jump, periodic, etc.). They measured the magnitude of the
bullwhip effect for different safety stock keeping policies. The work of [13] demonstrated
that on the selected test cases one particular stock keeping policy resulted in a considerably
reduced bullwhip effect. These studies gave clear evidence that the particular choice of
the production plan (stock keeping policy) in itself is capable of inducing the bullwhip
effect, and that it may play a crucial role in the partial suppression of the instability.
Additionally, these results imply the following questions that were not addressed by the
authors.

• What is the very source of the bullwhip effect in the given model?
• Why is one stock keeping policy better than another?
• Is there an optimal stock keeping policy in some sense?
• Is it possible to eliminate the bullwhip effect completely?
• If so, what is the price to pay?

In order to answer these questions, we need to pursue the construction of an appropriate
mathematical framework that might lead us to a deeper understanding of the dynamics
of the particular supply chain model under consideration.

The aim of the present paper is threefold. First, we build a discrete analytic model of
a supply chain involving production units at its stages. The chain is operated under the
conditions of a periodic review method where lead time does not appear directly. The
only trigger capable to induce the bullwhip effect is the particular choice of the adopted
production plan that involves a variable safety stock depending on the actual demand.
Second, we put the model into work, identify the origin of the bullwhip effect, provide
a method for its complete elimination, and investigate the related price to pay. Third,
we present a fresh concept in the field of supply chain methodology that is different both
from the nowadays popular control theoretic approach [5, 6] and from the framework of
linear delay differential equations [7]. The basic idea is to formulate a discrete update
scheme that determines the status of the whole supply chain over a discrete time-space
(period-stage) domain and study its stability properties. By exploiting this idea, a simple,
compact, yet efficient discrete model can be obtained, which exhibits several observed
characteristics of supply chains. In particular it provides precise conditions for controlling
the emergence of the bullwhip effect.

The outline of this paper is the following. In Section 2, we develop a discrete analytic
model of supply chains. In Section 3, we point out the reason why the bullwhip effect is
an inherent feature even of this very simple scenario, and we propose a new production
plan to eliminate the instability and discuss the related price. Numerical experiments
supporting the theoretical results are presented in Section 4. Finally, in Section 5 some
implications of this new strategy are discussed and practical conclusions are drawn.

2. The Supply Chain Model. In this section we present a discrete model of supply
chains by taking a new perspective, and provide its mathematical description. The chain
is composed of the market, and K sequentially linked stages (K ∈ N+). Since the role
of the stages may differ in specific models, we do not give them individual names, such
as manufacturer and retailer. Instead, according to the labelling conventions of Figure
1, the individual stages are identified by index k (market: k = 0, fully operating stages:
K = 1, 2, . . . , K). Buchmeister et al. [13, 14, 15] studied the K = 2 and the K = 4 cases
experimentally by means of spread sheet simulation. In these papers the market demand
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Figure 1. A market served by a supply chain with K = 3 stages

(k = 0) is observed and satisfied by a manufacturer (k = 1), which is served by one or
three sequentially linked suppliers in the K = 2 and the K = 4 cases, respectively.
The dynamics of this supply chain model is investigated in a periodic review fashion

over a temporal interval subdivided into N + 1 non-overlapping periods. These periods
are labelled by n ∈ [0, 1, . . . , N ]. During period n stage k experiences a demand of dkn
items, it keeps a starting stock of s̄kn and a finishing stock of skn items, and maintains a
production of pkn items. In the given model we assume, that the production procedure of
an item manufactured at stage k requires one part (another type of item) that is produced
at stage k + 1. Thus, the production of pkn number of items at stage k requires the same
number of parts ordered from and produced by stage k + 1. The events taking place
during period n at stage k are the followings. The production unit observes its demand,
calculates the targeted safety stock at the end of the period, orders the necessary number
of parts from stage k + 1, receives the parts, performs the production, fills the demand.
Clearly, it is a simplistic model in the sense, that lead time and production time is not
taken into direct consideration. However, the conclusions provide important insight into
the dynamics of this basic model that can be extended to more complex cases.
Stage 0, the market itself has a special role providing the initial demand driving the

rest of the chain. In fact, it has neither its own stock nor its demand. For later use
we consider that stage 0 has a p0n production only, that is equal to the market demand
experienced directly by stage 1 (p0n = d1n). As a convention, subscript n exclusively labels
time periods, while superscript k stands for the k-th stage of the chain. The temporal
evolution, i.e., the dynamics of the supply chain is governed by the following strategy,
referred to as production plan 1.

Production plan 1 (PP1): During period n for all k > 0 the objective of the production
is to satisfy the experienced demand dkn, and to ensure, that at the end of the period the
safety stock equals to αdkn, if possible, where α ≥ 0 is a factor providing the size of the
desired safety stock in the unit of the experienced demand.

This production plan was tested in [13, 14, 15] for different values of α, with the
following assumption referring to the initial status of the chain:

Assumption 2.1. Initially, during period n = 0, the chain is in equilibrium, i.e.,

pk0 = d10 and s̄k0 = sk0 = αd10. (1)

Assumption 2.1 implies, that as long as the demand stays constant, the status of the
whole chain remains stationary. Thus, the safety stock and the production rate preserve
their respective initial value for all k > 0. We keep this assumption until the end of the
present section, where we investigate its relevance.
The reasoning behind PP1 is as follows. If the market demand increases, stage 1 has to

increase its production rate first to fill the needs, and second, to accommodate a sufficient



BULLWHIP EFFECT INDUCED BY TIME VARYING TARGET INVENTORY 5889

safety stock matching the higher demands. In the cited references the authors considered
the α = 1, α = 2 and other cases, where the value of α depends on k. They also employed
more complex production plans prone to the bullwhip effect that we do not investigate
here.
PP1 has an important implication. If the demand is sufficiently small compared with

the starting stock, then there is no production needed in period n at stage k at all to
fill the needs. This is a highly undesired phenomenon, since it leads to a large amount
of unexploited production potential during a whole period, i.e., temporarily closing the
production unit at the given stage. More precisely, if

dkn ≤ s̄kn
1 + α

then pkn = 0 and skn = s̄kn − dkn, (2)

should be required. In this case the finishing stock will not be the same as desired by PP1.
Otherwise, skn = αdkn can be satisfied with a production rate obtained from the following
balance equation:

pkn + s̄kn = dkn + skn. (3)

Observe that the above equation contains four quantities, dkn, p
k
n, s̄

k
n and skn, which are

not all independent. The dependencies are described below.
The demand experienced at the k-th stage is given by the production rate at the k−1-th

stage for k > 0:

dkn = pk−1
n . (4)

The starting stock during period n at stage k equals to the finishing stock of the same
stage at the preceding period:

s̄kn = skn−1. (5)

As long as there is no vanishing production present in the system, according to PP1 the
finishing stock must be equal to α in the unit given by the demand:

skn = αdkn. (6)

Equations (4)-(6) can be used to eliminate all variables from Equation (3) but the
production rate itself, leading to the following two equivalent forms of the production
equation:

pk+1
n = pkn + α

(
pkn − pkn−1

)
, (7)

pk+1
n = pkn(1 + α)− αpkn−1. (8)

These equations describe the dynamics of the supply chain governed by PP1, as long as
relation (2) is not valid. Thus, they provide a solid ground for the analytic investigation
to understand the properties of this model.

Equations (7) and (8) define a so-called update scheme for the production rate within the
entire supply chain during all the periods of interest, that we refer to as the discrete time-
stage or period-stage domain Ω = [0, 1, . . . , N ] × [0, 1, . . . , K]. From mathematical point
of view, we deal with an initial value-boundary value problem, describing the advection
of information (the value of the production rate) along the supply chain. The objective is
to determine the unknown values of pkn over domain Ω from the known values of pk0 and
p0n (see Figure 2).

The market demand p0n provides the initial solution for update scheme (7), while the
production rate pk0 at period 0 yields the corresponding boundary conditions. Based on
these values, we can compute the production at stage 1 for all the time periods of interest,
starting at n = 1 and eventually ending up at n = N . With these values at hand, we
can march forward along the stages, and compute the production at the first, second, and
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Figure 2. The time-stage domain Ω of a supply chain with K = 3 stages.
Light circles: known initial conditions (market demand). Dark circles:
known boundary conditions (status of the supply chain at n = 0). Empty
circles: unknown states to be computed. IC: initial conditions. BC: bound-
ary conditions.

eventually at the K-th stage. Thus, we obtain the production within the entire domain
Ω.

2.1. Notes on the equivalence of PP1 and update scheme (7). Whenever Assump-
tion 2.1 is satisfied at n = 0, PP1 and update scheme (7) lead to identical evolution of the
supply chain, provided, that the production does not have to be stopped due to excessive
safety stock or very low demand. On the other hand, if the production has to be stopped,
i.e., when relation (2) holds, update scheme (7) yields negative number for the produc-
tion rate, which is an invalid value. From this point the update scheme fails to follow the
operation of PP1. The explanation is quite straightforward. During the operation of PP1
condition (2) is explicitly checked and the corresponding adjustments are made, if needed.
On the other hand, Equation (6) was used during the construction of update scheme (7),
while the checking of condition (2) is omitted. Nevertheless, this fact does not diminish
the potential value of the update scheme, since even in this form it gives valid answers
regarding the stability of the supply chain subject to PP1.
This situation becomes slightly more involved, when Assumption 2.1 is not satisfied.

In this case PP1 and update scheme (7) lead to different evolution of the supply chain.
However, once again the stability property of the chain subject to PP1 is well modelled
by (7). It does not bring much practical benefit to study all the different theoretical
possibilities, apart from one particular scenario that we describe in the following.
Consider Assumption 2.1. It may happen, that the starting and the finishing stock

deviates from their equilibrium value by the same constant offset δ, i.e.,

pk0 = d10 and s̄k0 = sk0 = αd10 + δ. (9)

In this case PP1 will eliminate this difference, because it is directly detected by the plan.
However, the enforcement of condition (6) is weakly implemented into update scheme (7),
therefore it is not sensitive to such symmetric offsets in the safety stocks. The scheme will
evolve the production rate exactly the same way as there would be no offset at all (δ = 0).
This feature can be easily understood by examining the structure of the balance Equation
(3) serving the basis for the derivation of update scheme (7). Rearranging Equation (3)
leads to

pkn = dkn + (skn − s̄kn). (10)
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The last equation reveals, that the evolution of the production rate depends on the
difference of the finishing and the starting stocks, thus any symmetric offset will be simply
ignored by the update scheme.

In conclusion, the evolution of the production rate will be exactly identical to the δ = 0
case. On the other hand, the safety stock evolves the same way as for δ = 0, apart from
the constant offset permanently superposed onto the starting and the finishing stocks.

Remark 2.1. The above argument justifies, that the presence of symmetric offsets in the
safety stocks does not remove the chain from the state of equilibrium if it is evolved by
the update scheme. However, PP1 removes the chain from the state of equilibrium in this
case.

3. Stability Analysis of the Supply Chain – The Origin of the Bullwhip Effect.
Upon a closer examination of Equation (7) we realize that formally it is equivalent to
the first-order accurate upwind discretization of the one-dimensional scalar advection
equation. A von Naumann type of stability analysis [16] of such schemes reveals, that
update scheme (7) is unstable for α > 0, i.e., the initial solution p0n is amplified without
bounds as k increases. This numerical instability is precisely a manifestation of the
bullwhip effect. Consequently, the bullwhip effect is an unavoidable, natural consequence
of PP1 with the choice of α > 0. The stability analysis also yields, that update scheme
(7) is stable if and only if

−1 ≤ α ≤ 0, (11)

thus, the bullwhip effect can be avoided by stabilizing the system with the appropriate
choice of α.

3.1. The meaning of negative value of α. We have just seen, that our update scheme
derived from PP1 can only be stable for non-positive values of α. However, the α < 0
case is meaningless in the context of PP1, since the size of the safety stock cannot have a
negative value. Additionally, Assumption 2.1 simply cannot be satisfied at n = 0 because
of the very same reason. Obviously, the starting and the finishing stocks during period 0
have to have a non-negative value, say S0:

s̄k0 = sk0 = S0. (12)

Compared with the value of sk0 = αd10 < 0 required by the satisfaction of Assumption
2.1, defining the state of initial equilibrium, the values of s̄k0 and sk0 contain the following
offset

δ = S0 + |α|d10, (13)

where the absolute sign is introduced to emphasis that δ > S0. According to the argument
at the end of Section 2.1, in this case our update scheme evolves the production rate as
Assumption 2.1 would be satisfied, while the safety stock will experience the permanent
offset δ. In conclusion, for an arbitrary initial stock our update scheme will result in a
stable evolution of both the production rate pkn and the safety stock that is equal to

skn = αpk−1
n + δ, (14)

where the offset is given by Equation (13).
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3.2. The boundedness of the production rate. Considering Equation (8) it is im-
mediate to observe, that our update scheme is not only stable, but is monotone as well
under constraint (11) in the sense of Spekreijse [17]. Indeed, the unknown production
rate at stage k+1 is a convex sum of the known values of the production rate at stage k:

pk+1
n =

N∑
m=1

γk
mp

k
m, (15)

where

γk
m ≥ 0 and

N∑
m=1

γk
m = 1, ∀k ∈ [1, 2, . . . , K]. (16)

As a consequence,
max
n,k

|pkn − pk0| ≤ max
n

|p0n − p00|, (17)

meaning, that the largest deviation of the production rate within the entire supply chain
does never exceed the largest deviation of the market demand from their respective initial
state. Thus, the production rate stays bounded independently on the size of the supply
chain and on the length of the considered temporal interval! In other terms, the bullwhip
effect has been completely eliminated at its root to obtain a stable supply chain.

3.3. A new, stable production plan. In the light of our results it is worth to formulate
a new production plan, which is free of the bullwhip effect. This plan guarantees the
stability of the entire supply chain regardless the number of stages and temporal intervals
considered.

Production plan 2 (PP2): During period n for all 0 < k ≤ K the production rate at
stage k is (1 + α)dkn − αdkn−1, where −1 ≤ α ≤ 0.

Remark 3.1. Note, that update scheme (8) was derived from PP1, while PP2 actually is
update scheme (8) with the choice of (11).

Remark 3.2. Observe that PP1 is based on an order-up-to philosophy for the safety stock,
where the target level follows the actual demand. On the contrary, PP2 is based on the
requirement of stability, order-up-to level is not considered.

Remark 3.3. PP2 implies, that the supply chain operates in a stable manner as long as
the production rate is kept between the last and the present observed demand at all its
stages, i.e.,

min(dkn−1, d
k
n) ≤ pkn ≤ max(dkn−1, d

k
n). (18)

3.4. The price of stability. Although the choice of PP2 yields a stable, bullwhip-free
supply chain, where orders, productions and safety stocks stay bounded, it has its limi-
tations. Inserting offset (13) into Equation (14) we obtain that if relation

dkn − d10 >
S0

|α|
(19)

holds, then the finishing stock at stage k during period n becomes negative. This feature,
that would never happen for the unstable choice of α = 1 in PP1, can be foreseen from
Remark 3.2. Indeed, PP2 does not enforce the replenishment of the safety stock, not even
when it becomes small. If the demand experienced at stage k deviates from the initial
market demand d10 with a larger extent than the threshold given by relation (19), the
safety stock becomes negative. In the considered model this feature translates to unfilled
demand during the given period. Clearly, by increasing the level of the initial safety stock
the scheme can handle larger variations of the demand.
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4. Numerical Results. In order to demonstrate the performance of the new production
plan PP2 proposed in the previous section, we perform two variants of the test case
presented in [14] for K = 5. In both cases, during period 0 the chain is situated in
an equilibrium. The market demands 100 items and all the stages of the supply chain
keep a safety stock of 100 items and maintain a production of 100 items per period.
This stationary state is perturbed by two different demand patterns investigated in the
following subsections.

4.1. Step profile. First, the stationary state is perturbed by a sudden drop of the market
demand to 95 items per period. With the choice of α = 1 for PP1 and α = −1 for PP2
we computed the production at all the stages for N = 6 periods. The largest deviation of
the production rate and the safety stock from their respective initial values are presented
in Table 1. The numbers indicate that the bullwhip effect is clearly induced by PP1. It
is worth to have a look at the production rates at the fifth stage, presented in Table 2.
At every odd period the production unit at stage 5 has to be closed, while at the second
period it has to produce 3.4 times the actual demand of the market. In contrast, the
production rate and the safety stock stays stable by our new production plan (PP2). Even
at the fifth stage it exhibits well balanced behavior as indicated by the data presented in
Table 2.

Table 1. Sudden drop of demand (step profile). The largest deviation of
the production rate and the safety stock from their respective initial values
for PP1 and PP2.

PP1 PP2

max
n,k

|pkn − pk0| 240% 5%

max
n,k

|skn − sk0| 140% 5%

Table 2. Sudden drop of demand (step profile). The production rate at
stage 5 for PP1 and PP2.

Periods 1 2 3 4 5 6

PP1 0 340 0 140 0 95
PP2 100 100 100 100 100 95

4.2. Random variation. Next, we investigate a realistic demand pattern, involving a
random variation with uniform distribution over interval [95, 105]. The stationary state
is perturbed by this random variation of the demand with an amplitude of 5%. We keep
on using the value of α = 1 for PP1 and α = −1 for PP2. The production rates and
the actual levels of the safety stocks are plotted on Figures 3 and 4, respectively, for two
randomly chosen subsequent periods n and n+1. The largest deviation of the production
rate and the safety stock from their respective initial values are presented in Table 3.
The production rates at the fifth stage are presented in Table 4. The results indicate the
presence of an even more pronounced bullwhip effect induced by PP1. It is noteworthy,
that the production rate reaches 4.7 times the market demand, while the level of the
safety stock is more than 5 times the value of the actual demand of the market. Just like
in the previous case, the production rate and the safety stock stays bounded by our new
production plan PP2.
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Table 3. Random variation of demand with uniform distribution. The
largest deviation of the production rate and the safety stock from their
respective initial values for PP1 and PP2.

PP1 PP2

max
n,k

|pkn − pk0| 368% 5%

max
n,k

|skn − sk0| 413% 5%

Table 4. Random variation of demand with uniform distribution. The
production rates at two subsequent periods are presented at stage 5 for PP1
and PP2.

Periods n n+ 1

PP1 468 0
PP2 99 98

Production Plan 1.

0 1 2 3 4 5
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0 1 2 3 4 5
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95

100
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110

Figure 3. Production rates inside aK = 5 stage supply chain for a random
market demand with uniform distribution over interval [95, 105]. Left:
results obtained by PP1. Right: results obtained by PP2. Thick solid lines
represent the range of demand variation. Dotted line with circles: values
at period n. Dashed line with triangles: values at period n+ 1.

5. Discussion and Conclusions. In this paper we investigated a particular model of
supply chains that is free of all the commonly accepted mechanisms responsible for the
induction of the bullwhip effect. Amongst others we excluded the Forrester effects [18],
i.e., the mechanisms of demand signal forecasting and non-zero lead time. For the sake
of simpler analysis most theoretical studies employ an order-up-to policy with a constant
target inventory level for the safety stock. Here we adopted a more realistic choice de-
signed for maintaining a safety stock proportional to the actually observed demand. The
anticipated benefit of this philosophy labelled by PP1 is clear: it intends to decrease the
cost of inventory holding by following the changes of the demand.
Buchmeister et al. [13, 14, 15] investigated this model by means of spread sheet simu-

lations. In order to understand the properties of the dynamic processes reported in these
experimental studies, we developed a mathematical model of supply chains operating in
discrete time. The goal is to study supply chain dynamics in general, and to investigate
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Figure 4. Safety stock at the members of a K = 5 stage supply chain
for a random market demand with uniform distribution over interval [95,
105]. Left: results obtained by PP1. Right: results obtained by PP2. Thick
solid lines represent the range of demand variation. Dotted line with circles:
values at period n. Dashed line with triangles: values at period n+ 1.

the stability property of the presented policy in particular. The method is conceptually
different from the popular control theoretic approach. The main difference is that we
build a discrete update scheme that drives the status of the whole supply chain within
the entire period-stage domain of interest, instead of using z-transform on the production
equations.

Our results implies, that the strategy of maintaining a variable target inventory level
depending on the actual demand properly serves the market. However, the policy is
inherently prone to the bullwhip effect, thus unavoidably induces erratic behaviour within
the entire supply chain. We presented a test case demonstrating, that at one period
the production rate is several times larger than the market demand itself, while in the
subsequent period the production has to be stopped completely. This undesired feature
leads to highly inefficient use of the production potential at one period, and expensive
forced capacities in another.

Upon detecting the very source of this bullwhip type of instability, we derived an
alternative production plan (PP2) focusing on the design concept of stability, rather than
on the principle of demand following target inventory. Our plan guarantees bounded
production rates and safety stock levels along the whole chain, where the magnitude of
the variations are bounded by the magnitude of the market demand’s oscillation. In order
to provide some insight into the underlying mechanism, we rewrite the RHS of update
scheme (8) in terms of the demand experienced at stage k as

pkn = (1 + α) dkn − αdkn−1, where − 1 ≤ α ≤ 0. (20)

This form of the update scheme clarifies that in PP2 the production rate is a convex
linear combination of the present and the last experienced demand. Thus, any production
rates satisfying relation (18) results in stable operation. Otherwise, the chain is deter-
mined to be unstable. Considering the value of α, there are three cases of interest, the
two limiting cases and the −1 < α < 0 case.

The α = 0 case. If α = 0, then pkn = dkn. Thus, stage k is not concerned with past
information. Its production strictly follows the demand experienced in the current period.
In other terms, all stages produce as much items as their current demand requires. This
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case corresponds to the so-called on the fly production, which, in principle does not require
a safety stock. However, the stages may still keep a stock, which stays at a constant level.
This scenario might appeal to highly responsive and flexible production units, where the
maintenance of a safety stock is not desired for some reason.

The α = 1 case. At the other end of the stability zone α = −1, so the production
becomes pkn = dkn−1. Stage k is not concerned with current information. Instead, it adjusts
its production capacity to match exactly the demand experienced in the previous period.
In this case all stages have to keep an inventory that will fluctuate in a stable manner.
However, if the amplitude of the demand fluctuation becomes too large as indicated by
relation (19), PP2 leads to negative safety stock that is translated to unfilled demands.

The 0 < α < 1 case. If 0 < α < 1, then the production at stage k is obtained as a
linear interpolation between dkn−1 and dkn.

The following question naturally emerges: what should be the initial level of the safety
stock for PP2 in a particular case? Consider a scenario when the stochastic variation of
the market demand is bounded by ∆ with probability

P
(
max

n
|d1n − d00| ≤ ∆

)
. (21)

Relation (19) directly implies that the safety stock stays non-negative (the market
demand can be fully served) with the very same probability of (21) if the initial safety
stock is chosen to be

S0 = ∆|α|. (22)

Nevertheless, if the demand is prone to slow variations with large amplitude on the long
run, the safety stock managed by PP2 will eventually need to be periodically updated.
In conclusion, PP1 has the ability to modify the target inventory by following the

changes of the market demand, however, it will unavoidably destabilize the whole chain.
On the other hand, while PP2 guarantees stable operation, it is prone to the inability to
serve the market if the demand is subject to variations with large amplitude.
In our future work we intend to investigate even deeper implications of this analytic

approach, and to present some case studies taken from actual market scenarios. Due
to apparent similarities between the two systems, recent results in the field of traffic
flow control [8, 19, 20] seem also worth to consider for the investigation of supply chain
dynamics.
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