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Abstract. In order to analyze uncertain phenomena in real world, the concept of fuzzy
random variables is widely employed in model building. In dealing with fuzzy data, de-
fuzzification plays a central role. In this paper, portfolio selection problems are dealt as
interval values. We calculate the expected values, variance and covariance by using the
estimated parameters of underlying probability distribution function. The estimated val-
ues enable us to build up a portfolio selection model with estimated parameters on the
basic of Markowitz’s mean-variance model. The result exemplified that we have different
choices of k which can decide the best expected return and less risk level in our model,
also that we can provide not only one choice of portfolio selection but also two or more
for decision makers.
Keywords: Portfolio selection, Optimization, Fuzzy probability distributions, Fuzzy
statistics and data analysis

1. Introduction. Portfolio selection problem has been well developed on the basis of a
mean-variance approach proposed by Markowitz [11, 12, 14], who combines probability
theory and optimization theory to model the behavior of the economic agents. The key
principle of the mean-variance model is to use the expected return of a portfolio as the
investment return and to use the expected variance of the portfolio as the investment
risk. Mean-variance portfolio selection problem has been studied by Sharpe [18], Merton
[13], Perold [16], Pang [15], Voros [21], Best [1, 2], and the others. In order to analyze
uncertain phenomena in real world, also research works used multivariate data analysis
and investigated fuzzy portfolio selection problems such as Wang et al. [29], Zhang et
al. [34], Tanaka and Guo [19, 20], Wang and Zhu [28], Lai et al. [8], Zhang and Wang
[31], Zhang et al. [32], Watada [24], Hasuike and Ishii [5, 6], Ramaswamy [17] and Leon et
al. [7]. Usually, the works did not consider any kind of probability distribution function
with fuzzy random variables. The objective of this paper is to combine the concept of
distribution function and fuzzy random variables with portfolio selection model.

In order to find the probability distribution function with continuous fuzzy data, we
have to take fuzzy statistics into consideration. Fundamental statistics, such as mean,
median and mode, are useful measurements in illustrating some characteristics of a sam-
ple distribution. More research has placed focus on the fuzzy statistical analysis and
applications in the social science fields, as Wu and Hwang [22] proposed fuzzy statistical
test to discuss the stationary of Taiwan short-term money demand function; Wu and
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Chen [25] identified a model structure through qualitative simulation; Casalino et al. [3],
Esogbue and Song [4], Wu [23], and Wu and Sun [26] demonstrated the concepts of fuzzy
statistics and applied them to social survey; Wu and Tseng [27] used fuzzy regression
method of coefficient estimation to analyze Taiwan monitoring index of economic. All
above-mentioned studies dealt with problems by means of central point values. Lin et
al. [9] defined a new weight function of fuzzy numbers using central point and radius, so
as to more effectively observe original fuzzy data. Moreover, Lin et al. [10] also propose a
method to recognize the underlying distribution function using central point and radius.
It gives us more information about original fuzzy data.
The objective of this paper is to define a portfolio selection model with interval values

and reduce the calculation load in building optimization model on the basis of the defini-
tion of mean-variance model [11]. In the first step, we need to find out fuzzy probability
distribution function (it means distribution function with fuzzy data) for each return.
When we find out the fuzzy distribution function of each return, we can easily evaluate
the expected return. Moreover, we can calculate the variance, too. The values enable us
to define a portfolio selection model with interval values.
The rest of the paper consists of the following. Section 2 gives the brief review of

related studies. The main method is described in Section 3. Section 4 illustrates some
empirical studies to show that portfolio selection model with interval values in our model
can get large return than Zhang’s method. Finally, the concluding remarks and the topics
of further studies are summarized in Section 5.

2. Problem Statement and Preliminaries.

Definition 2.1. An interval value is denoted as A = [a, b] with central point o =
b+ a

2

and radius l =
b− a

2
. We use the notation as A ≡ (o, l) without any confusion.

Let us recall that Markowitz’s mean-variance model is based on probability distribution
where uncertainty is equated with randomness [11, 12, 14]. That is, the rate of return on
the ith asset, ri, will be regarded as a random variable.
Consider a market with n risky assets. An investor’s position in this market is described

by means of a portfolio x = [x1, x2, · · · , xn]
′, where the ith component xi represents

the proportion invested in asset i. The return vector on portfolio x is described by
r = [r1, r2, · · · , rn]′, where ri represents the return rate of asset i. In conventional mean-
variance methodology for portfolio selection, ri is regarded as a random variable, ∀ i =
1, 2, · · · , n. Assume r̄ = [r̄1, r̄2, · · · , r̄n]′ and V = [σij]n×n be the expected return vector
and covariance matrix, respectively [28]. The return R on the portfolio x is given by
R =

∑n
i=1 rixi. Set I = [1, 1, · · · , 1]′. The objective of the investor is to choose a

portfolio that maximizes the return on the investment subject to some constraints on the
risk of the investment. A mean-variance model for portfolio selection can be formulated
mathematically as:

max r̄x

s.t.
√
x′Vx ≤ σ

I′x ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

 , (1)

where σ (σ ≥ 0) represents the tolerated risk level.
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We rewrite Formula (1) in the following simple mathematical programming problem:

max E

(
n∑

i=1

rixi

)

min V ar

(
n∑

i=1

rixi

)
s.t.

n∑
i=1

xi ≤ 1

xi ≥ 0 ∀i = 1, 2, · · · , n


. (2)

We need to solve the programming problem as follows:

max
n∑

i=1

E(ri)xi

min x′Vx

s.t.
n∑

i=1

xi = 1

xi ≥ 0 ∀i = 1, 2, · · · , n


, (3)

where x′Vx =
∑n

i=1 σ
2
iix

2
i +

∑n
j=1

∑n
i=1,i 6=j σijxixj, ai and aj are distributed to some

distribution functions. Let σij = cov(ai, aj) be covariance.
In this view, if we can know the expected value, variance and covariance of each ri,

∀i = 1, 2, · · · , n, then we can easily solve the portfolio selection model in Formula (3).

3. Fuzzy Portfolio Selection Model with Interval Values. In this section, let us
solve a portfolio selection problem with fuzzy numbers (interval data). Suppose that
there are n distinct tradable assets in the market. The terminal rate of return for asset i,
denoted as ri, is assumed as a fuzzy random variable. By the widely accepted definition,
the expectation of a fuzzy random variable is a fuzzy variable. We give the following
combination to express the total fuzzy return on a portfolio R(x).

Let Ai be a fuzzy continuous random variable on the probability space (Ω, F, P ). We
define the fuzzy expected return and fuzzy expected variance in the following.

Definition 3.1. Fuzzy Expected Return
If Ai ≡ (oi, li) is interval data, ∀i = 1, 2, · · · , n, then the fuzzy expected return of Ai is

defined as

E(R(x)) =
n∑

i=1

E(Ai)xi =

(
n∑

i=1

E(oi)xi,
n∑

i=1

E(li)xi

)
.

Definition 3.2. Fuzzy Expected Variance
If Ai ≡ (oi, li) is interval data, ∀i = 1, 2, · · · , n, then the fuzzy expected variance of Ai

is defined as

var(R(x)) = var

(
n∑

i=1

Aixi

)
=

(
var

(
n∑

i=1

oixi

)
, var

(
n∑

i=1

lixi

))
,

where var (
∑n

i=1 oixi) =
∑n

i=1 σ
2
oi
x2
i +
∑n

j=1

∑n
i=1,i 6=j cov(oi, oj)xixj and var (

∑n
i=1 lixi) =∑n

i=1 σ
2
li
x2
i +

∑n
j=1

∑n
i=1,i6=j cov(li, lj)xixj, ∀i, j = 1, 2, · · · , n.

When we know the probability distribution function of oi and li, we can easily find out
the fuzzy expected return and fuzzy expected variance. Moreover, we can solve Formula
(3). Now, let us give the portfolio selection model with interval values as follows.
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Definition 3.3. Portfolio Selection Model with Interval Values
If Ai ≡ (oi, li) is interval value, ∀i = 1, 2, · · · , n, and we do some simulation for oi and

li, then we have probability distribution function of oi and li, ∀i = 1, 2, · · · , n. We say
that oi distributes to the distribution function Doi, denoted as oi ∼ Doi, and li distributes
to the distribution function Dli, denoted as li ∼ Dli. Our goal is to solve the following
optimization model.

max
n∑

i=1

E(oi)xi

min x′Vox

s.t.
n∑

i=1

xi = 1

xi ≥ 0 ∀i = 1, 2, · · · , n


, (4)

and

min
n∑

i=1

E(li)xi

min x′Vlx

s.t.
n∑

i=1

xi = 1

xi ≥ 0 ∀i = 1, 2, · · · , n


, (5)

where Vo = [cov(oi, oj)]n×n and Vl = [cov(li, lj)]n×n, ∀i, j = 1, 2, · · · , n.

When we find out the optimal solution for the model of (4) and (5), we can get the
optimal solution vector x∗ = [o∗, l∗]′, where o∗ is the optimal solution for model in (4)
and l∗ is the optimal solution for model in (5).
Moreover, when we have the solution x∗ = [o∗, l∗]′, we can get the total expected return

E(R(x∗)) =

(
n∑

i=1

E(oi)o
∗,

n∑
i=1

E(li)l
∗

)
.

Now, we give the procedure of solving portfolio selection model with interval values in
the following.

Procedure of Solving Portfolio Selection Model with Interval Values:
Step 1. Collect the interval data.
Step 2. Compute oi and li, ∀i = 1, 2, · · · , n.
Step 3. Identify the underlying distribution by simulating oi and li, ∀i = 1, 2, · · · , n.
Step 4. Calculate the parameters for the expected value, variance and covariance in the
model of (4) and (5).
Step 5. Solve the optimization model of (4) and (5) and get the optimal solution o∗ and
l∗.
Step 6. Set the x∗ into fuzzy vector.
Step 7. Compute the possibility distribution of total return R(x∗).
In order to illustrate our proposed effective meanings and approaches of the efficient

portfolios, we exemplify a real portfolio selection problem with interval values in the
following section.

4. Application.

Example 4.1. We select five exchange currencies (USD, EUR, AUD, GBP and CHF)
from Bank of Tokyo-Mitsubishi. Original data come from every day’s closed prices from
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January 2010 to November 2010. There are 224 interval values in this period [a, b], where
a is the minimum price and b is the maximum price in one day. We give some interval
values in Table 1.

Table 1. Interval values of each exchange currency

[a, b]
USD [83.40, 84.30] [83.80, 84.40] · · · [83.01, 83.54]
EUR [108.46, 110.01] [109.98, 112.00] · · · [111.96, 113.65]
AUD [79.83, 80.82] [80.52, 81.65] · · · [81.03, 82.51]
GBP [129.54, 130.47] [130.74, 131.74] · · · [132.69, 133.48]
CHF [83.32, 84.32] [83.83, 84.44] · · · [84.27, 85.12]

First, we calculate the central point o =
a+ b

2
and radius l =

b− a

2
. We give the data

in Table 2.

Table 2. Central point and radius of each interval values [a, b]

(o, l)
USD (83.85, 0.45) (84.10, 0.30) · · · (83.275, 0.265)
EUR (109.235, 0.775) (100.99, 1.01) · · · (112.805, 0.845)
AUD (80.325, 0.495) (81.085, 0.565) · · · (81.77, 0.74)
GBP (130.005, 0.465) (131.24, 0.50) · · · (133.085, 0.395)
CHF (83.82, 0.5) (84.135, 0.305) · · · (84.695, 0.425)

We simulate the values of o and l respectively. We get the probability distributions o
and l respectively in exchange currency. We give the result in Table 3.

Table 3. Parameters of probability distribution functions for interval values

o l
USD W (29.91, 89.73) W (3.07, 0.51)
EUR Γ(270.87, 0.43) Γ(7.38, 0.09)
AUD Γ(563.13, 0.14) Γ(4.99, 0.11)
GBP Γ(601.20, 0.23) Γ(7.37, 0.10)
CHF N(83.95, 2.632) Γ(8.97, 0.05)

When we know the distribution function, we use moment method estimator (MME)
to estimate our parameter in each distribution function. We can find out the expected
values and variances by using those parameters. Table 4 shows the results.

Table 4. Expected value and variance for interval values

o1 o2 o3 o4 o5
Expected value 88.09 116.47 78.84 138.28 83.95

Variance 13.62 50.08 11.04 31.80 6.92
l1 l2 l3 l4 l5

Expected value 0.46 0.66 0.55 0.74 0.45
Variance 0.03 0.06 0.06 0.07 0.02
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Moreover, we give the values of Vo = [cov(oi, oj)]5×5 and Vl = [cov(li, lj)]5×5, ∀i, j =
1, 2, · · · , 5 are in the following.

Vo =


13.62 0.92 0.04 0.77 0.32
0.92 50.08 −1.15 1.83 0.33
0.04 −1.15 11.04 0.05 −0.64
0.77 1.83 0.05 31.80 −0.48
0.32 0.33 −0.64 −0.48 6.92


and

Vl =


0.0257 −0.0004 −0.0008 0.0011 0.0001

−0.0004 0.0602 0.0019 0.0029 −0.0012
−0.0008 0.0019 0.0625 0.0006 −0.0004
0.0011 0.0029 0.0006 0.0661 −0.0020
0.0001 −0.0012 −0.0004 −0.0020 0.0236

 .

Now, we have all the data we need in model (4) and (5). We rewrite our model with
estimated parameters as follows.

max 88.09x1 + 116.47x2 + 78.84x3 + 138.28x4 + 83.95x5

min 13.62x2
1 + 50.08x2

2 + 11.04x2
3 + 31.80x2

4 + 6.92x2
5

+2(0.92x1x2 + 0.04x1x3 + 0.77x1x4 + 0.32x1x5 − 1.15x2x3

+1.83x2x4 + 0.33x2x5 + 0.05x3x4 − 0.64x3x5 − 0.48x4x5)
s.t. x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0 ∀i = 1, 2, · · · , n


, (6)

and

min 0.46x1 + 0.66x2 + 0.55x3 + 0.74x4 + 0.45x5

min 0.03x2
1 + 0.06x2

2 + 0.06x2
3 + 0.07x2

4 + 0.02x2
5 + 2(−0.0004x1x2

−0.0008x1x3 + 0.0011x1x4 + 0.0001x1x5 + 0.0019x2x3 + 0.0029x2x4

−0.0012x2x5 + 0.0006x3x4 − 0.0004x3x5 − 0.002x4x5)
s.t. x1 + x2 + x3 + x4 + x5 = 1

xi ≥ 0 ∀i = 1, 2, · · · , n


. (7)

In fact, that it is not easy to solve the model (6) and (7). In order to reduce the
calculation load, we simplify the minimum goal in (6) and (7) as follows.
We set

G1 = min 13.62x2
1 + 50.08x2

2 + 11.04x2
3 + 31.80x2

4 + 6.92x2
5

+2(0.92x1x2 + 0.04x1x3 + 0.77x1x4 + 0.32x1x5 − 1.15x2x3

+1.83x2x4 + 0.33x2x5 + 0.05x3x4 − 0.64x3x5 − 0.48x4x5).

Hence, we have

G1 ≤ (
√
13.62x1 +

√
50.08x2 +

√
11.04x3 +

√
31.80x4 +

√
6.92x5)

2 ≤ k2
1,

where k1 (k1 ≥ 0) represents the tolerated risk level.
It implies that 3.69x1 + 7.08x2 + 3.22x3 + 5.64x4 + 2.63x5 ≤ k1.
Let

G2 = min 0.03x2
1 + 0.06x2

2 + 0.06x2
3 + 0.07x2

4 + 0.02x2
5 + 2(−0.0004x1x2

−0.0008x1x3 + 0.0011x1x4 + 0.0001x1x5 + 0.0019x2x3 + 0.0029x2x4

−0.0012x2x5 + 0.0006x3x4 − 0.0004x3x5 − 0.002x4x5).

Hence, we have

G2 ≤ (
√
0.03x1 +

√
0.06x2 +

√
0.06x3 +

√
0.07x4 +

√
0.02x5)

2 ≤ k2
2,

where k2 (k2 ≥ 0) represents the tolerated risk level.
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It implies that 0.17x1 + 0.24x2 + 0.24x3 + 0.26x4 + 0.14x5 ≤ k2.
Therefore, we rewrite model (6) and (7) in the following.

max 88.09x1 + 116.47x2 + 78.84x3 + 138.28x4 + 83.95x5

s.t. 3.69x1 + 7.08x2 + 3.22x3 + 5.64x4 + 2.63x5 ≤ k1
x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

 , (8)

and

min 0.46x1 + 0.66x2 + 0.55x3 + 0.74x4 + 0.45x5

s.t. 0.17x1 + 0.24x2 + 0.24x3 + 0.26x4 + 0.14x5 ≤ k2
x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

 . (9)

We solve the model (8) and (9) by using GP-IGP (Linear and Integer Goal Program-
ming). The result depends on the selection of ki, i = 1, 2. Table 5 shows the result of
model (8) and Table 6 shows the result of model (9).

Table 5. Optimal solution of o∗ for different conditions and the result of parameters

k1 0.5 1 1.5 2 2.5 3∑5
i=1 xi 0.19 0.38 0.57 0.76 0.95 1
o∗ [0, 0, 0, 0, .19]′ [0, 0, 0, 0, .38]′ [0, 0, 0, 0, .57]′ [0, 0, 0, 0, .76]′ [0, 0, 0, 0, .95]′ [0, 0, 0, .12, .88]′

max 15.96 31.92 47.88 63.84 79.80 90.63

k1 3.5 4 4.5 5 5.5 6∑5
i=1 xi 1 1 1 1 1 1
o∗ [0, 0, 0, .29, .71]′ [0, 0, 0, .46, .54]′ [0, 0, 0, .62, .38]′ [0, 0, 0, .79, .21]′ [0, 0, 0, .95, .05]′ [0, 0, 0, 1, 0]′

max 99.65 108.68 117.70 126.73 135.75 138.28

Table 6. Optimal solution of l∗ for different conditions and the result of parameters

k2 0.5 1 1.5 2 2.5 3∑5
i=1 xi 0.19 0.38 0.57 0.76 0.95 1
l∗ [0, 0, 0, 0, .19]′ [0, 0, 0, 0, .38]′ [0, 0, 0, 0, .57]′ [0, 0, 0, 0, .76]′ [0, 0, 0, 0, .95]′ [0, 0, 0, 0, 1]′

max 0.09 0.17 0.26 0.34 0.43 0.45

k2 3.5 4 4.5 5 5.5 6∑5
i=1 xi 1 1 1 1 1 1
l∗ [0, 0, 0, 0, 1]′ [0, 0, 0, 0, 1]′ [0, 0, 0, 0, 1]′ [0, 0, 0, 0, 1]′ [0, 0, 0, 0, 1]′ [0, 0, 0, 0, 1]′

max 0.45 0.45 0.45 0.45 0.45 0.45

In Table 5, we can see that when we choose largest k1, we will get the largest return.
Moreover, we get the same maximum 138.28 when k1 ≥ 6 and

∑5
i=1 xi = 1. In Table 6,

we can see that when
∑5

i=1 xi = 1 and k2 ≥ 3, we get the same minimum 0.45. Suppose

that we choose
∑5

i=1 xi = 1 and k1 = k2 = 6, then the optimal solution of model (8) is
o∗ = [0, 0, 0, 1, 0]′ and the optimal solution of model (9) is l∗ = [0, 0, 0, 0, 1]′.

Hence, we have our return of fuzzy vector

x∗ = [o∗, l∗]′ =

[
0 0 0 1 0
0 0 0 0 1

]
. (10)
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Moreover, we get the total expected return

E(R(x∗)) =

(
n∑

i=1

E(oi)o
∗,

n∑
i=1

E(li)l
∗

)
= (138.28, 0.45). (11)

The interval value of the total expected return resulted in [137.83, 138.73].
In the next example, let us calculate the same problem with another model proposed

by W. G. Zhang [33].

Example 4.2. In [33], Zhang uses the concept with γ-level to deal with optimization
model. He also gives an additional condition by using upper and lower bounds in the
model proposed by Markowitz. We applied his model to solve our problem and gave the
same upper bound and lower bound of his example.

First, we calculated the expected value of 224 interval fuzzy data by means of fuzzy set
theory [30]. We obtained 5 fuzzy interval numbers as follows: USD = r1 = (87.64, 88.57),
EUR = r2 = (116.07, 117.41), AUD = r3 = (79.66, 80.76), GBP = r4 = (135.12, 136.58)
and CHF = r5 = (83.48, 84.42). The lower bound and upper bounds of xi are given
by [l1, l2, l3, l4, l5] = [0.1, 0.1, 0.1, 0.1, 0.1] and [u1, u2, u3, u4, u5] = [0.4, 0.4, 0.4, 0.5, 0.6],
respectively.
Hence, the lower possibilistic mean-standard deviation model is

max 87.64x1 + 116.07x2 + 79.66x3 + 135.12x4 + 83.48x5

s.t. x1 + x2 + x3 + x4 + x5 ≤ 1
ui ≥ xi ≥ li ∀i = 1, 2, · · · , n

 , (12)

and then the upper possibilistic mean-standard deviation model is

max 88.57x1 + 117.41x2 + 80.76x3 + 136.58x4 + 84.42x5

s.t. x1 + x2 + x3 + x4 + x5 ≤ 1
ui ≥ xi ≥ li ∀i = 1, 2, · · · , n

 . (13)

Tables 7 and 8 show the result, where L∗ denotes as the optimal solution in model (12)
and U∗ denotes as the optimal solution in model (13).

Table 7. Optimal solution of L∗ for different conditions and the result of parameters∑5
i=1 xi 0.51 0.58 0.65 0.72
L∗ [.10, .10, .10, .11, .10]′ [.10, .10, .10, .18, .10]′ [.10, .10, .10, .25, .10]′ [.10, .10, .10, .32, .10]′

max 51.55 61.01 70.46 79.92∑5
i=1 xi 0.79 0.87 0.94 1
L∗ [.10, .10, .10, .39, .10]′ [.10, .10, .10, .47, .10]′ [.10, .14, .10, .50, .10]′ [.10, .20, .10, .50, .10]′

max 89.38 100.19 108.89 115.85

Table 8. Optimal solution of U∗ for different conditions and the result of parameters∑5
i=1 xi 0.51 0.58 0.65 0.72
L∗ [.10, .10, .10, .11, .10]′ [.10, .10, .10, .18, .10]′ [.10, .10, .10, .25, .10]′ [.10, .10, .10, .32, .10]′

max 52.14 61.70 71.26 80.82∑5
i=1 xi 0.79 0.87 0.94 1
L∗ [.10, .10, .10, .39, .10]′ [.10, .10, .10, .47, .10]′ [.10, .14, .10, .50, .10]′ [.10, .20, .10, .50, .10]′

max 90.38 101.31 110.10 117.15
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From Tables 7 and 8, we can see that when we choose
∑5

i=1 xi = 1, the optimal solution

of model (12) is L∗ = [0.1, 0.2, 0.1, 0.5, 0.1]. When we choose
∑5

i=1 xi = 1, the optimal
solution of model (13) is U∗ = [0.1, 0.2, 0.1, 0.5, 0.1]. Hence, we have expected return with
fuzzy vector as follows:

x∗∗ = [L∗,U∗]′ =

[
0.1 0.2 0.1 0.5 0.1
0.1 0.2 0.1 0.5 0.1

]
. (14)

Moreover, we get the total expected return

E(R(x∗∗)) =

(
n∑

i=1

E(Li)L
∗,

n∑
i=1

E(Ui)U
∗

)
= (115.85, 117.15), (15)

i.e., the interval value of the total expected return resulted in [115.85, 117.15].

5. Conclusions. In this paper, we proposed a method to estimate the probability distri-
bution function with interval values. When we know the probability distribution function
with interval values, we can calculate the expected value, variance and covariance by us-
ing the estimated parameters of the underlying distribution function. Therefore, we can
easily build up and solve the portfolio selection model with interval values on the basis
of the Markowitz’s mean-variance model. We gave an empirical study by using portfolio
selection model wit interval values in Example 4.1 and used the model proposed by W.
G. Zhang [33] in Example 4.2. We can see that it is more meaningful to use our model to
estimate the maximum return because of considering more information, which comes from
original fuzzy data. We have different choices of k which can decide the best expected
return and less risk level in our model. Through this method, we also can provide not
only one choice of portfolio selection but also two or more for decision makers.

We have further points to improve in the future as follows:

1. In this paper, we just use 4 underlying probability distribution functions in industry
to estimate the parameters. We can do more estimation with other underlying
probability distribution functions and compare which one gives better results in our
fuzzy portfolio selection problem.

2. Moreover, if we can get the triangular fuzzy numbers or trapezoid fuzzy numbers, it
will be good for us to examine fuzzy portfolio selection model which we proposed is
easily using for decision makers.
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