
International Journal of Innovative
Computing, Information and Control ICIC International c©2012 ISSN 1349-4198
Volume 8, Number 7(B), July 2012 pp. 5265–5275

FAULT-TOLERANT EXECUTION PLANNING FOR COLLABORATIVE
BUSINESS PROCESSES BASED ON GENETIC ALGORITHMS

Jeyeon Oh1, Nam Wook Cho2,∗, Hoontae Kim3 and Suk-Ho Kang4

1Research Center
Hankook Delcam Ltd.

Guro 3-dong, Guro-gu, Seoul 152-768, South Korea
jy@delcam.co.kr

2Department of Industrial and Information Systems Engineering
Seoul National University of Science and Technology

172 Gongreung 2-dong, Nowon-gu, Seoul 139-743, South Korea
∗Corresponding author: nwcho@seoultech.ac.kr

3Department of Industrial and Management Engineering
Daejin University

1007 Hoguk-ro, Pocheon-si, Gyounggi-do 487-711, South Korea
hoontae@daejin.ac.kr

4Department of Industrial Engineering
Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul 151-744, South Korea
shkang@snu.ac.kr

Received March 2011; revised July 2011

Abstract. In the present study, we developed a method that provides, while minimizing
costs, guaranteed-reliable execution plans for collaborative business processes conducted
via web services. To that end, physical- and time-redundancy techniques are utilized and
dynamic modifications of execution plan are provided. In order to address the dynamic
execution planning problem, known to be NP-hard, we also developed a Genetic Algorithm
(GA), the effectiveness of which was demonstrated through a set of experiments. Specifi-
cally, the GA was shown to be capable of providing near-optimal solutions in polynomial
time. The main contribution of this paper is the more general execution planning method
developed in the present study. While previous research assumed that the execution cost,
time, and reliability of web services are the same, we relaxed that assumption. We expect
that this will facilitate the application of our method in practice.
Keywords: Collaborative business process, Quality of service, Web service, Fault-
tolerance, Genetic algorithm

1. Introduction. A collaborative business process often is executed not only by internal
processes but also via external web services [7,10-12]. Collaborating with a number of out-
side partners through web services requires sophisticated management of QoS (Quality of
Service) aspects such as execution time, cost, reliability, availability, and others. Among
the QoS aspects of a collaborative business process, reliable process execution has become
more important [10]. For example, for a healthcare service process in which a number
of partners collaborate through web services, reliable execution must be guaranteed. Al-
though web service selection methods can be applied to web service QoS management,
they do not guarantee reliable execution.

For the purposes of composite web service dependability [5], this paper presents a
methodology that provides for dynamic execution plans at run-time. Previous studies

5265



5266 J. OH, N. W. CHO, H. KIM AND S.-H. KANG

on web service dependability have sought to achieve fault-tolerant service provision by
means of either exception handling through compensation [8,13,17] or physical redun-
dancy [3,4,14,18]. Dependability was achieved to some extent, but only by adapting
fault-tolerance to existing applications.
Laranjeiro [6] and Salatge [15] have dealt with fault-tolerance of composite web services.

They relied mainly on web service replication, wherein a service provider can replicate the
same web services from multiple servers. However, their fault-tolerant web composition
method’s application is limited, since they ignored cost and time constraints.
In our previous paper [10], we presented a dynamic execution planning approach that

incorporates failure masking by redundancy for reliable execution of collaborative busi-
ness processes. This approach, notwithstanding its contributions, has a limitation, in
that it assumes that the execution cost, time, and reliability of web services are the same.
Since it is more general and practical to assume that different web services have different
characteristics, the execution planning problem needs to be addressed within that spe-
cific context. In this paper, we provide a methodology for reliable execution of business
processes in a collaborative environment wherein an organization executes its processes
through collaboration with outside partners via web services. The problem description
and formulation are presented, and a Genetic Algorithm (GA) approach is developed
to address the problem. Finally, a set of experiments is conducted to demonstrate the
effectiveness of the proposed method.

2. Fault-Tolerance Model for Collaborative Processes. In this section, a fault-
tolerant execution planning problem is defined and its formulation is presented.

2.1. Problem description. Let us suppose collaborative process execution of a sequenti-
al-flow business process composed of N activities, as illustrated in Figure 1. The reliability
of the process is estimated to be

∏
ri [1], where 0 ≤ ri ≤ 1 is the reliability of activity

Ai. To complete the collaborative process, each activity can be executed by web services
from inside or outside an organization [10].
In general, the management of a collaborative process is controlled by multiple workflow

engines [2,9], which requires complicated and sophisticated control of process execution.
For the simplicity of our process execution model, rather than dealing with multiple work-
flow engines, let us suppose that a business process is executed by a single organization in
a collaborative environment in which its execution relies on collaboration with partners
outside of the organization.

Figure 1. Sequential-flow business process

The reliability of an activity is often less than 1 and, therefore, reliable completion of the
entire process is not always guaranteed. Thus, this study aims to develop a fault-tolerance
model for collaborative processes that guarantees successful completion. Of course, a web
service selection problem can be utilized to satisfy the reliability constraint of the process.
The web service selection problem, however, neglects failures of web services; for example,
if just one service fails, the entire process instance can fail [10]. Thus, web service selection
often fails to provide for “reliable execution”.
Before discussing our fault-tolerance model in detail, it is necessary to define the term

“web service failure” as included in our model. Five types of web service failures can be
identified [16]. They include Crash Failure, Omission Failure, Timing Failure, Response



FAULT-TOLERANT EXECUTION PLANNING 5267

Failure, and Byzantine Failure. Note that neither Response Failure nor Byzantine Failure
is considered in our model.

In this paper, to provide more reliable execution of a collaborative process even in
cases of web service failures, we propose a fault-tolerant model that dynamically modifies
a web service execution plan. Two types of redundancy are considered in our model: time
redundancy and physical redundancy. The time-redundancy method re-executes a web
service in the case of a failure. Whereas it is a relatively simple method, its application to
a collaborative process involving a due date can be limited, especially for a transactional
process in which the failure of one service is correlated with other, subsequent activities
[10]. By contrast, the physical-redundancy method utilizes extra services to render an
activity fault-tolerant. Despite the effectiveness of this method, it incurs additional costs
by requesting extra services. Therefore, in the present study, we employed combinations
of time and physical redundancy to find the optimal execution plan for a process involving
a due date.

Although the use of redundancy can greatly increase the reliability of a process, it is still
insufficient to deal with the dynamics of web service execution. An original plan, no matter
how optimized it has been, needs to be modified as a process is being executed. Therefore,
in addition to redundancy, our proposed approach modifies an original execution plan at
run-time. Figure 2 schematizes an original execution plan for a collaborative process
composed of N activities. For example, for reliable execution of an activity A1, the plan
is supposed to request eight web services (ws1, ws8, ws3, ws12, ws7, ws14, ws21, ws51)
by combining time and physical redundancies. Note that the eight web services are not
requested simultaneously. Rather, by dividing the execution of services into three trials,
the system offers reliable execution of A1 at minimum cost [10]. However, if one of the
services in the first or second trial completes successfully, the remaining plan needs to be
adjusted at run-time. Suppose that ws12 completes successfully in the second trial of A1,
as illustrated in Figure 3, and that the third trial for A1 in the original execution plan
becomes unnecessary; thus, the execution of the services ws14, ws21, ws51 will be excluded
from the new plan. Accordingly, the original plan should be re-optimized based on the
current situation, shown in Figure 3.

The use of redundancy and dynamic modification of an execution plan are our main
strategies for fault-tolerant execution planning of collaborative business processes. The
challenge is to provide an optimal plan for reliable execution at minimal cost, which plan
is to be modified during run-time.

2.2. Formulation. This section provides a detailed formulation of our approach.

Figure 2. Execution planning with redundancies



5268 J. OH, N. W. CHO, H. KIM AND S.-H. KANG

Figure 3. Modification of execution plan

Nomenclature
Ai ith activity of a process
cik execution cost of a web service k for Ai

tik execution time of a web service k for Ai

λik probability of successful completion (reliability) of a web service k for Ai

xi decision variable that indicates the number of trials (time redundancy) for Ai

yijk binary decision variable that indicates a web service k is executed on the jth
trial for Ai

TD time-to-deadline of the process
P penalty rate charged per time beyond the deadline
R reward rate awarded per saved time to the deadline
In our previous paper [10], it was assumed that the time, cost, and reliability of web

services are the same. However, this assumption can be far from the reality, as different
web services have different characteristics. Therefore, in our new model, each web service
has its own time, cost, and reliability.
Let us assume that there are a sufficient number of vendors that provide web services

for execution of an activity, and that an arbitrary web service k for activity Ai has its
execution cost cik, time tik, and probability of successful completion λik, where 0 ≤ λik <
1. Let TD denote the time-to-deadline of the process, P the penalty rate charged per
time beyond the deadline and R the reward rate awarded per saved time to the deadline.
The total cost of a process execution plan is composed of two parts: execution cost and
penalty/reward.

Total Cost = Execution Cost+ (Penalty or Reward)

Execution cost is incurred by requests of web services; that is, requesting multiple web
services would increase the execution cost but provide better reliability. In addition to
the execution cost, it is assumed that a penalty is charged if a plan misses a deadline and,
conversely, a reward is given if a plan completes its execution before a deadline. Penalty
and reward were introduced to facilitate on-time delivery of business processes. Let ECi

denote the expected execution cost of activity i, and ETi the expected execution time of



FAULT-TOLERANT EXECUTION PLANNING 5269

activity i. Then, the total cost of the process is represented as

E(Total Cost) =
N∑
i=1

ECi + P ·max

{
0,

N∑
i=1

ETi − TD

}

+R ·min

{
0,

N∑
i=1

ETi − TD

}
.

(1)

Since our model assumes that different web services have different cost, time, and
reliability, in addition to the number of requested web services for each activity, the
execution plan also needs to determine which web services should be requested, from
available vendors, for the activity. Therefore, the decision variables include xi, which
indicates the number of trials for Ai, and a binary variable yijk that indicates that a
web service k is executed on the jth trial for Ai. Let p

s
ij and poij denote the probability of

success and occurrence of the jth trial for Ai, respectively. Then, p
s
ij and poij are calculated

as

poij =

j−1∏
l=1

∏
k

(1− λikyilk) and psij = poij

(
1−

∏
k

(1− λikyijk)

)
. (2)

Therefore, the expected cost (ECi) and time (ETi) for Ai can be obtained as follows:

ECi =

xi∑
j=1

poij

(∑
k

cikyijk

)
. (3)

ETi =

xi∑
j=1

[
psij

j∑
l=1

maxk{tikyilk}

]
. (4)

By plugging Equations (3) and (4) into (1), the execution planning problem is formu-
lated as follows:

Minimize:
N∑
i=1

xi∑
j=1

poij

(∑
k

cikyijk

)
+ P ·max

{
0,

N∑
i=1

xi∑
j=1

[
psij

j∑
l=1

maxk{tikyilk}

]
− TD

}

+R ·min

{
0,

N∑
i=1

xi∑
j=1

[
psij

j∑
l=1

maxk{tikyilk}

]
− TD

}
(5)

Subject to:
xi∏
j=1

∏
k

(1− λikyijk) ≤ ε, for every i.

yijk = 0 or 1, for every i, j, and k.

Note that to avoid generating an infinite number of services for an activity, we addi-
tionally assume that an activity does not fail if its probability of successful completion
exceeds a threshold, (1− ε), where ε, 0 < ε < 1, is an arbitrarily small number.

Oh et al. [10] showed that a well-known Knapsack problem can be transformed into a
special case of a simple execution planning problem where the cost, time, and reliability
of web services are the same and it can be deduced that the planning problem is NP-hard.
And, as our problem presented in Equation (5) can be reduced to the simple execution
planning problem, it also can be deduced that our problem is NP-hard. In the next section,
a Genetic Algorithm (GA) is provided to address the execution planning problem.



5270 J. OH, N. W. CHO, H. KIM AND S.-H. KANG

3. Genetic Algorithm (GA) for the Execution Planning Problem. To allow the
GA to search for a solution to our problem, we first need to encode the problem with a
suitable genome. In our case, the genome is represented by a matrix set for which the
number of matrices is equal to the number of activities. The matrix in our GA represents
an execution plan for the corresponding activity. In each matrix, a row represents a trial
for an activity, and a column indicates a web service provider. Cell(i, j) = 1 if a service
for the ith trial is requested of the jth service provider; Cell(i, j) = 0, otherwise. Figure
4 illustrates the genome encoding scheme.

Figure 4. Genome encoding

The generation procedure for an initial population is as follows:

• The number of service requests for each trial has to be at least one; the number of
web service requests for each activity has to be at most one. For each row (i.e., trial),
a column (i.e., web service) is randomly selected from unselected columns, and then
the cell value is set to 1. Note that the sum of a row is at least one, which means
that at least one service should be selected from “available” web services for each
trial.

• Select a column for which its sum is 0, randomly select cells in the column, and
set the value to 1 until the success rate of an activity is greater than the threshold,
(1−ε). Note that the success rate of an activity has to be greater than the threshold.

The objective function of Equation (5), defined in Section 2, is used as a fitness function.
This function represents the expected total cost of a process execution plan, which cost
is composed of two parts: execution cost and penalty/reward.
In the proposed GA, the binary tournament selection mechanism is applied as a selection

operator. In this scheme, two individuals are randomly chosen, and that the one which
represents the better solution is selected as the first parent. To obtain the second parent,
the procedure is repeated.
In our GA, two crossover operators are used. The first crossover operator, called

Strategy-Interchange Crossover (SIC), interchanges two matrixes (i.e., two execution
plans) for the selected activity, as shown in Figure 5. As a result of the crossover, for
example, Child 1 has a different genome from Parent 1 beyond the crossover point.



FAULT-TOLERANT EXECUTION PLANNING 5271

Figure 5. Strategy-interchange crossover (SIC)

The second crossover operator, called Strategy-Mix Crossover (SMC), mixes two ma-
trixes (i.e., two execution plans) for the selected activity, as shown in Figure 6. With this
operator, half of the rows (i.e., trials) should be repaired. The repair process is as follows:

• If the sum of a row is 0, randomly select a cell and modify the cell value to 1.
• If the sum of a column is more than 2, modify the cell values so that the sum of the
column is 1.

• If the sum of a column is 0, select randomly a cell and then modify the cell value to
1 until the success rate of an activity is above the threshold, (1− ε).

Figure 6. Strategy-mix crossover (SMC)

While the crossover operators combine the strategies of two parent genomes, the mu-
tation operator randomly selects an activity (i.e., a matrix in the genome) and randomly
replaces an execution plan. The application of GA is explained in the next section.

4. Experiments. In this section, we analyze the performance of the proposed GA under
various conditions such as deadline, penalty/reward, and web service variability. Also,
the crossover operators were compared. Table 1 summarizes the experimental settings
employed.

Our GA (implemented by JAVA) was set for a population of 200 individuals, a crossover
probability of 0.5 and a mutation probability of 0.05. The GA stops when an objective



5272 J. OH, N. W. CHO, H. KIM AND S.-H. KANG

Table 1. Experimental settings

Parameter Setting Acronym Description

Deadline
Loose Loose-D

The deadline is two times greater than the
sum of the average execution times of all of
the activities.

Tight Tight-D
The deadline is equal to the sum of the aver-
age execution times of all of the activities.

Penalty or Reward

High High-PR
The penalty/reward is 10 times greater than
the expected execution cost for a service.

Low Low-PR
The penalty/reward is equal to the expected
execution cost for a service.

Web Service
Variability
(Execution Time)

High High-TV
The coefficient of variation of the web service
execution times is equal to 0.5.

Low Low-TV
The coefficient of variation of the web service
execution times is equal to 0.3.

Web Service
Variability
(Reliability)

High High-RV

The failure probability of a web service k for
an activity i, 1−λik, is uniformly distributed
in [ε∧(1/6), ε∧(1/3)), where ε = 0.0001. To
guarantee reliable execution of an activity i,
a minimum of 4 and a maximum of 6 web
services are required.

Low Low-RV

The failure probability of a web service k for
an activity i, 1−λik, is uniformly distributed
in [ε∧(1/4), ε∧(1/3)), where ε = 0.0001. To
guarantee reliable execution of an activity i,
at least 4 web services are required.

value has no change over 2,000 iterations. We used Windows XP on an Intel Core2 Duo
2.66 GHz CPU with 2 GB RAM. The algorithm was run 40 times on each problem setting.
For the experiment, the number of activities (N) and the number of available web services
for each activity (M) were set at 20 and 30, respectively.
Table 2 compares the performances of the two crossover schemes, SIC and SMC.

To show the difference, the ratios of fitness values, (fitness using SIC)-(fitness using
SMC)/(fitness using SMC), are observed with iterations. On average, the GA termi-
nated about 10,000 iterations with SIC and about 8,000 with SMC. As can be seen, SMC
showed a better performance overall, but the difference narrowed to less than 0.1 percent
with more than 8,000 iterations.
The experimental results show that there is very little difference between the crossover

operations under their termination conditions. However, if dynamic modifications of
execution plans are required, the running time of the GA becomes important. Figure 7
plots the results of comparison experiments for 200 individuals and 2,000 iterations.
As can be seen in Figure 7, SMC exhibits better performance when the variability of

web service reliability is high. Higher variability increases the number of feasible execution
plans and, consequently, increases the size of a problem. We believe that this could cause
the performance difference between SMC and SIC.
Finally, we validated the effectiveness of the proposed GA by comparing it with an

optimal solution obtained by an exhaustive search method. The numbers of activities (N)
and available web services for each activity (M) were set at 4 and 6, respectively. The
experiment was conducted under the tight deadline (Tight-D) and high penalty/reward



FAULT-TOLERANT EXECUTION PLANNING 5273

Table 2. Performance comparisons of crossover schemes (%)

Settings Iterations

Deadline
Penalty/
Reward

Time
Variability

Reliability
Variability

1,000 2,000 4,000 8,000

Tight High Low Low 1.304 0.571 0.186 −0.003
Loose High Low Low 0.395 0.143 0.061 −0.058
Tight Low Low Low 0.306 −0.070 −0.291 −0.110
Loose Low Low Low 0.169 0.148 0.034 −0.081
Tight High High Low 0.298 0.101 −0.026 0.073
Loose High High Low 0.127 0.064 0.007 0.022
Tight Low High Low 0.147 0.073 0.061 0.105
Loose Low High Low −0.043 0.067 0.023 0.015
Tight High Low High 2.087 1.031 0.347 0.266
Loose High Low High 0.666 0.323 0.165 0.036
Tight Low Low High 1.968 0.959 1.092 0.654
Loose Low Low High 0.547 0.319 0.053 −0.065

Figure 7. Performance comparisons with 2,000 iterations

(High-PR) conditions. The results showed that the proposed GA reached the optimal
solution within 4,000 iterations. Note that in this experiment, the problem size was
reduced in order to obtain an optimal solution through total enumeration.

4.1. Application example. In this section, to illustrate the implementation of our GA
on a business process, an application example is provided. Let us suppose a business pro-
cess composed of five activities, whose execution relies on collaborating with twenty web
services. Each web service has different execution cost, execution time, and reliability1.
The deadline of the business process is 80; both the penalty rate charged per time beyond
the deadline (P) and the reward rate awarded per saved time to the deadline (R) are 500.

1The application example data can be provided upon request to the corresponding author.



5274 J. OH, N. W. CHO, H. KIM AND S.-H. KANG

If reliability is a priority, a web service selection problem would choose a web service
with the highest reliability for each activity. With the application of the web service
selection method, the execution of the business process would result in the following:
reliability = 0.557, execution cost = 7361.5 and execution time = 99. However, the
application of our GA, shown in Table 3, can guarantee the reliable execution within the
deadline. For the given example, the reliability of the execution plan is 1− ε, where ε is
an arbitrarily small number (ε = 0.0001). The expected execution cost and time is 13,443
and 67, respectively. It should be noted that the increase in the execution cost can be
compensated by higher reliability and faster completion prior to deadline.

Table 3. Execution plan generated by GA

Activity Trial Selected Services Activity Trial Selected Services

Activity 1

1st 10, 18

Activity 4

1st 7, 10
2nd 16 2nd 17
3rd 14 3rd 4, 14

Activity 2

1st 7, 9

Activity 5

1st 7
2nd 10 2nd 17
3rd 5, 12 3rd 16

Activity 3

1st 6, 20 4th 4
2nd 10 5th 10
3rd 4 − − −
4th 1 − − −

5. Conclusions. In this paper, we developed a method that utilizes physical and time
redundancies to provide reliable execution plans for collaborative business processes. Our
method not only provides a reliable execution plan but also can dynamically modify an
original plan at run-time. To address the dynamic execution planning problem, known to
be NP-hard, a Genetic Algorithm (GA) was developed, and its effectiveness was demon-
strated through a set of experiments.
The main contribution of this paper is the development of a more general execution

planning method, which combines time redundancy with physical redundancy in order
to increase the reliability of execution plan of collaborative process by employing GA.
Whereas the previous research assumed that the execution cost, time, and reliability of
web services are the same, we relaxed that assumption. This, we expect, will facilitate the
application of our method in practice. Also, for the GA, two different proposed crossover
schemes were compared in a set of experiments. The effectiveness of the proposed GA
was validated also by comparison with an optimal solution.
We must admit, however, that our idea has some limitations. Generally, a collaborative

business process is controlled by multiple organizations and multiple workflow engines,
but our model assumes a special case: a single organization controls a collaborative busi-
ness process the execution of which entails collaboration with outside partners. Reliable
execution of a collaborative business process controlled by multiple organizations and re-
quiring complicated and sophisticated control of process execution, therefore, would be a
suitable topic for future research.
Another limitation is the fact that our model deals mainly with web service failures

to provide reliable business process execution. The reliability of a collaborative business
process depends on not only web services but also software artifacts responsible for process
execution, for example, a workflow engine. It should be noted the failures of such artifacts
can lead to failure of the entire process.



FAULT-TOLERANT EXECUTION PLANNING 5275

A third limitation is our model’s neglect of the execution cost incurred in guaranteeing
reliable execution of collaborative business processes. This neglect, not surprisingly, can
result in excessive execution costs. Thus, a more comprehensive framework that considers
a greater variety of QoS aspects would be called for.

There is still another research issue to be dealt with. In our model, we assumed that
there exist a sufficient number of available web services to request. However, in reality,
this is not always guaranteed. The relaxation of that assumption, then, would extend the
applicability of the proposed method.

REFERENCES

[1] J. Cardoso, A. Sheth, J. Miller, J. Arnold and K. Kochut, Quality of service for workflows and web
service processes, Web Semantics: Science, Services and Agents on the World Wide Web, vol.1, no.3,
pp.281-308, 2004.

[2] Q. Chen and M. Hsu, Inter-enterprise collaborative business process management, Proc. of Interna-
tional Conference on Data Engineering, pp.253-260, 2001.

[3] D. Jayasinghe, FAWS for SOAP-Based Web Services: A Client-Transparent Fault Tolerance Sys-
tem for SOAP-Based Web Services, http://www.ibm.com/developerworks/webservices/library/ws-
faws/, 2005.

[4] L. Juszczyk, J. Lazowski and S. Dustdar, Web service discovery, replication, and synchronization in
ad-hoc networks, Proc. of the 1st International Conference on Availability, Reliability and Security,
pp.847-854, 2006.

[5] H. Kopetz and P. Verissimo, Real time and dependability concepts, in Distributed Systems, 2nd
Edition, Workingham, Addison-Wesley, 1993.

[6] N. Laranjeiro and M. Vieira, Towards fault tolerance in web services compositions, Proc. of the
Workshop on Engineering Fault Tolerant Systems, Article No. 2, 2007.

[7] L. Lei and Z. Duan, Automating web service composition for collaborative business processes, Proc.
of the 11th International Conference on Computer Supported Cooperative Work in Design, pp.894-
899, 2007.

[8] L. Lin and F. Liu, Compensation with dependency in web services composition, Proc. of NWeSP,
pp.183-188, 2005.

[9] C. Liu, Q. Li and X. Zhao, Challenges and opportunities in collaborative business process man-
agement: Overview of recent advances and introduction to the special issue, Information Systems
Frontier, vol.11, pp.201-209, 2009.

[10] J. Oh, N. W. Cho, H. Kim, Y. Min and S. H. Kang, Dynamic execution planning for reliable
collaborative business processes, Information Sciences, vol.181, no.2, pp.351-361, 2011.

[11] J. Oh, J. Jung, N. W. Cho, H. Kim and S. H. Kang, An integrated process modeling for dynamic B2B
collaboration, Knowledge-Based Intelligent Information and Engineering Systems, LNAI, vol.3683,
pp.602-608, 2005.

[12] C. Peltz, Web services orchestration and choreography, Computer, vol.36, no.10, pp.46-52, 2003.
[13] P. F. Pires, M. R. F. Benevides and M. Mattoso, Building reliable web services compositions, in

Web, Web-Services, and Database Systems 2002, LNCS, A. Chaudhri, M. Jeckle and E. Rahm
(eds.), vol.2593, 2003.

[14] J. Salas, F. P. Sorrosal, M. P. Martinez and R. J. Peris, WS-replication: A framework for highly
available web services, Proc. of the 15th International Conference on World Wide Web, pp.357-366,
2006.

[15] N. Salatge and J. C. Fabre, Fault tolerance connectors for unreliable web services, Proc. of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp.51-60, 2007.

[16] A. S. Tanenbaum and M. van Steen, Fault tolerance, in Distributed Systems: Principle and
Paradigms, NJ, Prentice Hall, 2002.

[17] V. Issarny, F. Tartanoglu, A. Romanovsky and N. Levy, Coordinated forward error recovery for
composite web services, Proc. of SRDS, pp.167-176, 2003.

[18] X. Ye, Providing reliable web services through active replication, Proc. of ICIS, pp.1111-1116, 2007.


