International Journal of Innovative
Computing, Information and Control ICIC International ©)2012 ISSN 1349-4198
Volume 8, Number 7(B), July 2012 pp. 5341-5368

A SERVICE-ORIENTED APPROACH TO COLLABORATIVE
MANAGEMENT OF DISRUPTIVE EVENTS IN SUPPLY CHAINS

ARMANDO GUARNASCHELLI', ERICA FERNANDEZ!, OMAR CHIOTTI?
AND HECTOR E. SALOMONE!
'INGAR, Instituto de Desarrollo y Disefio
CONICET-UTN

Avellaneda 3657-3000, Santa Fe, Argentina
{ guarnaschelli; ericafernandez; salomone }@santafe-conicet.gov.ar

2CIDISI, 1&D Information System Engineering Centre
FRSF-UTN
Lavaisse 610, Santa Fe 3000, Argentina
chiotti@santafe-conicet.gov.ar

Received March 2011; revised July 2011

ABSTRACT. This work presents a comprehensive proposal to systematically address the
problem of Collaborative Management of Disruptive Events in Supply Chains (CMDE
SC). The problem is defined as a collaborative business process that specifies a set of
decision making activities that require complex models to systematize the activities of
capturing information about internal and external changes to predict disruptive events
that can affect the schedule execution, and to systematize the activities of feasibility
checking and schedule repairing considering the distributed nature of supply chains. A
service-oriented approach implementing this collaborative business process is presented.
Reference Models developed for automatically deriving appropriate executable models for
feasibility checking and schedule repairing, and for monitoring orders and resources, are
described. Ezxamples of models validation are also described.

Keywords: Business processes, SOA, Supply chain, Event management

1. Introduction. The ultimate goal of integrated management of Supply Chains (SCs)
is to improve the competitive advantages resulting from the integration. To this aim,
enterprises in a supply chain perform collaborative business processes [1]. Particularly,
collaborative planning processes allow each enterprise to obtain production and/or distri-
bution schedules synchronized with the schedules of other SC members [2].

During the execution of scheduled operations, significant changes with regard to planned
values of order parameters and resource availability may occur. These changes may affect
the schedules and their synchronization.

In this work, a schedule is defined as a set of orders, where each order represents a
supply process (production or distribution) that assigns materials to a place, states the
required resources, the time period during which each resource is required and its required
capacity and state. It is assumed that during the schedule definition, certain buffers
(material, resource capacity and time) have been provided to absorb future changes. A
supply chain schedule may be composed of different synchronized schedules. A disruptive
event is defined as any significant change during the schedule execution either in the
specification of an order or in the planned values in resource availability that may affect
the schedules and their synchronization. They can produce negative effects that propagate
throughout the supply chain [3, 4, 5]. The importance of disruption management has been
theoretically shown in [6, 7].

5341

5342 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

An exception is defined as a deviation from the schedule that prevents the fulfillment
of one or more supply process orders.

This uncertainty is recognized by the robust planning paradigm [8] that proposes to
define allocations of buffers (material, resource capacity and time) to achieve robust sched-
ules most likely to remain stable during execution. The objective is to avoid re-planning
tasks, which can be costly and time consuming, since all enterprises involved in the SC
should agree on a new collaborative plan. However, due to the impossibility of predicting
with certainty the time and place of occurrence of disruptive events and their magnitude,
usually the provided buffers cannot absorb all changes. Then, after a disruptive event
has occurred it is necessary to check if schedules are still feasible and if not, define mod-
ifications to them. In practice the decision process that takes place after the disruption
is loosely structured. Managers are seldom supported by systematic methodologies to
cope with the problem caused by the disruptive event, and when they do, the solution is
usually a re-planning task. This is a weakness that needs to be addressed to preserve a
SC competitive in the future landscape. Future SCs have to be more adaptive reacting
quickly and correctly to changes, and disruptive events have to be managed and contained
on site making re-planning activities less frequent [5, 9].

The benefits of having a robust schedule are indisputable, but despite the effort in terms
of resource buffers done to provide robustness, operation managers know that is not easy
to effectively use these buffers in a systematic way maintaining the execution adherence
to planned targets. The objective is to repair a schedule through limited and localized
modifications. Most models to repair schedules we have found in the literature do not
consider the distributed nature of SCs [10, 11, 12, 13]. For instance in [14] the authors
develop a disruption management decision support system for logistics scheduling, but
do not consider the important factor that in a supply chain many business partners can
coexist and their schedules and scheduling systems are different in general. Within an
SC, the schedules of different enterprises are synchronized, so they all have to be prop-
erly repaired. To this aim, appropriate models to check feasibility and repair schedules
considering the distributed nature of an SC have to be used.

To perform this task, disruptive event information in advance can help to make better
decisions. As stated earlier, disruptive events are significant changes with regards to the
planned values that can affect the schedule execution. Some of these changes can take
place into the enterprise, e.g., the availability of an enterprise resource, and therefore easy
to capture by the enterprise; but other changes can take place outside the enterprise, e.g.,
the availability of an external resource, which may not be as easy to obtain. A model to
capture disruptive events has to be able to get information about internal and external
changes that can affect the schedule execution. By capturing them, it is possible to infer
changes that will affect specification of scheduled orders or the availability of a resource
and predict a disruption when it has enough evidence that this will occur. To this aim,
appropriate prediction models of disruptive events have to be used.

The business environment is subject to frequent changes so the SC structure can also
change with some frequency. That is, new enterprises become part of the SC while others
may leave it, defining a dynamic SC structure.

Under this scenario a new concept called Supply Chain Event Management (SCEM)
has emerged [15, 16]. It proposes to track and trace the flow of events along the SC, mon-
itoring planned and unplanned events, detecting relevant changes and notifying them to
decision makers in real time. Also, it gives the decision maker simulation support for
analyzing alternatives to find a response to unforeseen events, control support for analyz-
ing and documenting the effect for subsequent SC processes, and allows decision makers

A SERVICE-ORIENTED APPROACH 5343

to introduce proactive changes into the established conditions, and provides support for
measures assessing, analyzing and evaluating historical data [17].

Academic and industrial researchers [5, 16] have recognized the systematic repairing of
the schedules using the planed buffers as an outstanding issue to be considered.

This work, defines the Collaborative Management of Disruptive Events in Supply Chains
(CMDESC) as a collaborative business process that specifies a set of decision making ac-
tivities that require complex models to systematize the capture of information about inter-
nal and external changes, the prediction of disruptive events that can affect the schedule
execution, and the activities of feasibility checking and schedule repair considering the
distributed nature of a SC.

Because of the dynamic SC structure and the complexity of decision support models
required, the main requirements to be satisfied by an information system implementing
this collaborative business are as follows: ability to join or withdraw an enterprise from
the business process; ability to describe ongoing synchronized schedules of any kind from
different enterprises coexisting in the same SC; ability to capture the planned buffers in a
way that it is suitable for analyzing feasibility in presence of disruptive events; ability to
automatically derive an appropriate executable model for feasibility check and automated
repair of disrupted schedules searching for a feasible solution using just the planned buffers
and finally, ability to automatically derive appropriate executable models for capturing
and analyzing significant changes in environmental variables and/or resources that allow
the inference that a disruptive event affecting the specifications of an order or the future
availability of a resource will occur.

In the literature, several proposals of SCEM systems architectures can be found [16, 18,
19, 20, 21, 22, 23, 24], but none of them satisfy all requirements listed before, particularly
the requirements for collaborative automated repair of disrupted schedules and/or ability
for predicting disruptive events on orders and resources. Another set of related works
found in the literature is focused on error recovery problem [25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35|, which can be considered similar to the SCEM problem, but all of them are
focused on the intra-enterprise context, and therefore do not satisfy the required ability
for collaboration.

The objective of this work is to present a business process for the collaborative man-
agement of disruptive events in the supply chain execution, to describe its functional and
nonfunctional requirements, and to propose an approach based on a service-oriented ar-
chitecture (SOA) [36] that supports the requirements. The work is organized as follows.
Section 2 presents the functional and nonfunctional requirements of the CMDESC busi-
ness process. Section 3 describes the CMDESC business process. Section 4 presents a
SOA proposal for the CMDESC system. Section 5 describes the reference models used to
represent the semantics of the proposed SOA solution and to derive the associated mod-
els for implementing the internal structure of the services. Section 6 presents the service
implementation, describing the software components that provide the services. Section 7
describes the case studies we have used for validation. Section 8 presents discussions and
future work.

2. Requirements Analysis. In Section 1, an initial elicitation of requirements for a
CMDESC system solution was introduced, and in the next sections a more elaborated
description of these requirements is given by aggregating and typifying them into two
categories functional and non-functional requirements. Functional requirements are the
ones that establish required functionalities of an information system. Non-functional
requirements specify criteria that can be used to judge the operation of a system, rather
than specific functions in a system.

5344 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

2.1. Functional requirements. In our analysis of requirements for the CMDESC sys-
tem the following three main functionalities have been identified:

2.1.1. Ezecution control of a schedule. This implies to coordinate the activities for track-
ing the progress of a schedule under execution and implementing strategies to restore
feasibility to a damaged schedule; when an exception is detected, notify it to the decision
maker in real time. A Control subsystem is proposed to provide this functionality.

2.1.2. Capture disruptive events. These may affect the schedule. A Monitoring subsystem
is proposed to provide this functionality. It must be able to predict and detect disruptive
events.

2.1.3. Feasibility management. This implies analyzing the impact of a disruptive event
on a schedule and searching for strategies to restore feasibility to a damaged schedule. A
Feasibility Management subsystem is proposed to provide this functionality.

A CMDESC solution should provide these three functionalities. The subsystems defined
previously might be defined as independent systems one from the other, or as parts of a
centralized system.

2.2. Actors. The actors requiring the functionalities offered by these subsystems are:
2.2.1. Controller. This actor represents the entity controlling the execution of a schedule.

2.2.2. Monitor. This actor represents the entity detecting and predicting disruptive events
that may affect a schedule execution.

2.2.3. Feasibility manager. This actor represents the entity in charge of analyzing schedule
feasibility and repair schedules.

2.3. Use cases. The following UML use cases [37] have been defined.

2.3.1. Use case: predict and detect disruptive events. This use case is realized by the Mon-
itoring subsystem. The monitoring function implies detecting relevant disruptive events
in real time. To perform this functionality four main monitoring activities have to be
carried out during the execution of a schedule.

Activity 2.3.1.1: Monitoring order specification changes. The objective is to capture
independent changes of the order’s requirement values, i.e., start time, quantity or end
time. By independent, we mean original modifications to the order specification, not as
derived consequence of adjusting the order in response to other disruptive events.
Activity 2.3.1.2: Monitoring current status of resource feasibility. The objective is to
capture significant changes on the current value of any attribute of a resource that is
critical to grant its feasibility.

Activity 2.3.1.3: Monitoring order progress. The objective is to monitor on going
execution orders to proactively predict if a disruptive event affects the order expected
completion. This implies to capture significant changes on any variable measuring the
order progress or having a predictive relationship with this progress. Typically, they are
variables in the execution environment that are used as predictors of potential disrup-
tions.

Activity 2.3.1.4: Monitoring changes on resource’s future expected availability. The
objective is to capture significant changes of the planed value of the future availability of
a resource.

Precondition 2.3.1.1: The schedule should be expressed in terms of a schedule repre-
sentation understandable by both parties (Controller and Monitor).

Precondition 2.3.1.2: To realize this use case information from other systems is needed

A SERVICE-ORIENTED APPROACH 5345

(for example, manufacturing execution system, warehousing management system and
transportation management system).

Post-condition 2.3.1.1: The disruptive event should be expressed in a common schedule
representation.

2.3.2. Use case: check schedule feasibility. In this use case the feasibility analysis of a
schedule is realized by the Feasibility Management subsystem.

Precondition 2.3.2.1: The Schedule should be expressed in terms of a Schedule repre-
sentation understandable by both parties.

2.3.3. Use case: repair schedule. In this use case the repair of a damaged schedule is
required. This use case includes the use case Check Schedule Feasibility, because before
introducing changes to a schedule, the impact of the disruptive event should be assessed
and it is also realized by the Feasibility Management subsystem.

Precondition 2.3.3.1: The schedule is expressed in a common representation.
Precondition 2.3.3.2: The schedule information sent by the Controller should include
information on orders requirements and resources availability to the extent of allowing
the assessment of the execution feasibility and searching for schedule repair solutions.
Post-condition 2.3.3.1: The solution to a schedule disruption, if found, must consider
all schedule synchronizations and should be executable and expressed in a common repre-

sentation. The solution to the schedule disruption only introduces changes within planned
buffers.

2.3.4. Use case: collaborate in a monitoring process. In order to carry out the monitoring
task (performed by the Monitoring subsystem) it is necessary to obtain execution data
and environment data. This information should be available in any CMDESC solution.
We assign this responsibility to the Control subsystem which will provide the necessary
functionality to collect the information as requested by the Monitoring subsystem.

2.3.5. Use case: collaborate in a repair process. Sometimes, in order to restore feasibility
in a damaged schedule it is necessary to propagate changes towards either customer or
providers orders. These changes are feasible only if the customer’s and provider’s schedules
are analyzed together with the damaged schedule, to ensure synchronicity and execution
feasibility. In this use case the Feasibility Manager requires collaboration from a Controller
(in charge of controlling provider’s or customer’s schedule).

2.4. Non-functional requirements. The main non-functional requirements detected
are described as follows.

2.4.1. Each of the functionalities provided by the subsystems of Monitoring, Feasibil-
ity Management and Control requires the ability to express and understand schedules.
The use of a common schedule representation is required. This representation should be
able to express schedules, disruptive events and schedule repair solutions, across all the
collaborating subsystems.

2.4.2. SC members must be able to join or withdraw from the CMDESC business pro-
cess performed by these subsystems dynamically, without affecting the performance and
execution of this process.

2.4.3. Supply Chains implementing this CMDESC business process should be able to
utilize one or more of the functionalities as desired and independently. For instance, an
SC may need to utilize the Monitoring subsystem only.

5346 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

The last two of these non-functional requirements impose a condition on the design of
a CMDESC solution supporting its business process. This condition is that each of the
main functionalities required for CMDESC should be provided by an independent system.
Therefore, CMDESC needs to emerge from the collaboration of these systems.

3. The CMDESC Business Process. To satisfy the functional requirements above
specified, following the methodology for SOA development [38], we define the Business
Modeling phase proposing these functionalities to be provided by three participants: Con-
troller, Monitor and Feasibility Manager. The collaborative CMDESC business process is
graphically represented using BPMN [39] in Figure 1. This business process defines the
necessary collaboration among participants and the tasks each them has to perform to
provide the CMDESC functionalities to any SC implementing it.

p - — ~
Check Schedule ; = Repair Schedule
E | send Feasibility Report p(=)—» P

Feasibility Manager

Controller
=

° p Request
ule

FeasibilityReporthsg |
is Schedule Feasible 7 |

nitor

Ficure 1. CMDESC collaborative business process

3.1. Participants. The actors identified in the requirement analysis are the participants
of this business process. Each participant of this business process is described next.

3.1.1. Controller. This participant (Actors 2.2.1) is responsible for providing the func-
tionality to control a production and/or distribution schedule (Functional Requirement
2.1.1). Each member of an SC may have one or more schedules. In this proposal each
schedule is controlled by one Controller. The Controller is responsible for requesting mon-
itoring function to the Monitor and for providing the access to updated data from the
execution systems. It also interacts with the Feasibility Manager requesting the feasibil-
ity verification and schedule repair when a disruptive event is detected and engaging in
collaborative repair when requested.

3.1.2. Monitor. This participant (Actors 2.2.2) is responsible for providing functionalities
for monitoring a schedule (Functional Requirement 2.1.2). The execution of a schedule
implies performing the operations defined in the supply process each order represents and
is feasible if both the order requirements and the availability of the resources take their
planned values. Therefore, to capture disruptive events, the Monitor should provide all

A SERVICE-ORIENTED APPROACH 5347

the four activities in the Use Case 2.3.1. Whenever possible, it is desirable to extend their
proactive capabilities by using predictive models that allow anticipating the disruptive
event through cause-effect relationships. The causal relationship can be modeled using
Bayesian Networks, Petri Nets, Decision Trees, or similar approaches.

3.1.3. Feasibility manager. This participant (Actors 2.2.3) is responsible for providing
functionalities for verifying the feasibility of a schedule when a disruptive event has oc-
curred, and to repair a disrupted schedule requesting the collaboration of other Con-
trollers if it is necessary (Functional Requirement 2.1.3). To perform these functionalities
appropriate decision making models, such as mathematical programming and heuristic
programming, are required.

3.2. Tasks. To carry out its functionalities each participant has to perform a set of tasks
and sub-processes, which are described as follows. A detailed description of the messages
involved by these tasks is presented in Appendix A.

3.2.1. Register schedule. This task represents the registration of the schedule that is go-
ing to be supervised by the Controller. The message ScheduleMsg contains a complete
description of an ongoing execution schedule including the information needed to assess
the feasibility regarding the scheduled requirements and resources.

3.2.2. Request schedule monitoring. A message to the Monitor participant is sent to re-
quest monitoring the Schedule. The message sent contains the previously registered Sched-
ule.

3.2.3. Notify monitoring completion. Whenever the monitoring task completes the mon-
itoring of a schedule, that is when all Supply Process Orders have been completed, a
notification is sent by the Monitor to the Controller.

3.2.4. Notify disruptive event. Whenever the Monitor Schedule sub-process detects a dis-
ruptive event, the Monitor notifies this event to the Controller with a Disruptive Event
Message.

3.2.5. Define event scope. An event scope contains all the required information necessary
to evaluate its impact on an Execution Schedule. Given a Disruptive EventMsg the scope
is defined by all the assigned resources of every supply process affected by the disruptive
event, plus all the supply processes scheduled in each resource affected by the disruptive
event. This set of resources and supply process is the minimum required set to assess the
impact of the disruptive event in the schedule. Any Controller can include this minimum
set as the event scope, or augment the size of information shared accordingly to an internal
policy up to defining the event scope as the entire execution schedule being supervised.

3.2.6. Request schedule feasibility checking. Once the scope of the event has been de-
fined, a request is placed to Feasibility Manager to assess the impact on the schedule by
determining whether it affects its execution feasibility or not.

3.2.7. Send feasibility report. After performing the feasibility verification, this task implies
the sending of a Feasibility Report message back to the Controller. This report contains
information regarding a successful search for feasibility and the changes introduced in the
schedule to obtain it.

3.2.8. Redefine schedule. Upon the reception of a feasibility report stating the modifica-
tions to the current schedule, this task implements this changes and start the process of
supervising a schedule with this redefined one, all over again.

5348 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

L 4

(Define Solution
Check Schedule Feasibility | 3¢ Yes) (fﬁr;a(ht p Notify Collaborators | O
abol \
A r = is Schedulé Feasible 7) v se"g;ﬁ!ﬁ:gﬁm"
& '
H | ! - By
i‘ | Define Initial Collaboration Scope | e i 1
Z & "
k] ‘ v T I—b Or— i
L » Request Collaboration =] Yes || |
Define Collabaratiaon Required =) —p< . | Redefine Collaboration Scope
atleast one positive response
CollaborationRefuzeMsg |
Yes o) p{)——p| mplement solution 7'0 !

B Send Schedule Information]| |— =
‘ : FeasibilityReportMsg
no—
lAppmve cy\aborat\cr\ ?

‘Controller (Collaborator)

Send Refuse to Collaborate ,Collaborat

FIGURE 2. The repair schedule sub-process

3.2.9. Generate alarm. This task is only executed whenever a disruptive event could not
be resolved by the Feasibility Manager. It implies sending a message to the Monitor in
order to cancel the monitoring of the schedule and may include any other procedure, e.g.,
notify the Planning Systems.

3.3. The repair schedule sub-process. The Feasibility Manager participant has to
perform the Repair Schedule sub-process, which is graphically represented in Figure 2.
When a disruptive event occurs, this sub-process has to support the use cases (Use Cases
2.3.2 and 2.3.3) defined in the requirement analysis.

A key concept in this business process is the Collaboration Scope, which defines the set
of supply process orders which can be modified during the search of feasibility and which
cannot.

3.3.1. Tasks. The tasks that compose this business sub-process are described following
and detailed descriptions of the messages involved by these tasks are presented in Appen-
dix A.

Task 3.3.1.1. Define Initial Collaboration Scope. The initial collaboration scope es-
tablishes that all supply process orders are first considered as not-modifiable and therefore
the feasibility is checked only considering whether the disruptive event can be absorbed
by scheduled buffers in the resources.

Task 3.3.1.2. Define Collaboration Required. This task implies augmenting the
analysis capabilities of the Feasibility Manager participant. In the process of searching
for feasibility, if the repair cannot be accomplished with the current scope of collabora-
tion, this task will attempt to expand the scope by adding new supply process orders
and resources. This expansion procedure may eventually require the inclusion of supply
processes orders and resources belonging to different schedules and owned by even differ-
ent enterprises of the SC. Therefore, this scope expansion may trigger the need for new
Controllers be invited to collaborate is the feasibility search.

Task 3.3.1.3. Request Collaboration. As a result of the collaboration scope expan-
sion, new Controllers are requested to participate. This task will request this collaboration
by sending a set of supply process orders and resources that the Controller should accept
to become part of the repair process.

Task 3.3.1.4. Redefine Collaboration Scope. After receiving the acceptance and
refusals of all the invited Controllers, this task will compose the new Collaboration Scope

A SERVICE-ORIENTED APPROACH 5349

agreed and will trigger a new feasibility search.

Task 3.3.1.5. Send Collaboration Cancellation. This task cancels the collaborative
Repair Schedule sub-process with all Collaborators except with the one who originally
sent the event Scope. This is produced when the repair process cannot reach a feasible
solution and there is no possibility of further augmenting the Collaboration Scope.
Task 3.3.1.6. Implement Solution. This task includes everything a Controller in the
role of Collaborator needs to do in order to accept a modified schedule defined by the
Feasibility Manager during the collaboration process. For instance, the Controller should
re-define the schedule, register the new schedule and request the monitoring with the
updated schedule.

Task 3.3.1.7. Send Schedule Information. This task implies sharing the schedule
information requested in the Collaboration Request Message.

Task 3.3.1.8. Send Refuse to Collaborate. This task represents the Collaborator
declining the proposal to collaborate.

4 ¥

¥ Cheek abjecrs ehanges [+ A VananleUpdatehsg

) - O

A Continue checking for objedt changes?

Controdier

-

1s there any dpdate data? ¥ .
» MenitaringCnjTamplrtiansdzg
Mantsingblstanig ves send updite cata T

P Redetine controt strudture Send maniteting

Seheculentsg \9
X Observation d‘umﬁ‘ cantrol structurel

wwast for manitaring stasTime yru 0

Wl -4 Y L AU Observation policy continues? A

o end reque: Input
Dxfing control Select active P observed # of obsenven L alhic] # observed data LR Lo T o "ﬂb L*3 ""L gt

fal I ' " inks corrrol pERe > o &
structure o < faw thare mare milestone?
DUSIPHNE EVEPT], thete mare duta Lo observe?_g, 4

Fi1GURE 3. Monitoring schedule sub-process

3.4. The monitoring schedule sub-process. The Monitor has to perform the Mon-
itoring Schedule sub-process, which is graphically represented in Figure 3. During the
schedule execution, this sub-process has to support the four main monitoring activities
identified in the requirement analysis (Use Case 2.3.1). They are grouped into two types:
Activities that require monitoring an order (Activities 2.3.1.1 and 2.3.1.3) and that require
monitoring a resource (Activities 2.3.1.2 and 2.3.1.4).

3.4.1. Tasks. The tasks that compose this business sub-process are described next and
detailed descriptions of the messages involved by these tasks are presented in Appendix
A.

Task 3.4.1.1. Check Object’s Changes. This task determines whether there have
been changes in an object (order or in a resource availability profile). In such case the
Controller communicates updated object’s data to the Monitor.

Task 3.4.1.2. Send Updated Data. The updated value of an environment variable or
attribute variable is sent.

Task 3.4.1.3. Define next Object to Monitor. This task iterates over all the objects
in the schedule (orders and resources) and defines the corresponding monitoring activity
associated to the object. Every activity is assigned with time window which will be used

5350 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

to activate the monitoring at the proper time.

Task 3.4.1.4. Send Monitoring Start Notification. The Controller is notified that
the monitoring process associated with a resource or an order has started.

Task 3.4.1.5. Define Monitoring Structure. For each order or resource its monitor-
ing structure is instantiated and completed with planned values.

The monitoring structure for monitoring an order has variables to capture changes
in the requirements of an order (start time, end time and quantity) and variables to
predict future modifications of the planned values of the order. The monitoring structure
for monitoring a resource has variables to capture changes in the current value of the
attributes defining a resource’s availability and variables to predict modifications of the
planned values of its future availability.

Task 3.4.1.6. Select Active Milestone. A milestone defines a point where a set
of variables associated with the monitoring structure will be observed to evaluate the
execution progress of an order or the availability of the resource.

Task 3.4.1.7. Select Observed Data. Each variable associated with a milestone is
observed according to the relation of precedence. In this task, the variable to be observed
is selected.

Task 3.4.1.8. Send Request of Observed Data. The update request of the variable
(selected in Task 3.4.1.7) is sent to the Controller.

Task 3.4.1.9. Input Observed Data into Monitoring Structure. The observed
value is retrieved and inserted into the monitoring structure to evaluate the impact of
this variable.

Task 3.4.1.10. Execute Monitoring Structure Analyzer. The analysis function to
assess if a disruptive event may occur is executed.

Task 3.4.1.11. Redefine Monitoring Structure. When a variable is observed, the
branch of the monitoring structure which predicted its value is no longer necessary and
can be eliminated.

Task 3.4.1.12. Send Monitoring Object Completion. The Controller is notified
that the monitoring process associated with a resource or an order has finished. In this
case, no disrupted event occurs during the monitoring process.

4. SOA of the CMDESC System. Service oriented computing and architecture is the
technology chosen to enact the CMDESC business process. It provides a way to create
software artifacts that supports requirements on heterogeneity and autonomy that arise on
current supply chain management practices. Those SOA artifacts are tied to the business
process requirements that they capture. The collaborative nature of this proposal for
CMDESC is benefited by adopting SOA technologies as it promotes few coarse grained
interactions between service providers and consumers. Additionally an SOA architecture
definition is platform independent allowing its implementation on business partners with
diverse co-existent technologies.

In Section 3, a collaborative business process that meets the requirements realized by
the use cases in Section 2 has been defined. In this section, we present a service-oriented
architecture that was developed to give systems support to the mentioned business pro-
cess. To identify all the capabilities and services required to enact the business process
we follow a standard modeling technique (SOMA) [38].

The service model is designed starting with the capabilities each participant in the busi-
ness process has to provide to enact the collaboration. After that, the services exposing
these capabilities are defined.

In this proposal we adopted a document-centric approach to support the access to
service operations; therefore, for each operation defined in a service there is an associated

A SERVICE-ORIENTED APPROACH 5351

document containing all the information required to provide the service. These documents
are specified using the message Type artifact from the SOAML specification [40] and their
structure is detailed in Appendix A.

In order to define the messages and its information content in a consistent and complete
way, we have used a Reference Model for Disruptive Event Management. This model
provides self-contained descriptions of any on-going execution schedule of supply process
orders with all the information required to assess its feasibility.

4.1. Capabilities and services provided by the controller. In order to enact the
functionalities described in the CMDESC collaborative business process diagram in Figure
1, the controller provides three capabilities: Ezecution Control, Collaborative Repair and
Collaborative Monitoring and they are depicted in Figure 4. The operations offered by
these capabilities are exposed trough the following service interfaces.

wCapabilitys S aParticipant= | __________________ = «Capakilitys
% Collaborative Monitoring «Exposes *E,_ Controller «Exposes i % Execution Control

% Motify Monitoring Completion [)
%Notify Maonitoring Object Status) |
&2, Notify Disruptive Event () sExposen

% Request Execution Coentrol ()
if{‘-) Receive Feasibility Report ()
™

«Capabilitys

42 Request Observed Data Update () -
.y
ocEl(pO:SE:o

wServicelnterfaces
Q Collaborative Monitoring Service

v
aServicelnterfaces
@ Collaborative Monitoring

{EE} Motify Monitoring Completion [
% Motify Monitoring Object Status ()
4% Notify Disruptive Event ()

42 Request Observed Data Update ()

E‘i Collaborative Repair

ifé Request for Callabaoration [)

4 Cancel Collabaration ()

42 Receive Collaboration Solution Report ()
M

«EXposes

«Servicelnterfaces
Q Collaborative Repair Service

v
aServicelnterfaces
E Collaborative Repair

if’a Request for Collaboration [)
% Cancel Collaboration {)
ife) Receive Collaboration Selution Report [

«Exposes

«Servicelnterfaces
Q Execution Control Service

kv
a3ervicelnterfaces
Execution Control

if{‘) Request Execution Control [
if{‘-) Receive Feasibility Report ()

F1GURE 4. Capabilities exposed by the controller

4.1.1. <<Servicelnterface>> execution control. This service offers the following opera-
tions:

Request Ezecution Control (executionSchedule: ScheduleMsg): This operation is used to
place a request for a schedule execution control. The message associated to this opera-
tion contains an execution schedule defined by any planning or scheduling system, which
is sent to the Controller as part of an execution control request. Figure 19 shows the
ScheduleMsg message structure.

Receive Feasibility Report (feasibilityReport: FeasibilityReportMsg): The message associ-
ated to this operation contains all the information related to the feasibility status of a
schedule after a collaborative repair process has been performed, or after checking schedule
feasibility, in order to communicate the result. Figure 19 shows the FeasibilityReportMsg
message structure.

5352 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

4.1.2. <<Servicelnterface>> collaborative repair. This service offers the following oper-
ations:

Request for Collaboration requestForCollaborationMsg: CollaborationRepairRequestMsg):
Used by the Feasibility Manager participant for requesting the Controller to engage in
a collaboration to repair a damaged schedule. A request for collaboration is specified
using the message described in Figure 19. It contains the scheduling entities which are
needed to enable a collaborative repair process, and the detail of the repair collaboration
in course.

Cancel Collaboration (collaborationCancellationMsg: RepairCollaborationCancellationM-
5g): Used by the Feasibility Manager to inform a repair collaboration cancellation.
Receive Collaboration Solution Report collaborationSolutionReport: FeasibilityReportMsg):
Used by the Feasibility Manager to send the result of successful repair collaboration. A
collaboration solution report is also a FeasibilityReportMsg (Figure 19), showing the result
of a repair collaboration and the changes introduced.

4.1.3. <<Servicelnterface>> collaborative monitoring. Offers the operations exposed by
the Controller in order to enact the functionalities described in the Monitoring Schedule
sub-process diagram (Figure 3). The operations are:

Notify Monitoring Completion (monitoringCompletion: MonitoringCompletionMsg): The
message associated to this operation has the identification of the schedule which completed
its monitoring, in order to communicate the completion of the monitoring process of the
schedule.

Notify Disruptive Event (disruptiveFEvent: DisruptiveEventMsg): This message (Figure
19) contains a new specification of the resource or order affected by a disruptive event.
It is shown in the diagram class through of the relations newResourceSpecification and
newSPOSpecification. This message may be sent to the Controller if after updating the
observed data in the control structure a disruptive event is detected.

Request Observed Data Update (requestDataUpdate: Variable UpdateMsg): This message
contains information about an attribute variable or an environment variable. Each vari-
able has a timeStamp attribute which represents when the data is required.

Notify Monitoring Object Status (notifyObjectStatus: MonitoringObjectStatusMsg): Used
to notify the Controller about the monitoring status of an object (start or completion).

4.2. Capabilities and services provided by the monitor. In order to enact the
functionalities described in the in the Monitoring Schedule sub-process diagram in Figure
3, the Monitor provides three operations exposed through the service interface depicted
in Figure 5.

4.2.1. <<Servicelnterface>> monitoring. This service offers the following operations:
Request Monitor Schedule (schedule: ScheduleMsg): This operation is used by the Con-
troller participant to request the monitoring of a schedule. The message associated to
this operation contains a schedule which is sent to the Monitor, in order to be monitored.
Figure 19 shows the ScheduleMsg message structure.

Cancel Monitoring (monitoringCancellation: MonitoringCancellationMsg): This opera-
tion is used by the Controller participant to communicate the monitoring process of a
schedule has ended. This message contains the identification of the schedule that must
cancel its monitoring process. It is shown in the CMDESC collaborative business process
diagram (Figure 1).

Update Observed Data (updateObservedDataMsg: VariableUpdateMsg): This operation is
used by the Controller participant to send an update on the values of some data.

A SERVICE-ORIENTED APPROACH 5353

«=Capability=
gj Monitoring
«Participants» «EXposes
F] fon L poses - = g + Monitor Schedul «Servicelnterfaces «Capabilitys
22 Monitor % £ques o_m ?I chedule () =] Feasibility Management Service E%, Feasibility Management
Ef(’) Cancel Maonitoring [) «EXpOSER .
42 Update Observed Data () i | & Request Schedule Feasibility Checking ()
N 42 Refuse to Collaborate ()
E ! 7 Efé Receive Collaborators Schedule Information (]
«Expose» ; :
aiervicelnterfaces P | «Servicelnterfaces £ Request;chedule Repair ()
Monitoring ! Feasibility Management
«Expolses
Q«Ser\ficelnten’ace» % — - i
= t Monitor Schecdul -q,__‘l- Monitoring Service Request Schedule Feasibility Checking () Partici t
3 Request Monitor Schedule (] [<hiere 42 Refuse to Collaborate (] . Feasibity Manager
3 Cancel Monitaring [) :) i =
{E’o Receive Collaborators Schedule Infarmation ()
% Update Observed Data () 42, Request Schedule Repair ()
FiGUrg 5. Capabilities FIGURE 6. Capabilities exposed
exposed by the monitor by the feasibility manager

4.3. Capabilities and services provided by the feasibility manager. In order to
enact the functionalities described in the Repair Schedule Sub-process diagram in Figure
2, the Feasibility Manager provides four operations exposed through the service interface:

4.3.1. << Servicelnterface>> feasibility management. This service offers the following op-
erations depicted in Figure 6.

Request Schedule Feasibility Checking (eventScope: EventScopeMsg): This operation is
exposed so that a Controller can request the assessment of feasibility in a given schedule,
or only on the scope of an event. The message associated to this operation contains the
information resulting from the Define Event Scope task in the CMDESC collaborative
business process diagram (Figure 1). The EventScopeMsg is defined in Figure 19.
Refuse to Collaborate (collaborationRefuse: CollaborationRefuseMsg): This operation al-
lows a possible collaborator in a collaborative repair process (a Controller), to refuse to
collaborate. The message associated to this operation captures the refuse to collaborate
from a Controller as shown in the Repair Schedule Sub-process diagram (Figure 2). The
refuse details in the message have the code of the collaboration request which is refused.
Receive Collaborators Schedule Information (scheduleInfo: ScheduleMsg): This operation
allows a collaborator to send its schedule information to a Feasibility Manager in order
to participate in a Collaborative Schedule Repair. The message in this operation is a
schedule or a portion of a schedule and is shown in Figure 19.

Request Schedule Repair (eventScope: FEventScopeMsg): This operation allows any con-
troller calling it, to request the repair of a Schedule. This message is shown in Figure
19.

«ServicesArchitecture»
1 SCEM ServicesArchitecture

O «service» collaborative Monitoring Service ; Collaborative Monitoring

i

controller ; Controller

"""""""""""""""" o=} [;
Lo yservices collaborative Repair Service : Collaborative Repair
—0 V

Meonitoring : Monitoring Contract r =

e e

“H«Service» execution Control Seri:ce : Execution Control

Bl Mcmtormg;ﬁ)f v ﬁr;ééhiéé’;VF’MS;71Vﬁééé‘rb'i'&m"’ihérgréméﬁt Feasibility Management : Feasibility Management

. = I o Contract
monitor : Monitor feasibility Manager : Feasibility Manager

FiGUureE 7. CMDESC service architecture

5354 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

The final architecture resulting from organizing the participants and services through
specific service contracts is graphically represented in Figure 7.

Two service contracts are defined: Feasibility Management and Monitoring. These
contracts contains all the metadata regarding the description about the CMDESC SOA
based solution services that is: the purpose and function of their operations, defined in
service identification (Section 4.1); the messages that need to be exchanged in order to
engage the operations, defined in the service interface specification (Section 4.2) and the
data models used to define the structure of the messages, defined in the service data model
(Appendix A).

5. Reference Models.

5.1. The disruptive event management reference model. A full description of this
reference model can be found in [41]. Tt is relevant to emphasize that an instance of this
Reference Model is a self-contained description of the feasibility of an execution schedule
that can be automatically transformed into a Constraint Satisfaction Problem (CSP).
This CSP, checks the feasibility of the execution schedule, and also gives the possibility of
identifying slacks in order to device a repair mechanism with minimum modifications, as
the one presented here. Following the two main modeling views of this Reference Model
are described.

5.1.1. Modeling supply processes. In this reference model any instance of a supply process
scheduled to be executed is described by an order coming from a Scheduling or Planning
System (Materials Requirement Planning, Enterprise Resource Planning, Distribution
Resource Planning, etc.). These orders can be of different types: transfers, production,
shipments, etc. In this model all of them are described as generic SupplyProcessOrder
objects.

A relevant aspect of the model is the ability to capture the feasibility of execution.
Therefore, the concept of Resource is introduced to represent every resource that is re-
quired by a SupplyProcessOrder in order to be executed. For these resources it is desired
to efficiently describe their availability in order to trace its feasibility to meet the require-
ments of an order.

Resources used in general supply processes can be of very different nature: transporta-
tion equipment, production units, storage facilities, and also materials including work in
progress, etc. In order to generalize the ability for a resource to satisfy a supply process
requirement, the concept of FeasibilityDimension is introduced.

A FeasibilityDimension is a characteristic of a Resource describing its capability to fulfill
a requirement from a SupplyProcessOrder. The availability of the resource is therefore
conditioned by them and every requirement for the resource should be expressible in terms
of its feasibility dimensions.

Any ongoing execution Schedule is described as a net of Resources linked by SupplyPro-
cessOrder. This structure captures the relationships for describing the propagation of a
disruptive event, allows monitoring and controlling disruptive events and possible excep-
tions at their origin, communicating disruptions and exceptions to the proper receptor. In
this work, the receptor will be one of the Controller participants. Using this representa-
tion the disruption propagation and impact can be assessed as different SCs and different
business partners in a single SC are represented as supply process orders and resources
having different Controllers.

Figure 8 presents an UML class diagram representation of a general supply process.
Linked supply processes conform a net of resources and supply process orders. In the class
diagram, a supply process is defined, through a SupplyProcessOrder, which is composed by

A SERVICE-ORIENTED APPROACH

E FeasibilityDimension

5355

E Resource

Q Schedule

has

+

E DimensionRequirement

(g timing : TimeWindow

1.*

+ orderRequirement

+ supplyProcessOrder

_I_F'E controlledBy | Contraller

. *
assignedResource

+ scheduledOrder

~

[Eg scheduleld : String
_I_F‘E controllerBy : Controller

* |

Q SupplyProcessOrder

5 RelatedSPO

[Eg timing : TimewWindow

[Eg orderQuantity : Integer
[Eg minQuantity : Integer
[Egy maxQuantity : Integer
[Eg cancellable : Boolean
I_Féspareﬂrder:ﬂcnlean

1

[Eg; fixed5PO : Boolean

*

Q Synchronization

[Cg controllerBy : Controller E Precedence

1 !
s

Ficure 8. UML class diagram of a general supply process

a set of DimensionRequirements imposed to every FeasibilityDimension of the resources
assigned for the execution of the supply process order. When two supply process orders
belong to different business partners, or even to different SCs their relation is captured
by the association class RelatedSPQO, which implies relationships between the two supply
process orders, such as the same orderQuantity and the same timing.

5.1.2. Describing resources by feasibility dimensions. In order to assess the availability of
a resource, the feasibility of its schedule and to evaluate the effects of disruptive events,
it is necessary to describe the resources. A possible attempt is to classify resources by
types as in [42], but this has the drawback that resources in an SC can be quite diverse,
a more generic and extensible characterization is needed.

As the purpose is to model the availability of resources and the feasibility of its scheduled
supply process orders, the characterization of resources by introducing the concept of
feasibility dimensions is proposed (Figure 9).

Q Horizon
I_F‘E timing : TimeWindow

Q Resource

I_F‘E controlledBy : Controller

1

l"t
E FeasibilityDimension

Q StateBasedDimension — [E CapacityDimension

1
1

1

] ScheduledStatesProfile 1 1
[& AvailabilityProfile] scheduledCapacityProfile
-
[Eg currentCapacity : Integer
1
1
1 1
E CapacityRequire ment E DimensionRequire ment) E StateBasedRequire ment
T S timing : TimeWindow =

FIGURE 9. Feasibility dimension of a resource

5356 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

Two types of feasibility dimensions are defined: Capacitated Dimension and State
Based Dimension. Each one of them has an AwvailabilityProfile that describes its intrinsic
and planned availability in a given Horizon.

Every SupplyProcessOrder has a set of requirements over the resources assigned for
its fulfillment. These requirements should be expressed according to the availability of
each resource, which is expressed in feasibility dimensions. The concept of Dimension-
Requirement to define all the possible uses of resources is introduced, in correspondence
with each type of feasibility dimension. Therefore, there are two types of requirements
StateBasedRequirement and CapacityRequirement.

5.2. The monitoring reference model. A full description of this reference model can
be found in [43]. It is relevant to emphasize that an instance of this Reference Model is a
self-contained description of the monitoring and monitoring structure of an order or a re-
source, which can be automatically transformed into a particular cause-effect model. The
UML class diagram in Figure 10 presents the monitoring model which has a monitoring
structure based on a cause_effect relationship among Variables. These variables represent
Attribute Variable (resource or order specifications) or EnvironmentVariable affecting a
resource or a supply process order.

The monitoring structure has a set of Milestones. Each milestone defines a point where
a set of variables will be observed. Each Variable of the monitoring structure has one
State that can be ObservedState or EstimatedState. When the state is ObservedState,
the Variable is observed and its value is given. A Variable has an observation policy.
An ObservationPolicy defines the mode, the recurrence and the updating time of the
observed variable. When the state is FEstimatedState, the Variable value is estimated from
the value of other variables using the cause_effect relationship net. To perform this task,
the MonitoringStructure is_analysed_by a MonitoringStructureAnalyzer.

The TargetVariable has a planned Value that is an order specification (for example,
amount and end time) or a resource parameter (for example, geographical positions
planned and production rate planned of the machine). Also, the target variable must
have an estimated Value which is defined by a MonitoringStructureAnalyzer or an ob-
served Value which is a given value of a variable in the monitoring structure.

The TargetVariable is used to evaluate if a disruptive event can occur. This is done by
evaluating conditions between the estimated/observed value and the planned one. When
the disruption condition is verified, a DisruptiveEvent is reported.

= Milestone E Monitori 1 is_analyzed by 1 | MonitoringStructureAnalyzer
- — ! 1 |
£ -) 1. [observationPolicy
| | [1.4 | A
— | __| r .
IE‘ TimeMilestone IEI StateMilestone | e qt vl v‘ variables 5 I;l State
_ caue | H 1
1 1 ™ 14 g 1 1 : LN
| pisruptionCondition - 1] Targetvariable r - —i 1 o ‘ ‘
= 1 |
‘ 1] 1l 1] Q Attribu i I;I Envi ‘\;‘ariible E Eslimaleaslale Q ObservedState
| B :;tlrnatedi - obsdrved | - planned
2.1l | |
- - 0.1 0.1 11
E DisruptiveEvent | =] value 1“'

Ficure 10. UML class diagram of a general monitoring model

A SERVICE-ORIENTED APPROACH 5357

6. Service Implementation.

6.1. Feasibility manager service implementation. In Figure 11, an UML class dia-
gram shows the implementation design. As described in the business processes of Section
3, a Feasibility Manager is proposed to evaluate the feasibility of a schedule and to collab-
oratively repair a disrupted schedule. Any schedule described using the Reference Model
for Disruptive Event Management (Section 5.1) can be automatically transformed into a
Constrain Satisfaction Problem (CSP). This is possible because the feasibility of every
order is captured as generic requirements on two types of resource dimensions: capacity
based and state based. We have derived appropriate constraint templates for each type
of dimension. The resulting Schedule Feasibility Problem is composed by variables and
constraints on these variables that determine whether a set of DimensionRequirements of
the supply process orders can be fulfilled by the assignedResources. By allowing modi-
fications to resource’s planned usage and the attribute values of a supply process order,
different mechanisms for solution searching can be derived.

The Repair Schedule sub-process (Section 3.3) and the CMDESC collaborative business
process (Section 3) define three private operations (Figure 11) for the Feasibility Man-
ager participant: Define Collaboration Scope, Check Schedule Feasibility and Generate
Feasibility Report.

6.1.1. Operation: check schedule feasibility. This is implemented by transforming a por-
tion of a schedule (a disruptive event scope), or a complete schedule into a Schedule
Feasibility Problem using a Model Driven Development approach [44, 45]. This approach
is materialized by a transformation engine which holds the precise mapping between an
instance of the Reference Model for Disruptive Event Management (Section 5.1) (used to
define schedules and schedule related artifacts in this work) and the necessary constraints
and variables to determine the Schedule Feasibility Problem.

This operation is also used to repair a disrupted schedule by the definition of suitable
domains for the variables in the scheduling feasibility problem. These domains imply
modifications using only planned buffers.

The communication implied by the association between the Feasibility Manager and
the CSPSolver in Figure 11 is implemented by two documents, UML artifacts, an XML

«Servicelnterfaces E] cspsolver «artifacts
@ Feasibility Manage ment solves and returns OpiModel
— ; " 01 I 0.1
%RequestSchedule Feasibility Checking () 1 delivers)
o CEIVEIS

462 Refuse to Collaborate [)
% Receive Collaborators Schedule Information ()
% Request Schedule Repair ()

N,

Q TransformatronEngine

”,
~ delivers
_,/
! FeasibilityManager 1 ’ =artifacts -
«Exposen = works with _0..£%] EMRM-instance. XML o
I__| g% Define Collaboration Scope () ’ “mi:ﬂifestx%
% Check Schedule Feasibility () 1 refurns 1 . .
. il «@rtifact=
ﬁ%, anmate Feasibility Report () FeasibilityReport
......... «manifests |
«artifacts 0.1

repairs Schedule

FiGure 11. UML class diagram of the implementation design

5358 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

instance of the Disruptive Event Management Reference Model EMRM.XML, compli-
ant with the XMLSchema (EMRM.XSD) of the reference model; the other artifact is a
OplModel instance, the CSP representation in the IBM ILOG OPL Development Studio
API [46], used as the engine to solve the Schedule Feasibility Problem.

Whenever a successful feasibility search is done, the solution is communicated using
the transformation engine, converting the solution of a CSP into a new specification of
resource usage and planned requirements of a schedule expressed using the EMRM.

6.1.2. Operation: define collaboration scope. This operation determines what additional
information is required to augment the search space of the Schedule Feasibility Problem.
The additional information in terms of a schedule is: Resources and Supply Process Orders
some of them suitable to be modified. An order can be modified, only if every of its
assigned resources belong to the collaboration scope. A Resource usage can be modified
only if all its scheduled orders belong to the collaboration scope. A radial expansion
mechanism was chosen in the implementation of this operation, if feasibility is not found
with a given collaboration scope, it is augmented in a radial fashion, allowing modification
to previously fixed orders. Resources and orders are controlled by different participants,
so in this operation it is also determined who is going to be asked to collaborate. By
modifying the orders in this set, a radial expansion is done including the orders associated
to the resources in the current collaboration scope.

6.1.3. Operation: generate feasibility report. This operation analyzes which resources and
orders have been modified after a feasibility search. It is used to generate the further
message called FeasibilityReportMsg detailed in Appendix A.

6.2. Monitor service implementation. In Figure 12, an UML class diagram shows the
implementation design. As described in the Monitoring Schedule sub-process (Section 3.4)
the Monitor is responsible of monitoring the execution of a schedule. The Monitoring Ref-
erence Model (Section 5.2) allows the definition of all entities required for an automatic
derivation of a monitoring structure that will be used by the Monitor for deciding which
variables are being observed and compared at any time. This structure may include esti-
mated variables whose values can be inferred from causal relationship with other observed
variables. For these cases, the sub-structure corresponding to the cause-effect network is
transformed to a model representation suitable to be processed by the Bayesian Network

sServicelnterfaces = Monitor —
E Moniloring 11 1 = Hugin
| o Poe— GE' Define Monitoring Structure () T | |
{3 Request Monitor Schedule () Expose i Select Active Milestone () |
E&, Cancel Monitor () &2 Evaluate Disruptive Ewent (] g Transfor mationEngine
{5, Update Observed Data () [|

1

1| -
T infers and returns
reports L |1 delivers
0-3 works with U..li 0.1
Ig DisruptiveEvent __ =artifacts
1 | 7| Modellnstance
0.3 0.1
’ 1 1’ artifacts
| | [MRM-instance. XML

0.1

0.1\l
¥
EISupperm(esledel 0. 1newSupplyProcessOrder

¥
newResourceSpecification 0.1 |E|llesouue

[1 1|

FiGUure 12. UML class diagram of the implementation design

A SERVICE-ORIENTED APPROACH 5359

inference engine. The Monitoring Schedule sub-process (Section 3.4) defines three private
operations (Figure 12) for the Monitor participant: Define Monitoring Structure, Select
Active Milestone and Evaluate Disruptive Event. The implementation of these operations
for each kind of monitoring activity identified in the Use Case 2.3.1 is described next.

6.2.1. Operation: monitoring order specification changes. The monitoring structure asso-
ciated with this activity defines three target variables for each SPO. Each variable has a
planned value and an observed value. The planned value corresponds to an attribute of
the SPO (start time, end time or quantity). By default, the Monitor has two milestones to
evaluate if a disruptive event may occur in an order. These are schedule start, order start.
Once the schedule start milestone is activated, the monitor will capture any change in the
planned values for the order target variables (i.e., changes in the order specification) and
when the change is assessed as significant, according to a threshold, the disruptive event
is concluded. When the order start milestone is activated, the actual start time will be
observed and compared with the planned value to evaluate a possible disruptive event.
After this milestone, this activity finishes.

6.2.2. Operation: monitoring current status of resource feasibility. The monitoring struc-
ture associated with this activity defines a target variable for each FeasibilityDimension
associated with a resource. Each variable has a planned value which represents an ex-
pected value of the corresponding feasibility dimension of the resource. It also has an
observed value (current value). The Monitor has a milestone for each DimensionRequire-
ment where the current value is observed and compared against the planned value to
evaluate the occurrence of a disruptive event in that dimension.

6.2.3. Operation: monitoring order progress. The monitoring structure associated with
this activity in general will depend on the type of process since complex cause-effect
relationship among variables may be introduced to improve the predictive capabilities of
a disruptive event. As the order execution may follow different stages, different milestones
can be defined to identify those stages. Each milestone will introduce the relevant variables
to be considered in the stage. The Monitor is responsible for observing the variables at
each milestone, updating their values in the monitoring structure and evaluating the
impact of these variable values on the estimated value of the target variables using the
inference engine of the Bayesian Network, to evaluate if a disruptive event can occur.

Unless an specific structure is designed for the process, a default structure is generated
having two milestones: order start and order end, two target variables: corresponding
to the order end time planned and order amount planned, and one observed variable
indicating a measure of the order progress. This measure is used to infer estimated values
for the target variables and anticipate a disruptive event.

6.2.4. Operation: monitoring changes on resources future expected availability. The mon-
itoring structure is associated with the AwvailabilityProfiles of the resource. For each
capacity profile item there are two target variables in correspondence with the planned
maximum and minimum capacity bounds. For each item in the state profile the planned
value is a given state. The monitoring structure will have one milestone for the schedule
start and one milestone for each item in the availability profile indicating its start time.

Once the schedule start milestone is activated, the monitor will capture any change in
the planned availability values and when the change is assessed as significant, according
to a threshold, the disruptive event is concluded. When every availability item milestone
is activated, the actual availability will be observed and compared with the planned value
to evaluate a possible disruptive event.

5360 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

The Monitor uses two documents, defined as UML artifacts in Figure 12. One is an XML
instance of the Monitoring Reference Model MRM.XML, compliant with the XMLSchema
(MRM.XSD) of the reference model. The other artifact, named Modellnstance is used
whenever a cause-relationship network is being used to predict values for the estimated
variables and is a representation of the Bayesian Network suitable to be processes by the
inference engine [44].

7. Case Studies for Validation. Empirical validations of the CMDESC participants
have been carried out. To validate the Monitor participant, three case studies have been
carried out, and the supply processes modeled are a cheese production process of a dairy
industry [41], a castings production process of a molding industry, and a marine freight
transport process.

Based on the Monitoring Reference Model (Section 5.2) the cause-effect relationship
models of the Monitor participant have been generated. Particularly these are probabilis-
tic models based on Bayesian network for prediction functions. To process these models
the Monitor participant uses the inference engine of [47]. In each case the ability of the
Monitor to anticipate disruptive events has been evaluated.

To validate the Feasibility Manager participant, a commodity chemical supply chain has
been used as case of study. Based on the Monitoring the Schedule Feasibility Problems
are built using a Model Driven Development [44, 45] transformation described in Service
Implementation section. Following, a case study is described.

7.1. Case study for a commodity chemical supply chain. The control actions are
generated using the abilities of the Feasibility Manager participant. Schedules are de-
scribed using the same reference model, and exception detection and repair actions are
fulfilled using the Repair Mechanism.

In this supply chain a fertilizer (Urea) is produced, warehoused and distributed to
three geographically distant distribution centers (DCs). The factory warehouse is located
in Bahia Blanca (FWBahiaBlanca), Argentina, and DCs are: “Urea-DCSanLorenzo” at
San Lorenzo, Argentina; “Urea-DCUruguay”, at Montevideo, Uruguay; “Urea-DCBrasil”,
at Rio Grande, Brasil. The distribution centers are sourced by means of dedicated ships
through fluvial and maritime routes. Table 1 presents the average trip times in hours.

TABLE 1. Average trip times in hours

Urea-DCSanLorenzo | Urea-DCUruguay | Urea-DC Brasil
FW BahiaBlanca 96 144 168
Urea-DCUruguay - - 60

A Distribution Resource Planning system is used to generate a distribution schedule for
a scheduling horizon of 33 days. In this schedule, product availability in FWBahiaBlanca
is considered to be unlimited, this means that stock, demand and supply is managed for
each distribution center attending constraints regarding to: Ships routes and availabil-
ity, loading dock availability at factory warehouse, and inventory size and safety stocks
constraints at each DC.

7.1.1. Resources and their availability. In Figure 13 the projected available inventory of
urea is shown for distribution centers Brasil, based on the outcome of the DRP. As seen on
the figure there are two replenishments for DC-Brasil. These replenishments imply coor-
dination and timing for the involved resources. Using the reference model replenishments
are modeled as transfers from Bahia Blanca to each DC, using the corresponding ship,

A SERVICE-ORIENTED APPROACH 5361

20000

18000]
16000 rL' n
14000 ' I—L' J
c |
2 12000 [T ,
& 10000 ’ LL‘ ’
5 s000 , LL' ’
5 eooo | 1| Lo
b o
2000 LL'._,‘
0 ‘ ‘ ‘
0 200 400 600 800

Hour

Ficure 13. Urea-DCBrasil projected available inventory

State "Brasil"

State
"FwBahiaBlanca" I
1

"FwBahiaBlanca-
Brasil"

0 100 200 300 400 500 600 700 800

FiGURrE 14. Ship-DCBrasil scheduled states profile

[| L

£ urea-DCBahiaBlanca : Resource | ¥ ansfer-26 : SupplyProcessOrder | | £ urea-DCSanLorenzo : Resource

| |
£ wea-DCRabiaBlanca : CopacityDimension || £ ship-DCBrasi: Resource | £ urea-DCSanl orenzo : CapacityDimension

] loadingDock : CapacityDimension loadingDock-BahiaBlanca : Resource

F1GURE 15. Transfer-26 supply process order

loading dock and inventory resource at DC, like the supply process transfer-26 depicted
in Figure 15. This figure also shows how the implied resources are modeled.

Ships are coordinated with regards to its capacity and geographical position, Figure 14
shows the geographical position (a stateBasedDimension of every ship Resource) in form
of a Gantt chart (representing the ScheduledStatesProfile) for ship Ship-DCBrasil along
scheduling horizon.

Inventory resources in this case of study, modeled with a single CapacityDimension, only
have a maximum capacity constraint captured in the scheduledCapacityProfile. There are
three of them, one for each DC, with a maximum capacity of 30000, 20000, 20000 tons
in San Lorenzo, Uruguay and Brasil respectively. The loading dock in this case of study
acts as a renewable resource, and the requirements it attends are of type Renewable and
its projected availability can be seen in Figure 16.

5362 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

|1

Q 1040 200 200 400 =00 SO0 7O 200

Haouirs

0

FIGURE 16. loadingDock-BB Projected AvailableCapacity

7.1.2. SupplyProcesOrders and their specification. Each DC has a list of Supply Process
Orders (SPO) (customers’ orders) to serve, which for this example are set together as a
daily shipment for each of the 33 days. Each one of these SPO imposes a CapacityRe-
quirement on the corresponding inventory resource.

In this case, the shipments from each DC have the following scheduling/rescheduling
policy: Each order has a time window for its dispatch, if it was originally scheduled for
day d, in case of a repair procedure it cannot be dispatched outside the week that contains
day d. Some orders allow quantity modifications buy they cannot exceed 10 percent of
the original value.

The replenishments to the DCs, that is transfers SPOs, are scheduled with a specific
timing in the scheduling horizon, but, in case a of a repair procedure, their timing specifi-
cation can be changed as long as resources capacities (inventories and ship capacity) and
states (geographical position of ships) allow these changes. Transfer quantities are only
limited by ships.

At the factory warehouse, the ships are loaded at a constant rate of 1000 tons/hour.
And in DCs ships are downloaded at a constant rate of 250 tons/hour in San Lorenzo and
Uruguay, and at 425 tons/hour in Brasil.

In exceptional situations the supply from Bahia Blanca to Brasil can be done by a
3PL (third party logistics provider) that by contract provides a transportation capacity
of 17000 tons with a delivery time of 7 days. This optional process is modeled as a
spareOrder (also cancellable) that requires for its execution resources loadingDock-BB
(to load Urea) and Urea-DCBrasil (to download urea at Brasil).

7.1.3. Predict and detect disruptive events. The monitoring function performs four main
activities during the execution of a schedule (Use Case 2.3.1). These are: monitoring
order specification changes, monitoring current status of resource feasibility, monitoring
order progress and monitoring changes on resource’s future expected availability. The
monitoring structure is generated using the Monitoring Reference Model (Section 5.2).

In this supply process, the navigation conditions of the ship can be unfavorable due to
the weather conditions (storms, winds, etc.). These unfavorable weather conditions are
more frequent in the winter season and can produce a delay in the ship arrives to the
port. The delay can be increased if in the arrival port or in the intermediate ports there
are unfavorable weather conditions or the port is congested. This prevent to carry out
unload operations. The Ship-DCBrasil can carry orders to ports on Uruguay and Brasil.
The MonitoringStructure for monitoring the progress of this maritime transport order is
graphically represented in Figure 17.

7.1.4. Unezxpected events in the case study. To illustrate the capabilities of the Feasibility
Manager in the case study two different scenarios generated due to two disruptive events
notified by the Monitoring System are considered. They are the resource Ship-DCBrasil
becomes unavailable, and unexpected increase in demand at DC-Uruguay has occurred.

Scenario 7.1.4.1. Resource Ship-DCBrasil becomes unavailable. Ship-DCBra- sil
becomes unavailable since day 17 (400 hours in the timeline) and onwards. From visual

5363

3. arrival to RioGrande port estimated delay in arrival

~effect
~effiect \ effact
“calse, -Cause
delay in trans\t‘ congestion

-effect

A SERVICE-ORIENTED APPROACH

arrival to intermediate position 2 arrival ko Montevideo port

+effect -effect -effect
-effec)
~cause,
delay in transit

-effect

arrival to intermediate position

depart of the BahisBlanca port | [arrival to intermediats position 1

-effect

-effect
-cause

delay in_bransit

-cause

delay in_transit

-effiect
-cause

navigstion condition
-cause

navigation_condition

-cause

delay in_transit Cause

congestion

-effect

-effect
-cause

navigation condition

-cause

navigation condition

weather condition at port

weather condition at port -cause

-effe

effed
navigation_condition |

-effe

Tffoct effect

-cause | -

season

FIGURE 17. MonitoringStructure of a marine transport order

inspection on Figure 14, the second transfer from Bahia Blanca to Brasil will be infeasible,
and this also will make impossible to fulfill DC-Brasil customer orders.

The Feasibility Manager receives an FventScope and generates the corresponding Sched-
ule Feasibility Problem for every step of the feasibility search procedure detailed in the
Service Implementation.

The FEventScope is composed by resource Ship-DCBrasil in the set of Resources, together
with its scheduled orders. Table 2 shows how the CollaborationScope is expanded starting
from the FwventScope by requiring successive collaborations; in the second request for
collaboration feasibility is found.

TABLE 2. Schedule expansion through successive collaboration, disruptive

event 1
Ezxpansion Resources FixedSPO VariableSPO
EventScope Ship-DCBrasil Ship-DCBrasil.scheduledOrders ()
Collaboration Ship-DCBrasil | Urea-DCBrasil.scheduledOrders | transfer-Urea-BahiaBlanca-DCBrasil-7
Scope 1 Urea-DCBrasil | loadingDock-BB.scheduledOrders | transfer-Urea-BahiaBlanca-DCBrasil-26

loadingDock-BB

Collaboration
Scope 2

Ship-DCBrasil
Urea-DCBrasil
loadingDock-BB

Urea-DCBrasil.scheduledOrders
loadingDock-BB.scheduledOrders

transfer-Urea-BahiaBlanca-DCBrasil-7
transfer-Urea-BahiaBlanca-DCBrasil-26
spare-Urea-BahiaBlanca-DCBrasil-1

spareShip

Summary of changes introduced in the schedule to restore feasibility:

SPO transfer-Urea-BahiaBlanca-DCBrasil-26 has been cancelled.

SPO spare-Urea-BahiaBlanca-DCBrasil-1 was activated during the repair process with
the following specification: order quantity: 17000; order startTime: 383; order endTime:
608 and the following requirements specification:

CapacityRequirement: load urea at Bahia Blanca, involving resource loadingDock-BB
starts at 383h and ends at 400h, with a duration of 17h.

CapacityRequirement: load urea at Bahia Blanca, involving resource spareShip starts
at 383h and ends at 400h, with a duration of 17h.

StateBasedRequirement: arrive and stay in state Rio Grande, to download Urea at DC
in Rio Grande Brasil, involving resource spareShip starts at 568h ends at 608h, with
duration of 40h.

CapacityRequirement: download urea to DC in Rio Grande Brasil, involving resource
spareShip starts at 568 and ends at 608, with duration of 40h.

CapacityRequirement: download urea to DC in Rio Grande Brasil, involving resource
Urea-DCBrasil starts at 568 and ends at 608, with duration of 40h.

5364 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

Scenario 7.1.4.2. Unexpected increase in demand at DC-Uruguay. The supply
chain of this example shares the Urea Market with another provider and its supply chain.
At Uruguay a competitors Distribution center temporarily runs out of stock, forcing its
clients to supply from Urea-DCUruguay. As a result, the daily shipments scheduled from
day 10 to 19 have an increase in their order quantity.

Simulating the effects of this event on Urea-DCUruguay inventory (Capacity Dimension:
Urea-DCUruguay-capDim), an important infeasibility clearly appears as seen in Figure
18, as the curve labeled “Exception”.

The Feasibility Manager receives this time the whole schedule as the FventScope and
returns the following results: A set of 9 orders are modified (within planned implicit and
explicit slacks) in order to restore feasibility. In Figure 18 is visible how the solution of
the mechanism is closely related to the original schedule. The second Urea transfer is put
forward and the other modifications consisted in slightly reducing some orders quantities
in order to restore feasibility preserving most of the original schedule.

FELL

[nyantory Pasltion
—
—

FIGURE 18. Urea-DCUruguay projected available inventory (exception and solution)

8. Discussion and Future Work. In this work, we have presented a comprehensive
proposal to systematically address the problem of Collaborative Management of Disruptive
FEvents in Supply Chains. Both academic and industrial researchers have identified this
problem as not being adequately covered by state of the art solutions in the SCEM
systems. Moreover, the ability to automatically detect disruptions and repair them locally
without affecting coordinated and coexistent schedules within a supply chain, is recognized
to be a major competitive advantage in next generation of SCM systems.

Our proposal includes the definition of a business process conceived to be executed col-
laboratively by independent supply chain partners with the intention of providing system
support for companies willing to engage in collaboration agreements for controlling the
execution of their supply processes.

Using this novel business process, we developed a complete service-oriented solution
applying standard SOMA techniques in order to derive the architecture, define the services
interfaces, the service data models and the choreographies representing the collaborations.
The application of this technique allows the generation of the SOA specifications in full
compliance with the business process and its requirements.

Following the principles of MDD (model driven development), the SOA specification
proposed is independent of the implementation and therefore suitable for expressing the
details of the collaboration contracts among different companies running their processes
on different technological platforms.

A SERVICE-ORIENTED APPROACH 5365

The service operations identified in this solution can be implemented following differ-
ent strategies, but the interfaces specified provide a consistent system support for the
companies to interoperate.

The consistency of interoperation is also granted in the semantic level by complementing
the SOA specification with reference models that provide the basis for the definition of
the business documents being exchanged among the participants.

The proposed reference models accomplish the description of the problem information
in a very high level of abstraction and therefore are applicable to a wide range of supply
chain processes, from procurement, manufacturing, distribution, and retailing domains.
In particular, the reference models proposed also have the characteristic of providing
self-contained descriptions of the information required for the decision making activities
involved in the business process. This feature enables the possibility of automating the
generation of decision models expressed in standard representations for decision making
tools (as mathematical programming solvers or inference engines).

In order to validate our proposal we have developed specific implementation for the
two specialized services in the solution: the Feasibility Management and the Monitoring
services. In both implementations, we take advantage of the generality of the reference
models to deploy highly automated decision making procedures.

The Feasibility Management implementation we propose is able to provide generic feasi-
bility checking and repair mechanisms for local adjustments of the coordinated execution
schedule within the space of slacks already provided in the planned operations. This
level of intervention is the most suitable for being delegated into automated procedures
avoiding the need for triggering complex re-planning iterations.

The Monitoring implementation we propose also exploit the generality of the reference
models by framing the monitoring task into four well-identified activities that will cap-
ture the disruptive events that are rooted either on the orders dynamic or the resource
availability. For those processes where it is possible to identify measurable variables with
predictive ability to anticipate the disruption through causal relationships, the implemen-
tation increase the pro-activity of the monitoring task by supporting these prediction with
inference engines.

The implementation strategy has been tested and illustrated with a case study from a
commodity chemical supply chain. In the case study typical disruptions were captured,
assessed and repaired by using the services described in this paper. There are some issues
that need to be addressed further for the proposal in this work to be effectively deployed
in real world scenarios. First, the generality of the reference models impose the burden
of creating very rich and dense documents that collect information normally disperse in
different business applications and databases. We understand that this is not a simple
task in nowadays enterprise software. However, as the service oriented approach gains
momentum in the industry, and the concepts of cross-organizational information buses
are becoming more and more popular, the gap for the requirements in this proposal will
narrow in the short future.

The ability for the monitoring function increase their proactive capabilities by using
predictive models in the current status of this proposal is still limited to the design of
ad-hoc causal relationship networks. Although the construction of specialized libraries
for commonly used supply process types can be conceived as a practical solution, there
are opportunities for extending the autonomy in the generation of these networks.

Acknowledgment. This work is partially supported by Consejo Nacional de Investiga-
ciones Cientficas y Tcnicas (CONICET) and Agencia Nacional de Promocin Cientfica y

5366 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

Tecnolgica (ANPCyT). The authors also gratefully acknowledge the helpful comments
and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] C. Soosay, P. Hyland and M. Ferrer, Supply chain collaboration: Capabilities for continuous inno-
vation, Supply Chain Management, vol.13, no.2, pp.160-169, 2008.

[2] R. Derrouiche, G. Neubert and A. Bouras, Supply chain management: A framework to characterize
the collaborative strategies, International Journal of Computer Integrated Manufacturing, vol.21,
no.4, pp.426-439, 2008.

[3] P. R. Kleindorfer and G. H. Saad, Managing disruption risks in supply chains, Production and
Operations Management, vol.14, no.1, pp.53-68, 2005.

[4] H. L. Lee, V. Padmanabhan and S. Whang, The bullwhip effect in supply chains, Sloan Management
Review, vol.38, no.3, pp.93-102, 1997.

[5] N. Radjou, L. M. Orlov and T. Nakashima, Adapting to supply network change, The TechStrategy
Report, 2002.

[6] L. Zhao, L. Qu and M. Liu, Disruption coordination of closed-loop supply chain network (i) — Models
and theorems, International Journal of Innovative Computing, Information and Control, vol.4, no.11,
pPp-2955-2964, 2008.

[7] L. Zhao, M. Liu and L. Qu, Disruption coordination of closed-loop supply chain network (ii) —
Analysis and simulations, International Journal of Innovative Computing, Information and Control,
vol.5, no.2, pp.511-520, 2009.

[8] V. Landeghem and H. Vanmaele, Robust planning: A new paradigm for demand chain planning,
Journal of Operations Management, vol.20, pp.769-783, 2002.

[9] H. L. Lee, The triple — A supply chain, Harvard Business Review, vol.82, n0.10, pp.103-112, 2004.

[10] G. E. Vieira, J. W. Herrmann and E. Lin, Rescheduling manufacturing systems: A framework of
strategies, policies, and methods, Journal of Scheduling, vol.6, no.1, 2003.

[11] H. Aytug et al., Executing production schedules in the face of uncertainties: A review and some
future directions, European Journal of Operational Research, vol.161, no.1, pp.86-110, 2005.

[12] A. Adhitya, R. Srinivasan and I. A. Karimi, A model-based rescheduling framework for managing
abnormal supply chain events, Computers and Chemical Engineering, 2006.

[13] A. Pfeiffera, B. Kddéara and L. Monostoria, Stability-oriented evaluation of rescheduling strategies,
by using simulation, Computers in Industry, vol.58, no.7, pp.630-643, 2007.

[14] X. Wang, A. Liang, C. Xu and D. Yang, Analysis and design of decision support system of disruption
management in logistics scheduling, International Journal of Innovative Computing, Information and
Control, vol.5, no.6, pp.1559-1568, 2009.

[15] N. Masing, SC Fvent Management as Strategic Perspectiva — Market Study: CMDESC Software
Performance in the European Market, Master Thesis, Universitié du Québec en Outaouasis, 2003.

[16] R. Zimmermann, Agent-based supply network event management, in Whitestein Series in Software
Agent Techonologies, M. Walliser, S. Brantschen, M. Calisti and T. Hempfling (eds.), 2006.

[17] K. Knickle and J. Kemmeler, Supply chain event management in the field success with visibility,
AMR Research, Boston, 2002.

[18] N. Montgomery and R. Waheed, Event management enables companies to take control of extended
supply chains, AMR Research, 2001.

[19] Q. Guo and M. Zhang, A novel approach for multi-agent-based intelligent manufacturing system,
Information Sciences, vol.179, pp.3079-3090, 2009.

[20] O. Hoffmann, D. Deschner, S. Reinheimer and F. Bodendorf, Agent-supported information retrieval
in the logistic chain, Proc. of the 32nd Hawaii International Conference on System Sciences, Maui,
1999.

[21] M. Kéarkkdinen, K. Framling and T. Ala-Risku, Integrating material and information flows using a
distributed peer-to-peer information system, in Collaborative System Production Management, H. S.
Jaddev, J. C. Wortmann and H. J. Pets (eds.), Boston, Kuwer Academic Publishers, 2003.

[22] R. Schoenthaler and C. Alvarenga, A new take on supply chain event management, Supply Chain
Management Review, 2003.

[23] J. K. Speyerer and A. J. Zeller, Managing supply networks, symptom recognition and diagnostic
analysis with web services, Proc. of the 37th Hawaii International Conference on System Sciencies,
2004.

A SERVICE-ORIENTED APPROACH 5367

[24] N. B. Szirbik, J. C. Wortmann, D. K. Hammer, J. B. M. Goosenaerts and A. T. M. Aerts, Mediat-
ing negotations in a virtual enterprise via mobile agents. Proc. of the Academia/Industry Working
Conference on Research Challenges, IEEE Computer Society, Buffalo, NY, USA, pp.237-242, 2000.

[25] F. Teuteberg and D. Schreber, Mobile computing and auto-ID technologies in supply chain event
management — An agent-based approach, Proc. of the 13th European Conference on Information
Systems, Regensburg, Germany, 2005.

[26] T. Bui, C. Hempsch, H. Sebastian and T. Bosse, A multi-agent simulation framework for automated
negotiation in order promising, Proc. of the 15th Americas Conference on Information Systems, San
Francisco, CA, USA, 2009.

[27] S. Bussmann, N. R. Jennings and M. Wooldridge, Multiagent systems for manufacturing control:
A design methodology, in Springer Series on Agent Technology, T. Ishida, N. R. Jennings and K.
Sycara (eds.), Berlin Heidelberg, Springer-Verlag, 2004.

[28] A. C. A. Cauvin, A. F. A. Ferrarini and E. T. E. Tranvouez, Disruption management in distributed
enterprises: A multi-agent modelling and simulation of cooperative recovery behaviours, Interna-
tional Journal Production Economics, vol.122, pp.429-439, 2009.

[29] P. Leitao, An Agile and Adaptive Holonic Architecture for Manufacturing Control, Ph.D. Thesis,
Department of Electrotechnical Engineering Polytechnic Institute of Braganca, University of Porto,
http://www.ipb.pt/pleitao, Portugal, 2004.

[30] L. Monostori, E. Szelke and B. Kadar, Management of changes and disturbances in manufacturing
systems, Annual Reviews in Control, vol.22, pp.85-97, 1998.

[31] L. Ribeiro, J. Barata and A. Colombo, Supporting agile supply chains using a service-oriented shop
floor, Engineering Applications of Artificial Intelligence, vol.22, pp.950-960, 2009.

[32] W. Shen and D. H. Norrie, An agent-based approach for manufacturing enterprise integration and
supply chain management, Proc. of the 8rd International Conference on the Practical Applications
of Agents and Multi-Agents Systems, PAAM, 1998.

[33] J. Swaminathan, S. Smith and N. Sadeh, Modeling supply chain dynamics: A multiagent approach,
Decision Sciences, vol.29, no.3, 1998.

[34] K. Van Dam, A. Adhitya, R. Srinivasan and Z. Lukszo, Critical evaluation of paradigms for modelling
integrated supply chains, Computers €& Chemical Engineering, vol.33, no.10, pp.1711-1726, 2009.

[35] L.-C. Wang and S.-K. Lin, A multi-agent based agile manufacturing planning and control system,
Computers & Industrial Engineering, vol.57, pp.620-640, 2009.

[36] M. P. Papazoglou and W. Van Den Heuvel, Service oriented architectures: Approaches, technologies
and research issues, VLDB Journal, vol.16, no.3, pp.389-415, 2007.

[37] Object Management Group, Unified Modeling Language (UML), Version 2.3, http://www.omg.org/
spec/UML/2.3/, 2010.

[38] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy and K. Holley, SOMA: A method for
developing service-oriented solutions, IBM Systems Journal, vol.47, no.3, pp.377-396, 2008.

[39] Object Management Group, Business Process Model and Notation (BPMN), Version 2.0, http://
www.omg.org/spec/BPMN/2.0/, 2011.

[40] Object Management Group, Service Oriented Architecture Modeling Language (SoaML), Version 1.0
- Beta 2, http://www.omg.org/spec/SoaML/, 2009.

[41] A. Guarnaschelli, O. Chiotti and E. Salomone, Service oriented approach for autonomous exception
management in supply chains, I3F 2010, pp.292-303, 2010.

[42] T. BedraxWeiss, C. McGann and S. Ramakrishnan, Formalizing resources for planning, Proc. of the
18th International Conference on Automated Planning and Scheduling, Ttaly, Trento, 2003.

[43] E. Fernndez, E. Salomone and O. Chiotti, Model based on Bayesian networks for monitoring events
in the supply chain, IFIP Advances in Information and Communication Technology, vol.338, pp.358-
365, 2010.

[44] S. Mellor, K. Scott, A. Uhl and D. Weise, MDA Distilled, Principles of Model Driven Architecture,
Addison-Wesley Professional, Addison-Wesley, 2004.

[45] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models Ready for MDA,
2nd Edition, Addison-Wesley, 2003.

[46] IBM ILOG OPL Development Studio APIL

[47] Hugin Expert A/S, Hugin Researcher, www.hugin.com, 2010.

Appendix A. Messages of the CMDESC Business Process. In this appendix, we
define the specific messages exchanged among the participants of the proposed business

5368 A. GUARNASCHELLI, E. FERNANDEZ, O. CHIOTTI AND H. E. SALOMONE

process. A first group of messages is related to conveying information about the schedule
and disruptive events. The structure of these messages is shown in Figure 19.

ScheduleMsg. This message is sent by an execution system or any other client, user
of the Controller in this business process. As has been defined previously, a schedule may
contain a vast variety of synchronized resources and supply processes. In order to support
the diversity and complexity of coexisting schedules, in this business process a schedule
is defined as a message containing schedule information compliant with the Reference
Model for Event Management [38]. This reference model provides a common language to
describe and understand supply processes and the interaction between them and resources
throughout the supply chain. The description obtained by using this reference model is
enough to assess feasibility of execution. The structure of this message is shown in Figure
19.

DisrupriveEventMsg. This message contains the set of resources and supply process
orders affected by the disruptive event. The structure of this message is shown in Figure
19.

EventScopeMsg. This message contains the scope of the disruptive event defined
with the task Define Event Scope. The structure of this message is shown in Figure 19.

CollaborationRepairRequestMsg. This message contains the identification of re-
sources and supply process orders required to keep searching for feasibility in the Schedule
represented by the Collaboration Scope. The structure of this message is shown in Figure
19.

FeasibilityReportMsg. This message is defined whenever a Check Feasibility or
Repair Schedule Sub-process ends. It contains information regarding a successful search
for feasibility and the changes introduced in the schedule to obtain it. And if collaboration
from other SC members was necessary a detail of the collaborations involved. When
this message is sent after a Check Feasibility Request sub-process ends it only contains
information on whether the schedule remains feasible or not. The structure of this message
is shown in Figure 19.

M T «MessageType= «MessageTypes
1 E:::.?E;;E:SQ Q CollaborationRepairRequestMsg Q ScheduleMsg
[Eg, controllerld : 5tring [Eg controllerd : String [Cg Controllerld : String

[Eg repairCollaborationDetails : String

N el
=

«MessageTypes S L R—
| pisruptiveEventMsg 0"1| [" =~ S:I':ﬂeedsalaeg;;ﬁ:;lﬂsg

&l Q SupplyProcessOrder

0.1
0 1 [Eg timing : TimeWindow
* [Eg orderQuantity : Integer ! Y
+ assignedResource [Eg minQuantity : Integer U..l__B
0.1 & g maxQuantity : Integer
=] E Resource * I_F‘E cancellable : Boolean ahessageTypes
ﬁ'i 5 controlledBy : Controller+ scheduledQOrder =1 spareOrder rBoolean Q FeasibilityReportMsg
[Eg fixedSPO : Boolean [feasibilityStatus : Boolean
1| v | [Eg controllerBy : Controller [C collaborationRepairl og : String
—&— 1
+ newResourceSpecification + newSPOSpecification T P 0.1
I Voo
0.1

F1GURE 19. Schedule related messages and DisruptiveEventMsg

