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Abstract. We consider the adaptive filtering problem for estimating the randomly
changing risk premium and its system parameters for zero-coupon bond models. The
term structure model for a zero-coupon bond is formulated including the stochastic risk-
premium factor. We specify our observation data from the yield curve and bond data
which are used to hedge some option claims. For the fixed system parameters, the Kalman
filter for the risk-premium and the factor process is constructed first. Secondly, by using
the parallel filtering technique and resampling technique commonly used in particle filters,
the on-line estimation algorithm for model parameters is constructed. Some simulation
studies are finally presented.
Keywords: Adaptive parameter estimation, Kalman filter, Bond market, Term struc-
ture model, Stochastic risk premium

1. Introduction. In finance, “hedging” is one of the most important mechanisms of
reducing the investment risk, and is an essential part of modern financial activities. In
order to carry out hedging, we first specify the model structure of the underlying assets.
We then need to identify the model parameters of the considered model from the observed
data. This leads to inconsistency, as the model is formulated in the risk-neutral world for
pricing purposes, while model parameters are estimated in the real world. This difficulty
can be resolved by introducing market price of risk terms. In this paper, where we
consider the bound market, we develop an adaptive method for parameter identification
and estimation of the market price of risk for subsequent hedging procedure.

The arbitrage-free approach to modeling the term structure of interest rates is initiated
and clearly developed by Heath, Jarrow and Morton [15], known as the HJM framework.
This model is based on the specification of term structure of forward rates in terms of the
initial forward rate curve and the forward rate volatility. For calibrating this volatility,
there exist many approaches, e.g., in [7, 9, 11, 14, 16]. Recently, starting from a simple
short rate model, we proposed a general affine term structure model for bonds with infinite
noise sources in [1, 3, 5]. This modeling enabled us to identify model parameters through
the Kalman filter without any need to add artificial noises. From the practical study of
bond returns, Cochrame and Piazzesi [12] reported that there exists “predictability ” in
bond returns. This phenomenon may be explained by introducing some stochastic risk
premium term on bonds and Collin-Dufresne and Goldstein propose a new dynamics of
this risk premium term with feedback of noise sources from the forward rate dynamics
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in [13]. In this paper, we include this stochastic premium dynamics in the factor model
treated in [3]. Noting that the stochastic risk-premium is not a tradable asset, we should
estimate this process from the market data for hedging some option claims. Although
the yield curve data from the market is used in [3], we also include some bond data
used for hedging some option claims. The main purpose of this paper is to establish the
estimation procedure for the stochastic risk-premium from the augmented data of yield
curve and some bond data and jointly estimating the systems parameters included in the
risk-premium dynamics.
The market studied here becomes incomplete due to the fact that the market price of

risk is a stochastic process. This implies that we cannot perfectly hedge the risk in the
usual sense [15]. One possibility is to introduce the mean-variance hedging procedure
[17]. Although in this paper we do not treat the mean-variance hedging procedure, the
on-line estimation procedure developed in this paper can be directly incorporated in the
mean-variance hedging.
In Section 2, we review the term structure model proposed in [3] with the stochastic

risk-premium given in [13]. The observation model for yield curve data is presented in
Section 3 and the statistical identification method for the volatility of the forward rate
is presented in [4]. Section 4 is devoted to augmenting the yield curve, and two bond
data, that are used to construct a portfolio, as the new observation data. In Section 5,
we construct the adaptive Kalman filter to estimate the stochastic risk premium, factor
process and unknown systems parameters by using the parallel filter algorithm given in
[8, 10]. In Section 6, we present some simulation results for demonstrating the feasibility
of the proposed estimation procedure. In the final section, we conclude the paper.

2. Forward Rate Model with Stochastic Risk Premia. Let (Ω,F ,P) be a prob-
ability space endowed with the filtration Ft≥0. The time variable t is defined on [0, tf ]

and the time-to-maturity variable x is defined on the extended region G̃ =]0, T̂ + tf [. We

work with the usual Sobolev space H1(G̃) and the inner product (·, ·) with its norm || · ||
in L2(G̃). Now we present the instantaneous forward rate f(t, x) as

df(t, x) =
∂f(t, x)

∂x
dt+

(
1

2

d

dx
q̃(x)− λ(t)qλ(x)

)
dt+ dw(t, x) (1)

f(0, x) = fo(x) (2)

where w(t, x) denotes the two parameter Brownian motion with

Ẽ{w(t, x1)w(t, x2)} = q(x1, x2)t,

q̃(x) =

∫ x

0

∫ x

0

q(x1, x2)dx1dx2, (3)

and λ(t) is the stochastic market price of risk multiplied by some deterministic function
qλ(x).
We list some typical cases for the risk-premium term:

1. λ ≡ 0. In this case, the measure P becomes a risk neutral measure and there exists
no arbitrage opportunity.

2. λqλ(x) = Cλ
d
dx
q̃(x) for some constant Cλ. In this case, we can apply the MLE

method to identifying this constant Cλ from [3].
3. λ(t) is a solution of the stochastic differential equation with some noise sources

which are independent of the forward rate noise. The estimation procedure has been
proposed in [4].
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4. λ(t) is a solution of a stochastic differential equation with feedback of noise sources
from the forward rate model. This modeling comes form the evidence of “predictabil-
ity” in bond returns studied in [12].

In this paper, we study the situation stated in case 4 above and choose the model
specified by Collin-Dfresne and Goldstein in [13]:

dλ(t) = (aλ(t) + b)dt+ (σλ, dw(t, ·)), λ(0) = λo (4)

where a and b are constants and ||σλ||2 < ∞.

Theorem 2.1. Under
(C-1) fo ∈ L2(Ω, H1(G))

(C-2)
∫
G

∂2q(x,y)
∂x∂y |y=x

dx < ∞
(C-3) λo ∈ L2(Ω;R1)
and
(C-4) qλ ∈ H1(G), σλ ∈ L2(G), a and b are constants, we have

f ∈ L2
(
Ω;C([0, tf ];H

1(]0, T̂ [))
)
, (5)

λ ∈ L2(Ω;C([0, tf ];R
1)). (6)

Proof: From (C-1) and
∫
G
q(x, x)dx < ∞, we can show that (4) has a unique solution

in (6). By using the technique used in [1, 3], (5) can be derived.

3. Yield Curve Data and Identification of Volatility. We set continuously com-
pounded yields on zero-coupon bonds with fixed time-to-maturity as our new observation
data:

yi(t) =
1

τi

∫ τi

0

f(t, x)dx, for τ1 < τ2 < · · · < τm. (7)

Define

Y (t) = [yi(t)]m×1.

Then

dY (t) = Hδf(t, ·)dt− λ(t)

[
1

τi

∫ τi

0

qλdx

]
m×1

dt

+
1

2

[
1

τi
q̃(τi)

]
m×1

dt+

[
1

τi

∫ τi

0

dw(t, x)dx

]
m×1

, (8)

where

Hδ[·] =
[
1

τi

∫
G

(δ(x− τi)− δ(x))(·)dx
]
m×1

.

By using Ito’s formula, we have

Y (t)Y
′
(t)−

∫ t

0
dY

′
(s)Y (s)−

∫ t

0
Y (s)dY

′
(s)

t
=

[
1

τiτj

∫ τi

0

∫ τj

0

q(x1, x2)dx1dx2

]
m×m

. (9)

Noting that the volatility kernel 1
τiτj

∫ τi
0

∫ τj
0

q(x1, x2)dx1dx2 can be obtained from (9), and

setting some functional form of q with some unknown parameters, we can identify this
kernel by using the least square method as already established in [4].
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4. Filtering and Augmented Observation. In addition to the yield curve data, we
also observe the bond data which are used for hedging the option claims. Here we con-
sider the European call option (P (Tm, TM) −K)+ where K denotes the strike price and
P (Tm, TM) denotes the bond price at time Tm with the maturity TM . We construct the
following portfolio:

V (t, θ) = P (t, Tm)x0 +

∫ t

0

θ(s)dP (s, TM), (10)

where P (t, Tm)(P (t, TM)) denotes the bond price at present time t with the maturity
Tm(TM) and is given by

P (t, Tm) = exp

{
−
∫ Tm−t

0

f(t, x)dx

}
. (11)

Furthermore, x0 is an initial investment for the bond P (t, Tm) and the portfolio θ(t)
denotes the amount of the bond P (t, TM) which is kept at time t. Now we observe the
whole processes P (t, Tm) and P (t, TM) for 0 ≤ t ≤ Tm. Hence, we construct the following
data:

Ỹ (t) = − log
P (t, TM)

P (t, Tm)
.

Noting that

Ỹ (t) =

∫ TM−t

Tm−t

f(t, x)dx,

we have

dỸ (t) =
1

2

(∫ TM−t

Tm−t

∫ TM−t

Tm−t

q(x1, x2)dx1dx2 + 2

∫ Tm−t

0

∫ TM−t

Tm−t

q(x1, x2)dx1dx2

)
dt

+

∫ TM−t

Tm−t

dw(t, x)dx− λ(t)

∫ TM−t

Tm−t

qλ(x)dxdt. (12)

The observation process Ỹ (t) then becomes

dỸ (t) = −λ(t)H(t)qλdt+
1

2
F (t)dt+H(t)dw(t, ·), (13)

where

F =

[∫ TM−t

Tm−t

∫ TM−t

Tm−t

q(x1, x2)dx1dx2 + 2

∫ Tm−t

0

∫ TM−t

Tm−t

q(x1, x2)dx1dx2

]
H(t)[·] =

[∫ TM−t

Tm−t

(·)dx
]
.

We now construct the augmented observation process Y⃗ (t) = [Y (t), Ỹ (t)]
′
and this

satisfies

dY⃗ (t) = H⃗δf(t, ·)dt− λ(t)H⃗(t)qλdt+
1

2
F⃗ (t)dt+ H⃗(t)dw(t, ·), (14)

where

H⃗δ[·] =
[
Hδ[·]
0

]
=

[ [
1
τi

∫
G
(δ(x− τi)− δ(x))(·)dx

]
m×1

0

]
(m+1)×1

,
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and

F⃗ =

 [
1
τi
q̃(τi)

]
m×1∫ TM−t

Tm−t

∫ TM−t

Tm−t
q(x1, x2)dx1dx2 + 2

∫ Tm−t

0

∫ TM−t

Tm−t
q(x1, x2)dx1dx2


(m+1)×1

H⃗(t)qλ =

 [ 1
τi

∫ τi
0
qλdx

]
m×1∫ TM−t

Tm−t
qλdx


(m+1)×1

.

Note that the observation noise covariance becomes

Φ⃗(t) =

[
1

τiτj

∫ τi
0

∫ τj
0

q(x1, x2)dx1dx2
1
τi

∫ τi
0

∫ TM−t

Tm−t
q(x1, x2)dx1dx2

1
τj

∫ TM−t

Tm−t

∫ τj
0

q(x1, x2)dx1dx2

∫ TM−t

Tm−t

∫ TM−t

Tm−t
q(x1, x2)dx1dx2

]
(m+1)×(m+1)

.

We can indeed show that Φ⃗(t) is invertible [3]. Hence, without adding the artificial
observation noise, we can derive the Kalman filter equation for the augmented observation
Y⃗ (see [3] for detailed derivations)

d

(
f̂(t, x)

λ̂(t)

)
=

(
∂f̂(t,x)

∂x
− qλ(x)λ̂(t)

aλ̂(t)

)
dt+

(
1
2
dq̃(x)
dx
b

)
dt

+

(
P⃗ (t)

(
H⃗∗

δ

−H⃗∗(qλ)

)
+

(
H⃗∗(q)

(σλ, H⃗
∗(q))

))
Φ⃗−1dℓ⃗(t), (15)

where the innovation process ℓ⃗(t) = [ℓ(t) ℓ̃(t)]∗ is defined by[
ℓ(t)

ℓ̃(t)

]
=

 Y (t)− Y (0)−
∫ t

0

(
Hδf̂ − λ̂(s)Hqλ +

1
2
F
)
ds

Ỹ (t)− Ỹ (0)−
∫ t

0

{
1
2
q̄(s) + q̄2(s)− λ̂(s)q̄λ(s)

}
ds

 , (16)

q̄(s) =

∫ TM−s

Tm−s

∫ TM−s

Tm−s

q(x1, x2)dx1dx2, (17)

q̄2(s) =

∫ Tm−s

0

∫ TM−s

Tm−s

q(x1, x2)dx1dx2, (18)

q̄λ(s) =

∫ TM−s

Tm−s

qλ(x)dx, (19)

and

P⃗ (t) =

( ∫
G
pff (t, x, y)(·)dy pfλ(t, x)
pfλ(t, x) pλλ(t)

)
,

and where

∂pff (t, x, y)

∂t
=

∂pff (t, x, y)

∂x
+

∂pff (t, x, y)

∂y
− qλ(x)pλf (t, y)− pfλ(t, x)qλ(y)

−
[
pff (t, x, τi)− pff (t, x, 0)

τi
− pfλ(t, x)

1

τi

∫ τi

0

qλ(z)dz +
1

τi

∫ τi

0

q(x, z)dz

]
1×m

×Φ−1

[
pff (t, τj, y)− pff (t, 0, y)

τj
− pfλ(t, y)

1

τj

∫ τj

0

qλ(z)dz +
1

τj

∫ τj

0

q(x, z)dz

]
m×1

+q(x, y).
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∂pfλ(t, x)

∂t
=

∂pfλ(t, x)

∂x
− qλ(x)pλλ(t) + apfλ(t, x)

−
[
pff (t, x, τi)− pff (t, x, 0)

τi
− pfλ(t, x)

1

τi

∫ τi

0

qλ(z)dz +
1

τi

∫ τi

0

q(x, z)dz

]
1×m

Φ−1

×
[
pfλ(t, τj)− pfλ(t, 0)

τj
− pλλ(t)

1

τj

∫ τj

0

qλ(z)dz +
1

τj

∫ τj

0

∫
G

σλ(z)q(z, y)dzdy

]
m×1

+

∫
G

σλ(y)q(y, x)dy.

dpλλ(t)

dt
= 2apλλ(t)

−
[
pfλ(t, τi)− pfλ(t, 0)

τi
− pλλ(t)

1

τi

∫ τj

0

qλ(z)dz +
1

τi

∫ τi

0

∫
G

σλ(z)q(z, y)dzdy

]
1×m

Φ−1

×
[
pfλ(t, τj)− pfλ(t, 0)

τj
− pλλ(t)

1

τj

∫ τj

0

qλ(z)dz +
1

τj

∫ τj

0

∫
G

σλ(z)q(z, y)dzdy

]
m×1

+

∫
G

∫
G

σλ(x)q(x, y)σλ(y)dxdy.

5. Adaptive Filtering. For applying the filtering algorithm established here to the
hedging problem, we need to identify the systems parameters in (4). In this paper,
we propose the recursive algorithm for estimating the risk premium and the associated
parameters by using the parallel filtering algorithm in [8, 10]. For simplicity, we restrict
ourselves as

qλ(x) =
1

2

dq̃(x)

dx
, and (σλ, ·) = σℓ(1, ·).

Now assuming that q̃(x) is identified from the method stated in Section 3, we estimate
the system parameters a, b and a vector σℓ in (4) as θ in some bounded set D ⊂ R3. To
apply the parallel filtering algorithm, we assume that D is a large finite set. To obtain
these values, we apply the generating procedure as used in the particle filter algorithm
[2, 6]. We generate θi, i = 1, 2, . . . , N from the uniform random distribution with some
upper and lower bounds. We define

λ̂i(t) = E
{
λ(t)|Y⃗t, θ = θi

}
(20)

f̂ i(t, x) = E
{
f(t, x)|Y⃗t, θ = θi

}
(21)

where λ̂i(t) and f̂ i(t, x) can be computed on-line from the conditional filter covariance
equations in Section 4 and the filter Equation (15) for tuned to θi, respectively.
The application of Bayes’ rule yields

P (θi|Y⃗t) =
p(Y⃗t|θi)∑N
i=1 p(Y⃗t|θi)

, (22)

where p(Y⃗t|θi) is a likelihood function given by

p(Y⃗t|θi) =
1(

(2π)m+1det(Φ⃗)
) 1

2

exp

{
1

2

∫ t

0

(
H⃗δf̂

i(s, ·)− λ̂i(s)H⃗(s) +
1

2
F⃗ (s)

)∗

Φ⃗−1dY⃗ (s)

−
∫ t

0

∣∣∣∣Φ⃗−1/2
(
H⃗δf̂

i(s, ·)− λ̂i(s)H⃗(s)
)
+

1

2
F⃗ (s)

∣∣∣∣2 ds} (23)
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and we used that the initial distribution of θ is uniform. Hence, we get

θ̂(t) =
N∑
i=1

θiP (θi|Y⃗t) (24)

λ̂(t) =
N∑
i=1

λ̂i(t)P (θi|Y⃗t) (25)

f̂(t, x) =
N∑
i=1

f̂ i(t, x)P (θi|Y⃗t). (26)

Theoretically the parallel algorithm generates the optimal estimates on-line. However,
in practice there are many cases that the estimates of unknown parameter θ are not
sensitive to the innovation process. In this paper we suggest using the resampling method
to avoid this insensitivity property as was often used in particle filters [2, 6]. Now we list
up the whole scheme of our parallel filtering with the forced resampling method:

Parallel Filtering Algorithm

• Generate N particles for θ.
• Solve the Kalman filter (15) for each θ = θi.

• Get P (θi|Y⃗t) from (22) and its cumulative probability.
• At the time t = m∆t for some m and ∆t, we generate N uniformly distributed
numbers in [0, 1] . From these random numbers and the cumulative probability, we
find the important particles as illustrated in Figure 1. (Resampling)
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Figure 1. Schematic procedure for resampling

• The optimal estimates λ̂, f̂ and θ̂ can be obtained form (24), (25) and (26).

6. Simulation Studies. In this digital simulation study, from [3] we set

q(x1, x2) = σ2
∑20

i=1

1

i2
exp(−cx1) sin

(
πix1

30

)
exp(−cx2) sin

(
πix2

30

)
+σ2

r exp(−ar(x1 + x2)).
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The system parameters are given in Table 1.

Table 1. System parameters

σ c ar σr σℓ a b
0.6269 0.1627 3.3114 0.2949 0.15 −2 1

To simulate the yield curve and bond data, we used the parameters for the yield and
bond data as shown in Table 2.

Table 2. Yield and bond parameters

τ1 τ2 τ3 τ4 τ5 τ6 τ7 Tm TM

1 2 3 5 7 10 20 0.5 0.75

Now we generated the yield and bond data. The yield curve [y1, · · · , y7] and logP (:,
TM)/P (:, Tm) are shown in Figures 2 and 3, respectively.
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Figure 2. Yield curve data
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Figure 3. log P (·,TM )
P (·,Tm)

data
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Assuming σ, c, ar and σr are known, we set σℓ, a and b as unknown parameters. These
upper and lower bounds are chosen as

0.05 ≤ σℓ ≤ 0.2
−3 ≤ a ≤ −1
0 ≤ b ≤ 2

 (27)

We generate 50 candidates θi, i = 1, 2, · · · , 80 for θ = [a b σℓ] from the uniform distri-
bution with the bounds given by (27). For performing the on-line algorithm established
here, we use the forced resampling method. In this simulation, we made resampling for
every 5∆t period for ∆t = 0.001.

We show the results for estimating the stochastically-varying risk-premium in Figure
4.
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λ(t
)

 

 
Estimated λ (8−dimensional Y)

True λ

Figure 4. True and estimated λ(t)

We also present the estimate of f(t, x) in Figure 5.

Figure 5. Estimated f(t, x)

We also present the true value of f(t, x) in Figure 6.
Now we shall present on-line parameter estimates for a, b and σℓ in Figures 7-9, respec-

tively.
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Figure 6. True f(t, x)
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Figure 7. Estimated a
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Figure 8. Estimated b

At the resampled timing, the estimates for unknown parameters have jumps and these
jumps improve the estimate λ̂(t). If we do not use the forced resampling, the estimation
results become worse.
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Figure 9. Estimated σℓ

7. Conclusions. We proposed the on-line estimation procedure for the stochastically
moving risk-premium and the systems parameters by using the yield and bond data which
are used for hedging some option claims. Hence, the estimation method developed here
can be directly applied to the mean-variance hedging problem in incomplete markets.
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