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ABSTRACT. A new framework is presented for saliency based object detection in natu-
rally complex scenes. By identifying the ground-object structure through the scene images,
in this framework, the random distribution of chromatic information is articulated into
saliency patterns with respect to a scene specific primary system. Due to the intrinsic
coherence of the scale and chromatic randomness, detected saliency patterns are well lo-
calized as object images within the perspective induced by the ground-object structure. By
using the saliency pattern, the computational complezity of landmark detection can be
significantly reduced.

Keywords: Environmental saliency, Scale-chromatic complexity, Multi-fractal articula-
tion

1. Introductory Remarks. Despite the infinite diversity of their appearance, natural
scenes exhibit environment specific landmarks to be identified within individual intention
of viewers. To control the focus on such a landmark object [18], perception processes
should gather randomly distributed image features and apply ‘feature integration’ schemes
[24]. In a conventional integration scheme, observed images are assumed to be structured
in terms of ‘visible’ representations including key-points of well-organized objects and
chunks of attractive colors; such visible saliency is computationally associated with the
landmarks in complex scenes [7]. In many natural scenes, the visible saliency should
support a multitude of viewer specific decision makings. However, the maintenance of
the consistency is still an open problem in the representation of the visible saliency as
a transversal support. In addition, practical scene images exhibit superfluous saliency
patterns for individual decision makers. In such a situation, deterministic integration of
image features easily incurs combinatorial explosion.

In many practical situations, the perspective from each vehicle is restricted by boundary
objects surrounding the roadway area. Despite such physical-geometric restrictions, recent
advancements of space technology combined with large scale information networks provide
a logical-computational basis for over the horizon of visible scenes. For instance, current
global positioning system (GPS) yields effective information for dynamic localization of
vehicles along roadway areas [28, 30]. The behaviors of such vehicles are matched with
geometric representations of local terrains for planning [3], regulating [32] and operating
[27, 33] vehicle control processes equipped with self-reliant intelligence. By networking
GPS and vehicle control systems with the earth observation systems, additionally, we can
detect a roadway pattern beyond the physical-geometric perspective [15]. The random
distribution of scale feature is extracted in a scene image to match with a generic roadway
model for sampling a ‘palette’; the palette is transferred to a cut of a satellite image for
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FIGURE 1. Anticipative road following system

the detection and extension of a roadway pattern as illustrated in Figure 1. Let (d)t, ét>

be the estimate of the current position and direction in the satellite image with local
roadway segment ©;. Suppose that the local segment is extended to generate a chain
DY {ov,,6 =1,2,...} to a possible destination in the bird’s eye view. Through such an
‘anticipative’ road following, the geometric complexity of the local terrain is reduced to a
graph on which we can constrain the viewpoint of future scenes prior to physical access.
By using the graph structure, we can extend the scope of geometric planning [3, 17]
and autonomous vehicle guidance [8, 31] to the over-the-horizon maneuvering processes.
However, due to essentially unpredictable distribution of temporal and/or moving objects,
it is not practical to utilize the satellite image as the reference of the vehicle control for a
subsequent maneuvering process. This implies that the decision making by each advanced
vehicles must be supported by the information to be finally gathered via on-vehicle vision
systems. As a result, the scope of vehicle control systems is still restricted within a
physical-geometric perspective.

FI1GURE 3. Fractal model
of roadway area

FIGURE 2. Scene to be analyzed
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In this paper, we have introduced a new framework for identifying vehicle specific
scenes based on a transferable representation of the roadway pattern. We assumed that
the ‘future trajectory’ along the graph structure is downloaded to the on-vehicle vision
as an a priori description of the scene to be observed. Following empirical knowledge of
ecological optics [5] and neural-psychology [4, 25] combined with recent advancements in
emotional — as well as computational-perception [6, 11], vision systems should organize
the generic structure of maneuverable scenes in terms of fractal codes specifying the
expansion of horizontal planes and the aggregation of boundary objects. Noting this, the
randomness of the gray level distribution is extracted as a version of ‘latent images’ to
estimate the fractal code spanning a connected open space [15]; the downloaded segment
0, is mapped into the scene image as shown in Figure 2; and, the random distribution of
scale information is analyzed to design a fractal model confined by boundary objects as
illustrated in Figure 3. In this figure, the expansion of the fractal model is indicated by
a closed graph spanning a connected open space. Simultaneously, the aggregation of the
boundary objects is visualized as the distribution of saliency colors. In order to operate
on-vehicle vision in cooperation with human’s inherent perception, thus, the saliency
distribution should be articulated into a system of fractal codes spanning object images
within the ground-object structure.

2. Existence of Environmental Saliency. Through recent investigations in genetic
physiology, it has been pointed out that inherent vision is equipped with a not-yet-
explicated scheme for understanding the real world thronged with uproarious luminescence
by friendly or undesirable neighbors [29]. Under the assumption that the environment is
organized as the collaboration of intentional and/or contingent participants, we introduce
a preestablished restriction of image features arising in ‘naturally complex’ scenes. To
maintain the multitude of mutual coexistence, the participants should substantiate warn-
ing sign and/or informative design to be accepted as ‘landmark objects’ [19]. Knowing
that objects which really exist should be degenerated through the iteration of physical
deformation processes, simultaneously, the participants have competitively developed so-
phisticated sensing devices including the eyes, in particular. As a part of the actual world,
thus, resulted environment of the co-evolution cycles should present all participants with
a ‘readable image’ of the saliency sign/design. To control the focus of vision systems in
accordance with the individual decision processes, it is pertinent to transform the image
features into context free representations of the saliency sign/design called ‘environmen-
tal saliency’ [16]. Noting the apparent diversity of the real world, the environmental
saliency should be grounded through stochastic aspects underlying various types of scene
images [12]: the fluctuation of the local scale shift and the uncertainty of subtle chromatic
scattering, e.g.

As intentional participants of the co-evolution process without the ‘intelligent designer’,
it should be an essential capability for the humans to control the focus of the inherent
vision within the surroundings [26] on the premise that imminent decision making should
be evoked by ‘light speed’ transformation of unstructured ambient light [5]. Following
the anatomy of early vision systems, the transformation is captured by two neuronal
processes sensitive to brightness distribution and subtle to spectrum shift, respectively. It
has been revealed that the multi-scale Gaussian filter is implemented by inherent parallel
computation mechanism [23, 9] to extract 2.5 dimensional cue to the object detection
[21, 22]. This implies that even weak light is sufficient to generate the following distributed
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feature in early scene analysis [11]:

2]
T\ BA Y

where f,, denotes the brightness of the incoming light at the pixel w in an image plane
). The index 6, provides a pixel wise evaluation of the upper bound of local scale
information.

Such a ‘fast’ scale information has been exploited as a cue to early structural analysis
including ground-object separation of complex scene imagery [14]. By matching the scale
information &, with a generic perspective model, we have a probability distribution of
the roadway area as shown in Figure 3. Simultaneously, the same optic array is accepted
by a more sophisticated system where spectral diversity of incoming light is factorized
within a system of primary colors [2]. Despite the loss of the depth information, saliency
patterns extracted as ‘matted’ images [20] should be associated with 3D objects under
universal preference to a class of fractal patterns.

3. Locally Gaussian Palette. As the cue to the multi-fractal coding, in what follows,
another version of latent images, i.e., random distribution of chromatic complexity, is
extracted as the observables of not-yet-identified landmark objects. Let R, G, B be three
primaries, and suppose that the incoming light is identified with a linear combination of
the primaries by humans. This implies that the information conveyed by the spectral
distribution be described within the nonnegative subset of 3D Euclid space Rj as follows:

FRGB _ [fR 6 fB]T
where f$) designates subjective weight of the primary (-). Define ¢, = fR8/| 8| By

identifying the totality of the chromatic information ¢, with the positive part of the unit
sphere 0%, we can induce the following measure:

_M] _ (2)

Following experimental studies using various types of roadway scenes, the sensivity
factor « should be adjusted to 1/10 ~ 1/100 [13]. For sufficiently small chromatic vari-
ation |¢ — ¢,|, the measure g, (¢|p,) approximates the Gaussian distribution on local
tangential space at ¢,. Noticing the following constraint,

) f(~) 2
ool = 3 (o) =1

RGB

2a

9o (D) = % exp {

by definition, we have the following index for evaluating coloring saliency

Yo = e_va (3)
I ) < [ )
H, =2 1 .
2 (1) s

In this indexing, the substantial process in the retina system is considered to generate
the ‘square root of capturing probability’ ~ ¢, to yield the random distribution of Shan-
non’s entropy H,; the complexity measure is transformed to a saliency probability ),
via vitals specific ‘neg-entropy’ generation. By using the saliency indexing (12), we can
detect landmark objects in a well-structured scene as illustrated in Figure 4, where the
chromatic complexity (= simplicity, in this case) of the ‘block world’ (a) is represented in
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- Cclrgb[995] w CCE: G40, 180101 WD, 511803},

(a) A block world (b) RGB color space (c) Filtered image

FIGURE 4. Complexity reduction via 1), channel (3d puzzle)

FIGURE 5. Complexity reduction via 1), channel (shopping street)

a conventional color space (b) for ‘matting’ the saliency patterns in a noisy background

(c).

The saliency indexing can be applied to a naturally complex scene to visualize the
distribution ), f*%® as shown in Figure 5, where the complexity of the scene indicated
in Figure 2 is reduced via the v,-filtering to visualize a partial distribution of landmark
objects. As demonstrated in Figures 2 and 5, the saliency probability is sensitive to the
objects marked by preassigned primaries. To correct such pigmentation-level bias, we
need adaptation of the primary system to the entire the chromatic complexity arising in

the observed scene.

4. Chromatic Complexity Generator. Figure 4 implies the existence of a chromatic
complexity generator. The diversity of the chromatic information is expanded towards
the set of the primaries. Noticing this, consider an inverse problem: how to select a set of
fixed points to regenerate the chromatic diversity as a fractal attractor in the color space.
For such a global analysis of chromatic diversity, let the chromatic complexity index ¢,
be identified with the following planar representation of the color space:

I'> Y= eRGngw, BRGB = [BR e® 6B] , 6(') = [COS 9(.) sin 9(.)]T, (4)

with a priori orientation 0y = 7/2, Ogy = Or + (—)27/3. The diversity of the incoming
light fR is represented in the color space I' through the linear transform (4). The repre-
sentation in I' can be exploited to restore the chromatic information through the following
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procedure:
q@w — d;'y +aw1RGB’ ]_RGB — |:1 1 I]T, (5)

- 2 _
where ¢, = 3 (eRGB)TV. In (5), ¢, designates a nominal brightness level given as the
solution to the following equation
9 - _ _2
3¢, + 2¢31RGB "+ ‘¢7‘ =1
By introducing the representation in ', we can enhance the spectrum shift independent
of the variation of the brightness level in the observed imagery.
Suppose that samples of the chromatic information fi%, f¥® .. f5% “are collected in
a scene image to generate a palette s = { ¢ (f2%) ,w; € Q } of the size ||s|| = n. Let xs be
the aggregation of Dirac’s delta measure distributed on the set ['y = {*y (b)) ‘ Oy €S }

and consider the field information ¢, (y|s) generated via the following dynamics on I™:

9 op (119) = 2 Ay (3l8) + plxs — 25 (118)], (6)

where Y, denotes the aggregation of Dirac’s delta measure distributed on the set I's =

{*y(qﬁw) ‘ O, €S } Assume that the distribution T's is identified with a degenerated

version of =; a fractal attractor satisfying the following constraint:

Z = U He; (Eﬁ)a (7)

friEfI

with respect to an as-is set of scene specific primary = {7 }; 1z, denotes a contraction
mapping I' — T" with a fixed point 7;. Equation (7) implies that the intrinsic diversity of
the chromatic information is re-generated via the iterated function system [1] essentially
governed by the allocation of the fixed points IL. By adjusting the system (6) to the com-

plexity of the iterated function system, i.e., p = log, ||II||, we can evaluate the probability
for capturing the not-yet-identified attractor Z; in terms of the solution ¢, (w|s) [10].
Noticing that the fixed point must be allocated on the Laplacian-Gaussian boundary 09
specified by the capturing probability ¢, (v|s), we can identify an as-is primary IT based
on the distribution xs. The identification process is divided into the following three steps.
First, a possible fixed point ’yg is located on the Laplacian-Gaussian boundary 0¢ and
expanded via the following successive scheme:

o =tludtf, T={}, (8)
where the increment is selected as follows:
ar] = { v |vo5: 57 (957,11 = 57 (07.11) |,
oyl 05 € 09 — T,
with respect to 77 (v,A) = I){lg/{l |v — Al. This expansion process mutually separates the

fixed points in the boundary set 0¢ and halts at 7" when the increment df‘g satisfies the
following sub-scale condition:

max 7 (7, f‘%;) <+/1/p.
vedi],
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Next, a subset [' = {} C féﬂ satisfying the following conditions is selected as an
estimate of the vertices
Vm,k: O — O <, (9)

A = A = 30y — 3] L t0),

Yy € A A

Selected vertex 7, € [ is considered to be a degenerated version of the as-is primary 7
resulted from the following process:

T =" = 9 =T == (10)
where 4F is t-step degeneration of 7.
Finally, the distribution I' is expanded to simulate the anti-degeneration process. In

the simulated process, the as-is primary 7, = ’y('f is successively restored by using the
mutually repulsive force, i.e.,

Ve = ;Yfﬂ + d, (11)
de =K Z (& — %) 9a (ék|$]) 7
’~Yj€f‘

with positive control parameter x. In Equation (11), ¢y (q%) denotes the restored chro-

matic information of ¥, (7;), i.e.,

y 2 T —k
=2 @),

—k\ 2 4 T —k 2 T . 2
3 (¢t> + 3 (%{c) LR o+ ‘5 (eRGB) Vf =1,
~ 2 T —
¢j _ g (eacs) i + qulRGB,

2

2
T . —1,

—9 4 —
3¢j + g%j’enclalncs . ¢j + ‘g (6RGB) 7

respectively. The simulated anti-degenerator (11) expands the distribution ' within the
possible coloring circle ‘fvyﬂ <1

The scheme (8) combined with (9) yields a set of vertex points I' to be associated with
contraction mappings for regenerating the distribution I'; as a degenerated version of the
attractor Z5. The combination with the dynamics (11) yields a generator of the fractal

dynamics controlled by the as-is primary 7; = 4} given by #; = 7; + ;1% where
- 2 T
Ti =3 (emB) o[

372 4 27 1R L 7 4 |7y)P = 1.

By using the as-is primary, we can extend the saliency indexing (12) to naturally complex
scenes. To this end, let the chromatic diversity within the scope of the degenerated
primary [' be indexed by

Q (wIf) = 3" ga (6u130),

4;€D
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FIGURE 6. Complexity reduction via 1), channel (shopping street)

and define

Z Jo (“u|7rla ) lOgga (W|ﬁz,ﬂ> )

7T1€H

where g, (w |7, fI) stands for the probabilistic complexity in the selection of as-is primary,

ie.,
S 1 .
o (0[5, 1T) = ——ga (0]
@ (wIn)
Q () = 37 ga (0ul).
7?561:[
Then, we have the following evaluation
du = e7Q (wll)
(o)
= = exp Z Ja ¢w|7rl logga (¢w|7r2) . (12)
Q (w“_[) (VU|H) el

The chromatic complexity generator was applied to the scene image (Figure 2) to
demonstrate the effectiveness of the as-is primaries as illustrated in Figure 6. The dis-
tribution of the samples s and resulted estimates I1 are indicated in upper and lower
subwindows, respectively. As indicated in the lower subwindow, the as-is primary is split
and adapted to the scene image. By designing ¢w filtering based on the as-is primary I
and applying to fR®-distribution in entire scene image, we have an enhancement of the
saliency distribution. In the main window, the landmark objects are detected based on
the as-is saliency index 1/10; a sign pattern marked by — and | is enhanced as well as
two types of landmarks of post office extracted in Figure 5. Through the comparison of
Figures 5 and 6, it has been demonstrated that the as-is primaries is effective to extend
the focus of perception channel to considerably degenerated saliency colors.

5. Multi-Fractal Articulation. The @/Ajw—ﬁlter can be exploited to classify the saliency
distribution into a class of patterns { O;, } given by

Dfri = {W € Q ‘ Ja (¢w|ﬁ'z) > Ja (¢w|ﬁ-}) }7
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where 7;, 71; € I1. To detect landmark objects under the inherent preference to fractal at-
tractors, let the saliency pattern O;, be articulated into self-similarity patterns satisfying
the following constraint:

Efri = U i (Efrz)a (133)

wicv
where v denotes a set of contraction mappings p; : €2 +— € of the following form:

1 .
prw) =5 wtwr], i=12 ], (13b)

with the fixed point w}ji. Thus, the self-similarity process (13) is designable via the allo-
cation of the fixed point w/ . The self-similarity mechanism (13) is visible on the scene

image. By identifying the distribution @&U with the invariant measure of the self-similarity
process, we can generate the probability distribution for capturing the attractor =;, as
the steady state of the following distributed parameter system [10]:

%% (w|f[> = %A@b (w|ﬂ) + Pb [&w — b <w|ﬁ)] : (14)

Following the empirical knowledge on the emotional perception [6], the complexity factor
pp» should be adjusted to 1.3.

Equation (13) means that the self-similarity process is essentially designable via the
allocation of the fixed point wl{ Noticing that the fixed points should be located the

Laplacian-Gaussian boundary 099, with respect to the capturing probability ¢ (w|f[),

again, we can apply the following scheme for successive allocation of the fixed points to
the saliency pattern, as well:

Q{-H = Q{ U df){, (15)
dQ{ = {5w* Vow : S (5@0*,@{) > (5@0,@{) },
dw*, 0w € 399, — Q.

The expansion process (15) mutually separates the estimate of the fixed points Q{ in the
fixed set 0990;.. The allocation step halts at the increment d€);. satisfying

max 7 (w, Q7) < /1/py, (16)

wedQy,

with respect to the final set €27

Many physical entities can be surrounded by convex contours in the scene images. This
implies that the final set €}, should be articulated according to a convexity criterion. To
this end, we invoke the following nondeterministic algorithm:

Qf, = Qf udaf, (17)
40! = {awf |7 (awf,Q{) <% (aw,Q{) }

dw!, 0w € i — Q.

The successive process (17) expands the initial set Q) = {w{; }, wl € 399, towards a

7

convex set within the final expansion {2}. To maintain an on-going articulation Q{ within
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FIGURE 7. Complexity reduction via th,, channel (post office)

FIGURE 8. Fixed point allocation on 07905,

a convex pattern, the process (17) is interrupted by the following breakdown criterion:

min g (¢¢ls) < minga (dels) . (18)
9a (()ls) = max ga (1o (7)),

where =; and d=; denote fractal attractors associated with on-going and testing fixed
points, i.e., Q{ and

a0f U { 0w’ | vow 7 (0!, dof) < 57 (ow,a0]) },
&uf,aweﬁ,{,

respectively. The articulation process is finally halted by the singularity condition: ||} —
Qf| < 2.

The multi-fractal articulation scheme was applied to the @/;w—ﬁltel'ing image as illustrated
in Figure 7, where landmarks of a post office are emphasized in a close-up view of the scene
image (Figure 2). By selecting an as-is primary of a dark-orange color, a saliency pattern
5, is extracted as indicated in Figure 8; white contours indicate the distribution of the
Laplacian-Gaussian boundary 0790;.. On this boundary, the set of the fixed points Q;
is estimated via the successive scheme (15) to articulate the saliency pattern as displayed
in Figure 9. The fixed points in Q; are successively linked via the unification algorithm
(17) towards convex patterns. The unification process is interrupted by the criterion (18)
as indicated in Figure 9(a). At the first interruption, in this case, a fractal code v is
designed as an articulation of the saliency pattern 9; ; as indicated in Figure 9(b), the
associated fractal attractor is generated for sampling the chromatic information on the
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(a) First interruption (b) Fractal code

FIGURE 9. Articulation of boundary object

FIGURE 10. A priori structure of scene image (post office)

saliency pattern. As a result, we have a fractal model to be associated with a landmark
of a post office. As demonstrated in Figure 9, we can exploit the breakdown condition
(18) with respect to the as-is primary to articulate the saliency distribution into fractal
attractors. The identification of the distribution with the fractal attractor implies that
the connectedness of the articulated pattern is explicitly verified by the self-similarity
(13).

The allocation algorithm (15) was applied to the distant view of the scene (Figure 2).
As indicated in Figure 6, the saliency patterns in the &w—image were too small to yield the
fixed points passing through the halting condition (16). Nevertheless, the comparison of
the lower subwindows in Figures 6 and 7 demonstrates that the as-is primary in the close-
up image can be well estimated by using distant views of the scene images. This implies
that even for too distant landmarks, the subtle chromatic complexity can be evaluated to
preset the fractal articulation process prior to physical approach.

6. Perceptual Equivalence. To localize the landmark, the fractal model v on the
saliency pattern Oy, should be consistent with the perspective of the scene images. Let a
segment of the future trajectory be downloaded as shown in Figure 10 and consider the
consistency of the fractal code v with the perspective induced by the segment image. As
the basis of the scale analysis, we can apply the subcorrelation (1) to the entire image
plane and match the generic perspective model to design a consistent fractal model span-
ning the roadway area. In Figure 3, the existence of a connected roadway area is verified
via the generation of a closed graph.
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(a) Closed graph by v, (b) Closed graph by v

FiGURrE 11. Finite invariance test on capturing probability

Such a computational verification can be extended to the detection of a connected
plane supporting the fractal code v. Figure 11 displays an example of such computational
verification. In this case, the scale shift rule along the segment vector is matched with the
scale information &, to identify a fractal model v, spanning an open space on the roadway
area as indicated (a) where the probability distribution ¢, (w|rv4) for capturing associated
fractal attractors is displayed as a smooth field with local maxima © indicated by small
blue dots. Due to the sub-correlation of &, with local scale distribution, the distribution
¢, (w|vg) maintains the information on boundary objects. Through the detection of the
discrete information ©, we can observe the noise patterns spanning a connected vertical
surface of actual objects as well. As indicated in Figure 11(b), we can verify the 2D
connectedness of the saliency pattern through the finite invariance test of the fractal model
v on the discrete information ©. Adding to it, the saliency pattern can be associated with
the ground model 4 on the same information © as shown in Figure 11(a). By combining
these results, the saliency pattern is localized as a surface of a boundary object prior to
range data acquisition.

In the case of the close-up image oriented by the future segment as shown in Figure 10,
we can verify a perceptual consistency of the multi-fractal articulation as illustrated in
Figure 11(b). The object mode v designed on the saliency pattern 9. generates a closed
graph on © under the condition of the ground model 4. This implies that the landmark
model v is essentially consistent with the roadway model v, inducing the perception of
the perspective underlying the scene image. As a result of such a perceptual equivalence,
we can visualize an object at a saliency pattern within the context of the ground-object
structure as illustrated in Figure 12.

Figures 13 and 14 show the results of other experiments. In these experiments, the 1/3w—
filter was applied to the scene image (a) to extract saliency patterns as indicated in (b).
Associated fractal models were verified on the scale space information and visualized in
the ground-object structure as illustrated in (c¢) and (d), respectively. The experimental
results demonstrate that the environmental saliency provides an effective cue for ana-
lyzing even ill-conditioned scenes where landmark objects are observed as non-dominant
patterns. The post is a rather ‘low-keyed’ object in a night view as shown in Figure 13.
A warning color of vehicles sometimes yields a smaller image than attractive distractions
as displayed in Figure 14.
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Ficure 12. Contextual visualization

(a) Scene image (b) Saliency distribution via -
filtering

invariant scaie(s.906402¢+00/5,.9064420+00/5.7122620+00) imvariants — O X

(¢c) Perceptual equivalence (d) Contextual visualization

FIGURE 13. Scale-chromatic saliency analysis (street view at night)

By using ﬁw—ﬁltering, we can control the focus of on-vehicle vision within naturally
complex scenes. The &w fREE distribution can be well articulated into a set of fractal at-
tractor. The fractal model can be matched with the perspective underlying the scene
image. Through such a 2.5D screening, the fractal model yields an effective cue to the
detection of landmark objects by machine- and inherent perception processes. The sig-
nificance of the &w—ﬁltering is summarized in Table 1, where the reduction of the compu-
tational complexity is evaluated in terms of relative entropy dS() = Sy — 5(); Sp and S
designate the Shannon’s entropy with respect to the uniform distribution and the gray
level distribution f,, respectively; Sy and S;; are computed by using normalized version
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(a) Scene image (b) Saliency distribution via ¢, -filtering

riant scale(B.077208e+00/8.077208¢+00/4.345928e+00) Imvariants{

(c) Perceptual equivalence (d) Contextual visualization

FIGURE 14. Scale-chromatic saliency analysis (industrial park)

of saliency index as follows:

_ Yo Yo _

Sy = /Q (C@) log (C@) dw, Cy = /Q@bwdw,
_ I&w '@w R N

S = /Q <_C¢> log <_C1j> dw, C’¢ = /Q@bwdw.

By definition, the unpredictability of the patterns to be detected is indexed in terms
of e7); Table 1 implies that the &w—ﬁlter can reduce the length of decision makings
in many natural scenes to e~%# < 1/7 of a random search. This amount to 1/6 of
pattern detections within the brightness distribution f,,. In many natural scenes, the as-
s primary yields a more efficient saliency indexing. Following the experimental results,
the complexity of pattern detection remains 10 ~ 30% of conventional RGB-based saliency
analysis. As indicated in Table 1, the complexity of landmark selection by inherent and/or
machine vision is significantly reduced by the generation and/or indication of the ), 2%
image. Noticing the evaluation 3 < ||f1|| < 3+2, the reduction is considered as the result
of the locally Gaussian indexing of the chromatic diversity (2). The robustness of the split
and adaptation model (6)- (9) implies the validity of the fractal coding approach to the
identification of the chromatic perception process.

7. Concluding Remarks. A multi-fractal coding was applied for saliency based object
detection in naturally complex scenes. By identifying the chromatic diversity with a
fractal attractor in a color space, an as-is primary system can be selected to discriminate
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TABLE 1. Complexity reduction via v,-filtering

scene  dSg dSx dSy, 11|
shopping street 0.131512 0.995172 2.032901 4
post office 0.199979 2.016679 2.884059 5
street view at night 0.148436 1.481229 3.189055 3
industrial park 0.103411 1.831957 2.059536 3
3d puzzle 0.196245 0.616455 1.266864 4

complexity reduction ~ 1/1.2 1/1.8~1/74 1/3.3~1/24

the image of landmark objects in a noisy background. Supported by the consistency with
the ground-object structure induced by the scale complexity, the multi-fractal model of
the object images can be exploited to indicate various types of maneuvering contexts
arising in the scenes. By using Jjw—ﬁltering, the computational complexity of landmark
detection can be significantly reduced.
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