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Abstract. A stochastic explanation is provided to investigate how human subjects max-
imize robustness of their balance control while exhibiting on-off intermittent behavior. To
this end, the human balance control is modeled by an inverted pendulum with random de-
layed state feedback. Stochastic analysis based on Lyapunov exponents demonstrates that
the on-off intermittency can arise under a neutrally stable condition. Furthermore, the
frequency response of statistical moments is derived to show that the neutrally stable con-
dition can be caused by a trade-off between maximal robustness and minimal phase-shift
from the disturbance to the second moments.
Keywords: Human balance control, On-off intermittency, Robust analysis, Lyapunov
exponent, Statistical moment, Frequency response

1. Introduction. One of the most marvelous features of human balance control is the
presence of on-off intermittency in balancing errors [1, 2]. In general, on-off intermittent
behavior can arise in the system in a neutrally stable state [3]. This means that the
human balance control system might be specifically tuned to be minimally stable. Such
a stability design is rarely obtainable from common approaches in control engineering
because sufficient stability margins must be designed to achieve stable transient responses.
The question arises as to what kind of performance humans prefer to optimize rather than
seeking asymptotic stability. We expect that finding the answer will provide new insight
for understanding the human-like dynamics of welfare equipment, home care robots, and
related devices.

The presence of randomness in human balance control has been explored in the studies
on human sway control during quiet standing. It has been revealed that the human body
during quiet standing continually moves about in a random fashion [4], and that the
fluctuation-dissipation theorem can be applied to the human postural control system [5].
Furthermore, it has also been reported that input noise can be used to improve human
balance control [6], based on the mechanism of stochastic resonance [7], which is one of
the most typical examples of noise-induced order [8].

Recently, researchers have recognized an additional feature of human balance control,
on-off intermittency. It has already been shown that the on-off intermittency arising in
human balance control can be modeled precisely by an inverted pendulum with a ran-
domly fluctuated time-delayed feedback controller [1], and that the statistical properties
of human stick balancing can be characterized as a special type of random walk, referred
to as a Lévy flight. Further, it has been statistically proved that the Lévy flight is deeply
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connected with the learning process for humans to learn to improve their balance control
[2].
As mentioned in the opening paragraph, since the on-off intermittent behavior arises

in the system nearly neutrally stable [3], the on-off intermittency generated by humans
implies, as reported in the literature [1, 2], that human balance control is tuned near the
minimally stable condition.
In the present paper, we investigate the open problem of how human balance control

prefers minimal stability. To this end, we focus on the frequency responses of a model of
human balance control [1]. A similar viewpoint can be found in the literature [9] based
on direct numerical simulations. In contrast, the primary approach used in the present
study is based on the theory of stochastic processes. The effectiveness of our stochastic
approach has already been demonstrated in previous studies, such as the stability analysis
of noise-induced synchronization [10, 11] and coupled human balancing [12]. In contrast
to measurement and numerical approaches [1, 9], our analytical approach will provide an
explicit mathematical criterion for human-like dynamics that is applicable to modeling
human dynamics [13], designing human-like interactive robots [14, 15], and so forth.
In practice, we derive a system of stochastic differential equations (SDE) representing

the randomly time-delayed inverted pendulum model [1]. This SDE enables us to calculate
Lyapunov exponents [16] evaluating the minimal stability of sample paths of balancing
errors analytically. We also derive the moment equations [17] from the SDE to obtain the
frequency response of statistical moments of the balancing errors. Based on these results,
we will provide a stochastic explanation that the minimally stable condition seems to
be caused by a trade-off between maximal robustness and minimal phase-shift from the
disturbance to the second moments.

2. Analytical Model.

2.1. Inverted pendulum. The equation of motion of an inverted pendulum whose pivot
point is mounted on a cart is given by{

(M1 +M2)ẍ+ (M2l cos θ)θ̈ −M2lθ̇
2 sin θ + cxẋ = F (t),

(M2l cos θ)ẍ+ (M2l
2)θ̈ −M2lg sin θ + cθ̇ = 0,

(1)

where M1 and M2 are respectively the masses of the cart and the pendulum, l is the
length of the rod (considered massless), θ is the slant angle of the pendulum, x is the
horizontal displacement of the cart, and c and cx are respectively the damping coefficients
with respect to θ and x. For simplicity, assuming,

|θ|, |θ̇| ≪ 1, M1 = M2 = M, cx = 0, (2)

we obtain a linearized equation of motion with respect to the slant angle θ,

θ̈ +
2c

Ml2
θ̇ − 2g

l
θ = − 1

Ml
F (t) (3)

in which the cart displacement x has vanished due to the linear approximation.
Using the natural frequency ωn =

√
2g/l, we perform a temporal scale transformation:

t 7−→ ω−1
n t. (4)

Then, the equation of motion is reduced to the following form:

θ̈ + 2ζθ̇ − θ = f(t), (5)
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where ζ = c/(Ml2ωn) is the damping ratio and f(t) = −F (t/ωn)/(Mlω2
n) is an external

torque applied to the pendulum. The non-dimensional torque f(t) is regarded as the
combination

f(t) = u(t) + v(t), (6)

where u(t) is a control input and v(t) is an external disturbance.

2.2. Random delayed feedback. It has been reported that the on-off intermittent
behavior of human balance control can be precisely modeled by a randomly fluctuated
time-delayed feedback controller [1],

u(t) = −Rtθ(t− τ), Rt = K + σwt, (7)

where Rt is a random gain with mean K and variance σ2, and wt is a standard Gauss-
ian white noise. In order to convert the delayed differential equation into an ordinary
differential equation (ODE), we assume τ ≪ 1 and expand the delayed term in (7) as

u(t) ≈ −Rt

(
θ(t)− θ̇(t)τ

)
= −Kθ + (Kτ)θ̇ − wt

(
σθ − (στ)θ̇

)
. (8)

Note that such linear approximation of delayed variables is often used in engineering
applications such as machining chatter analysis [18].

Substituting (8) into (5) through (6), we obtain a state space expression of our model
in the following form:

ẋ = Ax+ b v(t) + σ(Dx)wt, x = (θ, θ̇)T ,

A =

[
0 1

1−K Kτ − 2ζ

]
, b =

[
0
1

]
, D =

[
0 0
−1 τ

]
. (9)

3. Stability of Sample Paths.

3.1. Standard form. In the following, we denote the eigenvalues of matrix A in (9) as

λ± = γ ±
√
H, (10)

where

γ =
1

2
(Kτ − 2ζ), H =

1

4

(
(Kτ − 2ζ)2 + 4(1−K)

)
.

In the case of A having a pair of complex eigenvalues, the system matrices of the linear
system (9) can be reduced to the following form:

TC =

[
1 0
γ −

√
−H

]
, AC = T−1

C ATC =

[
γ −

√
−H√

−H γ

]
,

bC = T−1
C b =

1√
−H

[
0
−1

]
, DC = T−1

C DT =

[
0 0

(1− γτ)/
√
−H τ

]
. (11)

In the case of A having two distinct real eigenvalues, the matrices are given by

TR =

[
1 1
λ+ λ−

]
, AR = T−1

R ATR =

[
λ+ 0
0 λ−

]
,

bR = T−1
R b =

1

2
√
H

[
1
−1

]
, DR = T−1

R DTR =
1

2
√
H

[
λ+τ − 1 λ−τ − 1
1− λ+τ 1− λ−τ

]
. (12)
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3.2. Lyapunov exponents. The random ODE in (9) can be rewritten as an SDE of the

state x = (θ, θ̇)T in the Stratonovich form

dx = (Ax+ bv(t)) dt+ (σDx) ◦ dWt, (13)

whereWt is a standard Brownian motion. By assuming v(t) = 0 and σ ≪ 1, the Lyapunov
exponent can be calculated in the following manner [16].
In the case of A having a pair of complex eigenvalues, D = DC , the Lyapunov exponent

is given by

λσ = γ +
σ2

8
g1 + o(σ2), g1 = (D12 +D21)

2 + (D22 −D11)
2. (14)

In the case of A having two distinct real eigenvalues, D = DR, the Lyapunov exponent is
given by

λσ = λ+ +
σ2

2
g1 + o(σ2), g1 = D12D21, (15)

where Dij is the (i, j)-th element of the matrix D.

4. Frequency Response of Moments. In order to utilize the Itô formula, the Stratono-
vich-type Equation (13) is converted into that of Itô type, which has the following form:

dx =
(
(A+∆A)x+ bv(t)

)
dt+ (σDx)dWt, (16)

where ∆A = (σD)2/2 is a drift correction term. Then, the statistical moments of (16)
can be derived as follows [17], in which the ensemble average ⟨h(x)⟩ of a scalar function
h(x) such that h(0) = 0 satisfies

d⟨h(x)⟩
dt

=
⟨
L
(
h(x)

)⟩
, (17)

where

L(·) =

{
(A+∆A)x+ bv(t)

}T
∂(·)
∂x

+
σ2

2
tr

{
(Dx)T

∂

∂x

(
∂(·)
∂x

)T

(Dx)

}
(18)

is used as a generating operator.

4.1. Moment differential equations. Substituting h(x) = x1, x2, x
2
1, x1x2, x

2
2 into (17),

we obtain moment differential equations (MDE) in the following form:

ṁ1 =m2,

ṁ2 = − km1 − cm2 + v(t),

ṁ11 =2m12,

ṁ12 = − km11 − cm12 +m1v(t),

ṁ22 =σ2m11 + pm12 + qm22 + 2v(t)m2,

(19)

where

k = K − 1 +
1

2
σ2τ, c = 2ζ −Kτ − 1

2
σ2τ 2, p = 2k − 2σ2τ, q = −2c+ σ2τ 2 (20)

and mi = ⟨xi⟩ and mij = ⟨xixj⟩ (i, j = 1, 2) are ensemble averages of the state variables.
Rewriting the second moments in (19) as variances around mean values, i.e., sij = ⟨(xi −
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Figure 1. Block diagram of MDE

mi)(xj −mj)⟩ (i, j = 1, 2), we obtain

ṁ1 =m2,

ṁ2 = − km1 − cm2 + v(t),

ṡ11 =2s12,

ṡ12 = − ks11 − cs12 + s22,

ṡ22 =σ2s11 + ps12 + qs22 + σ2(m1 −m2τ)
2.

(21)

Finally, taking the subspaces m = (m1,m2)
T and s = (s11, s12, s22)

T , we obtain the
state space form

ṁ = Amm+ v(t)e2, (22)

ṡ = Ass+Q(m1,m2)e3, (23)

where e2 = (0, 1)T , e3 = (0, 0, 1)T , and

Am =

[
0 1
−k −c

]
, As =

 0 2 0
−k −c 1
σ2 p q

 , (24)

Q(m1,m2) = σ2(m1 −m2τ)
2. (25)

The most significant feature of this MDE is that the first moment vector m in (22) can
be solved by itself and that the second moments s in (23) are affected by the scalar-valued
input Q(m1,m2) only as shown in Figure 1. This makes this MDE easy to solve.

4.2. Fundamental harmonic response. The structure of the MDE shown in Figure 1
allows us to derive the fundamental harmonic response of moments in a rigorous manner
as follows. Let us consider the harmonic disturbance

v(t) = cosωt, (26)

where the amplitude can be assumed to be unity without loss of generality.

4.2.1. The first moments. Based on the transfer matrix from v(t) to m(t),

Gm(a) =

[
G1

m(a)
G2

m(a)

]
= (aI − Am)

−1e2, (27)
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we obtain the fundamental harmonic response of the second-order linear system (22) as

Rm(ω) =

[
R1

m(ω)
R2

m(ω)

]
= |G1

m(jω)| =
1√

(k − ω2)2 + c2ω2

[
1
ω

]
,

ϕm(ω) =

[
ϕ1
m(ω)

ϕ2
m(ω)

]
= ∠G1

m(jω) =

[
− arctan cω

k−ω2

arctan k−ω2

cω

]
, (28)

where j =
√
−1. Therefore, the fundamental harmonic response of the first moment is

obtained as

mi(t) = Ri
m cos{ωt+ ϕi

m} (i = 1, 2). (29)

4.2.2. The quadratic element. Substituting the first moments in (29) into the quadratic
function Q(m1,m2) in (25), we obtain

Q(m1,m2) = RQ(ω) +RQ(ω) cos{2ωt+ ϕQ(ω)}, (30)

RQ(ω) = R1
m(ω)

2σ
2

2

(
1 + (ωτ)2

)
, (31)

ϕQ(ω) = 2ϕ1
m(ω) + arctan

2ωτ

1− (ωτ)2
. (32)

Therefore, it appears that the output of the quadratic element is a harmonic function
having the doubled frequency 2ω and the drift term RQ(ω).

4.2.3. The second moments. We now rewrite the equation of second moments in (23)
around the static equilibrium s̄ satisfying

0 = Ass̄+RQ(ω)e3. (33)

Applying the transformation: s = s̄ + s′, we obtain the equation of second moments
without the drift term:

ṡ′ = Ass
′ + w(t)e3, (34)

where w(t) = RQ(ω) cos{2ωt+ ϕQ(ω)} is a harmonic function of the frequency 2ω.
Since the modified equation of the second moment in (34) is a linear system subjected

to the harmonic input, we can calculate its harmonic response, using the transfer matrix
from w(t) to s′(t) as

Gs(a) = (aI − As)
−1e3, (35)

to obtain

R′
s(ω) = |Gs(2jω)|, ϕ′

s(ω) = ∠Gs(2jω), (36)

where representing their vector components are omitted to save space.
Therefore, the total contribution in amplitude and phase-shift from the disturbance

v(t) in (26) to the second moment s′(t) is given by

Rs(ω) = RQ(ω)R
′
s(ω), ϕs(ω) = ϕQ(ω)(1, 1, 1)

T + ϕ′
s(ω). (37)

In summary, we have derived the fundamental harmonic response of moments as in (28)
and (37) without approximations, based on the particular structure of our MDE shown
in Figure 1.
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Figure 2. Lyapunov exponent λσ as a function of the mean feedback gain
K for ζ = 1.5 and σ = 0.5

4.3. Robust analysis of moments. Now we can define the H∞ norm of moments
from the harmonic response obtained above. This enables us to evaluate the robustness
of moments against the disturbance v(t). Since all of the transfer functions obtained
above are vectors, the H∞ norm of moments is simply defined by choosing the maximal
component of the supremal amplitude vector. In this way, the H∞ norm of moments is
given by

Hα
∞ = max

i

{[
sup
ω

Rα(ω)
]
i

}
(α = m, s), (38)

where [v]i denotes the ith component of vector v.
On the other hand, all components of the phase-shifts, ϕm(ω) and ϕs(ω), are monotoni-

cally decreasing functions of ω whose infimal values are negative constants independent of
the system parameters, i.e., infω ϕm(ω) = (−π,−π/2)T , infω ϕs(ω) = (−4.5π,−4π,−3.5
π)T . This means that the dependency on the system parameters cannot be evaluated by
a scalar index. To avoid this problem, we evaluate the maximal phase-shift at ω by taking
the negative maximum of components as follows:

ϕα
∞(ω) = −max

i

{[
− ϕα(ω)

]
i

}
(α = m, s). (39)

5. Numerical Results.

5.1. On-off intermittency. Figure 2 shows Lyapunov exponent λσ of the model (13)
as a function of the mean feedback gain K for v(t) = 0, τ = 0.04, ζ = 1.5 and σ = 0.5,
where the solid line represents the analytical result from Formula (15), and the small
circles represent the result from Monte Carlo simulation of the random ODE in (9). Note
that the values of τ = 0.04 and ζ = 1.5 represent respectively the neural latency 200 ms
and the overdamping characteristics of humans [9].

It appears from Figure 2 that λσ = λσ(K) is a monotonically decreasing function of K
having a zero near K = K0 ≈ 0.951. This is a reasonable result because the Lyapunov
exponent λσ is a stochastic counterpart to the real part of the eigenvalues. Thus, a
sufficiently large feedback gain K can make the real part of the eigenvalues all negative
in the deterministic limit σ → 0.



2256 K. YOSHIDA AND A. HIGETA

10-4

10-2

100

102

104

 0  300  600  900  1200

θ(
t)

Time t

K=0.93

K=0.95

K=0.97

Figure 3. Sample paths for ζ = 1.5 and σ = 0.5
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Figure 4. Lyapunov exponent λσ as a function of the noise intensity σ for
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Figure 3 shows sample paths near the zero point K = K0 obtained from the random
ODE (9) where the selection of the sample of the noise wt is identical across cases. It
appears that the state θ(t) is diverging for the smaller gain K = 0.93 < K0 and is
converging for the larger gain K = 0.97 > K0. On the other hand, near the zero point
K = 0.95 ≈ K0, the bounded state wandering in a neighborhood of |θ(t)| ≈ 100 appears,
which is the on-off intermittent behavior we will consider.
For reference, Figure 4 shows the dependency of the Lyapunov exponent λσ upon the

noise intensity σ. This result can be regarded as an example of noise-induced order [8]
because λσ, instability, is a monotonically decreasing function of σ and is structurally
stable with respect to the change of mean feedback gain K = 0.9, 0.95, 1.

5.2. Amplitude of moments. Figure 5 shows Lyapunov exponent λσ and H∞ norms as
functions of the mean feedback gain K for σ = 0.5, where H∞(K) is calculated following
definition (38). One can easily see that H∞(K) is a quasiconcave function of K, whose
peak is at K = Kp larger than the zero point K = K0.
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Figure 5. Lyapunov exponent λσ and H∞ norms as functions of the mean
feedback gain K for σ = 0.5
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Figure 6. Lyapunov exponent λσ and H∞ norms as functions of the mean
feedback gain K for σ = 1

This result allows us to provide a possible explanation for the human preference for
the minimally stable mean feedback gain K0. It clearly appears in Figure 5 that the
gain K0 locally minimizes H∞(K) under the constraint λσ(K) < 0 to avoid dynamic
instabilities. Therefore, it seems that the gain K0 preferred by humans locally maximizes
the robustness of the moments m, s (actually s′). The same consideration applies to the
larger noise intensity σ = 1, as shown in Figure 6.

However, this explanation is limited to a local domain ofK because the same robustness
can be found globally at

K1 = H−1
∞

(
H∞(K0)

)
(40)

as shown in Figures 5 and 6. Since the second typical gain K1 provides the same extent
of H∞(K), or robustness, a human could prefer K1 without changing the robustness.
Furthermore, the second gain K1 provides stronger asymptotic stability than K0.
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5.3. Phase-shift of moments. One explanation to answer the selection of the minimally
stable gain K0 can be obtained by investigating the phase-shift of moments defined in (39)
as follows.
Figure 7 shows the difference of maximal phase-shifts between K = K0 and K1 for

ν = 0.5 as a function of the input frequency ω of the disturbance v(t) in (26). It is clearly
shown in Figure 7 that switching the gain from K0 to K1 results in a significant increase
in the maximal phase-shift of second moments.
This result implies that the minimally stable gain K0 preferred by humans produces a

phase-shift significantly smaller than the more stable gain K1. The same conclusion can
be obtained from the different extent of noise σ = 1, as shown in Figure 8.

6. Conclusion. The results obtained in this paper lead to the conclusion that the mini-
mally stable condition K0 can be characterized as a special condition that minimizes the
magnitude of the maximal amplitude Hs

∞ and phase-shift ϕs
∞ of second moments subject

to the constraint λσ < 0 to avoid dynamic instabilities. Since the amplitude of second
moments represents the predictability of system responses and the phase-shift of the sec-
ond moments evaluates the lead time of the dynamic change of the predictability, we may
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propose the stochastic explanation that humans prefer better predictability and faster
cognition of system response (smaller phase-shift of second moments) while accepting the
minimally stable responses.

In future research, we plan to expand our stochastic method into the coupled problem
in which multiple human subjects maintain their balance in cooperation with each other.

Acknowledgment. This work was supported by KAKENHI (21560231).

REFERENCES

[1] J. L. Cabrera and J. G. Militon, On-off intermittency in a human balancing task, Physical Review
Letters, vol.89, no.15, pp.158702:1-4, 2002.

[2] J. L. Cabrera and J. G. Milton, Human stick balancing: Tuning Lévy flights to improve balance
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