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Abstract. In this paper, we consider a numerical method for the continuous-discrete
(CD) unscented Kalman filter (UKF), composed of differential equations for the time
update of conditional mean and covariance matrix of the state vector and the discrete
measurement update equations. To solve the differential equations for the time update
algorithm, we propose a Heun scheme-based procedure that has higher accuracy than the
Euler scheme-based CD algorithm. We show the applicability of the proposed approximate
procedure by simulation studies for several nonlinear models.
Keywords: Unscented Kalman filter, Continuous-discrete nonlinear filtering, Stochastic
differential equation, Heun scheme

1. Introduction. Nonlinear filtering problems have been extensively studied in the past
[1, 4, 7, 8, 9, 15], and have received renewed interest with the advent of particle filters
[5, 12, 19], unscented Kalman filters (UKFs) [10, 11] and ensemble Kalman filters [6], etc.

Although standard filtering problems are usually formulated in discrete-time, real sto-
chastic dynamical systems are continuous in time, so that they are described by stochastic
differential equations. In fact, there exist many phenomena that can be modeled by means
of a stochastic system where a continuous-time signal is measured discretely in time; thus
we often encounter continuous-discrete (CD) nonlinear filtering problems [7, 9]. Examples
of such applications include robotics [18], finance [2, 23], GPS/INS [8, 14], target tracking
[4, 19], MRI [17], hybrid measurements [24, 25], etc.

The UKF in discrete-time setting has been developed by Julier et al. [10, 11] in order
to improve the performance of the extended Kalman filter (EKF) by introducing the
unscented transformation (UT) to approximately evaluate the conditional means and
covariances under nonlinear transformations without using Jacobian matrices. A key to
the UT is a selection of deterministic sample points, called σ points, that approximate the
mean and covariance properties of conditional probability density function of the state
vector given output observations. Moreover, Särkkä [22] had developed a CD unscented
Kalman filter (UKF) algorithm, where two differential equations for time update of the
conditional mean and covariance matrix are derived from the discrete UKF algorithm, by
using a limiting procedure.

To implement the CD-UKF on a digital computer, we again discretize the time update
equations, but in [22], numerical procedures for implementing the CD-UKF are not stated
in detail. Thus, in this paper, we present a numerical method for implementing the CD-
UKF based on the Heun scheme, which has higher-order accuracy than the Euler scheme
[13, 16]. A special structure of the time update equations, involving σ points, in the CD-
UKF algorithm prohibits the direct application of the Heun scheme, so that we present a
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Heun scheme-based CD-UKF algorithm. We expect that since the discrete-time UKF is a
second-order nonlinear filter [10], the derived CD algorithm has higher accuracy than the
Euler scheme-based CD algorithm. Advantage of the present method over the standard
Euler approximation-based CD-EKF algorithm [9] is shown by simulation studies.
The paper is organized as follows. In Section 2, the CD nonlinear system is described

and the CD nonlinear filtering problem is stated. Section 3, as a preliminary, presents a
numerical result that shows the difference of the Euler-Maruyama and the Heun schemes
in solving a second-order nonlinear stochastic differential equation. Then, the CD-UKF
algorithm is outlined in Section 4. Section 5 presents a Heun scheme-based method of
computing the time update equations for the conditional mean and covariance matrix,
together with a simple numerical example. In Section 6, we show results of simulations
for a van der Pol model in an electrical circuit and a two-dimensional tracking problem
based on the range and bearing information. Section 7 concludes this paper.

2. System and Problem Formulation. Consider a nonlinear stochastic system de-
scribed by a stochastic differential equation with observations taken at discrete time in-
stants tk, i.e.,

dx(t) = f(x(t), t)dt+ Ldβ(t) (1)

yk = hd(x(tk)) + vk, k = 0, 1, . . . ; 0 = t0 < · · · < tk−1 < tk (2)

where x(t) ∈ Rn is the state vector, yk ∈ Rp is the output vector, f : Rn+1 → Rn and
hd : Rn → Rp are nonlinear functions, and L ∈ Rn×l is a constant matrix. Also, dβ(t) ∈ Rl

is the increment of Brownian motion with mean 0 and covariance matrix Qdt ∈ Rl×l, and
vk ∈ Rp is a white noise with mean zero and covariance matrix R ∈ Rp×p. Since L is
constant, the system (1) is called a Langevin-type stochastic differential equation.
Let Y k = {y0, y1, . . . , yk} be the observations up to time tk. Then, the problem in

this paper is to compute the conditional mean estimate m(tk|tk) of the state x(tk) and
the covariance matrix P (tk|tk) based on the observations Y k, where the conditional mean
estimate and covariance matrix are defined by

m(t|tk−1) = E[x(t) | Y k−1] (3)

P (t|tk−1) = E
[
(x(t)−m(t|tk−1))(x(t)−m(t|tk−1))

T | Y k−1
]

(4)

where tk−1 ≤ t ≤ tk, k = 1, 2, . . .. The dynamical system (1) is continuous in time
and the observations of (2) are discrete in time, so that the filtering problem is called a
continuous-discrete (CD) nonlinear filtering problem [7, 9].
In general, the CD filtering algorithm consists of the forward differential equations

for the prediction, or the time update, and the algebraic equations for the measurement
update. Thus, the CD nonlinear filtering problem can be solved by iterating the following
two steps [9].
• Prediction step For tk−1 ≤ t < tk, integrate two forward differential equations

in order to obtain the predicted estimate m(tk|tk−1) and covariance matrix P (tk|tk−1),
where the initial conditions are the filtered estimate m(tk−1|tk−1) and covariance matrix
P (tk−1|tk−1).
• Filtering step At t = tk, update m(tk|tk−1) and P (tk|tk−1) based on the observation

yk to obtain the new filtered estimate m(tk|tk) and covariance matrix P (tk|tk).
Except for special cases [3, 4], the nonlinear filtering problem has no optimal solution,

so that there have been published a large number of papers for deriving approximate
nonlinear filtering algorithms, including extended Kalman filters (EKFs) [7, 8, 9, 19].
Särkkä [22] has recently developed a CD-UKF by using a limiting procedure in the

discrete-time UKF, but a numerical procedure for solving the time update differential
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equations in the CD-UKF algorithm is not presented. In this paper, we derive a numerical
method for the CD-UKF by applying the Heun scheme, where the use of the Heun scheme
is motivated by the fact that it yields better numerical results for solving the stochastic
differential equation of (1) than the Euler-Maruyama scheme [13, 16, 20].

Before stating the CD-UKF algorithm due to Särkkä [22], we consider how we simulate
the continuous-time system (1) on a digital computer.

3. Euler-Maruyama and Heun Schemes. In this section, we briefly review numerical
methods of solving the stochastic differential Equation (1). Let ∆p be a sampling interval
for the numerical integration1. Then, the Euler-Maruyama scheme for numerical solutions
of (1) is given by

x(t+∆p) = x(t) + f(x(t), t)∆p +
√
∆pLw(t) (5)

where w(t) ∈ Rl is a white noise with mean 0 and covariance matrix Q defined above. We
see that (5) is a discrete-time nonlinear stochastic system driven by a white noise w(t). It
is well known [13] that the Euler-Maruyama scheme has strong order of convergence 0.5.

Also, the higher-order Heun scheme is described by

x(t+∆p) = x(t) +
∆p

2
(c1 + c2) +

√
∆pLw(t) (6)

where

c1 = f(x(t), t), c2 = f
(
x(t) +∆pc1 +

√
∆pLw(t), t+∆p

)
and where w(t) is the same white noise appearing in (5), and c2 is called the supporting
value. It follows from [13] that the Heun scheme has strong order of convergence 1.0, so
that the Heun scheme (6) will produce a better trajectory of the stochastic differential
equation than the Euler scheme for a fixed ∆p. There exist some higher-order schemes,
but they are much more complicated than the above schemes; see [21] for comparison of
numerical results using different schemes for Langevin-type stochastic differential equa-
tions.

To demonstrate the difference in two schemes, we present a simulation result for a van
der Pol equation of the form

dx1(t)

dt
= x2(t) + w1(t) (7)

dx2(t)

dt
= ϵ

(
1− x2

1(t)
)
x2(t)− x1(t) + w2(t) (8)

where x1(t) is the voltage across a capacitance, and ϵ = 0.8 is a constant. Also, w1(t) ∼
N(0, q1) and w2(t) ∼ N(0, q2) are independent white noises, uncorrelated with the initial
conditions. Figure 1 depicts the trajectories of state x1 by the Euler-Maruyama and Heun
schemes with the initial states x1(0) = 0.2, x2(0) = 0.1 and q1 = 0.04, q2 = 0, where the
sampling interval is ∆p = 0.1. For comparison, two trajectories obtained by the Runge-
Kutta method are included; one is the trajectory x1 of the deterministic van der Pol
equation with w1 = 0 and w2 = 0 in (7) and (8) and the other is obtained by adding the
white noise w1 to the Runge-Kutta solution at each time step tk = k∆p, k = 0, 1, . . .2.

We observe that the trajectory by the Euler-Maruyama scheme considerably deviates
from the trajectory generated by the Heun scheme, but two trajectories due to the Heun
scheme and the Runge-Kutta method with an additive noise are rather close each other.
Also, the well-known deterministic solution [R-K (noise 0) in Figure 1] deviates from these

1The subscript “p” denotes prediction in this paper.
2The convergence of this simple Runge-Kutta based scheme is not guaranteed [13, 16], so that the

Runge-Kutta scheme is not used for in later sections.
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Figure 1. Trajectories x1(t) by Euler-Maruyama and Heun schemes

trajectories. This shows the advantage of the Heun scheme over the Euler-Maruyama
scheme in solving a nonlinear stochastic differential equation.

4. Continuous-Discrete UKF. According to [22], we summarize the CD-UKF algo-
rithm. Let the σ-points at t (tk−1 ≤ t < tk) be given by X0(t|tk−1), X1(t|tk−1), · · · ,
X2n(t|tk−1) ∈ Rn, and define the matrix

X (t|tk−1) = [X0(t|tk−1) X1(t|tk−1) · · · X2n(t|tk−1)] ∈ Rn×(2n+1)

Also, let the weights for the UT be given by

W0 =
λ

n+ λ
, Wi = Wn+i =

1

2(n+ λ)
(i = 1, . . . , n)

where λ is a parameter [10]. As in [22], let the vector wm ∈ R2n+1 and matrix Z ∈
R(2n+1)×(2n+1) be defined by

wm =

 W0
...

W2n

 , Z = I2n+1 − [wm · · · wm] (9)

Further, we define

W = Z

 W0

. . .
W2n

ZT ∈ R(2n+1)×(2n+1) (10)

In terms of wm and W , the conditional mean m(t|tk−1) and the conditional covariance
matrix P (t|tk−1) are compactly expressed as

m(t|tk−1) =
2n∑
i=0

Xi(t|tk−1)Wi = X (t|tk − 1)wm

P (t|tk−1) =
2n∑
i=0

[Xi(t|tk−1)−m(t|tk−1)]Wi[Xi(t|tk−1)−m(t|tk−1)]
T

= X (t|tk−1)WXT(t|tk−1)
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For simplicity, we write m(t) := m(t|tk−1), P (t) := P (t|tk−1) and X (t) := X (t|tk−1)
below if there is no confusion. We also define

f(X (t)) = [f(X0, t) · · · f(X2n, t)] ∈ Rn×(2n+1)

f̄(X (t)) =
2n∑
i=0

f(Xi, t)Wi = f(X (t))wm

Noting that dβ(t) in (1) is the increment of the Brownian motion, it follows from [22] that

dm(t)

dt
= f(X (t))wm (11)

dP (t)

dt
= f(X (t))WXT(t) + X (t)WfT(X (t)) + LQLT (12)

where

f(X (t))WXT(t) =
2n∑
i=0

[f(Xi, t)− f̄(X (t))]Wi[Xi(t)−m(t)]T (13)

In particular, if f is linear, i.e., f = Ax, we have

f(X (t))wm = AX (t)wm = Am(t)

f(X (t))WXT(t) = AX (t)WXT(t) = AP (t)

so that the above differential Equations (11) and (12) reduce to the well-known prediction
equations in the continuous-time Kalman filter, i.e.,

dm(t)

dt
= Am(t)

dP (t)

dt
= AP (t) + P (t)AT + LQLT

It should be noted that the introduction of the vector wm and matrix W greatly sim-
plifies the forms of the prediction, or time update, equations of the CD-UKF [22]. Also,
we see that unlike the linear case, the right-hand sides of (11) and (12) are defined by
functions of σ points Xi(t), and not by m(t) and P (t). By solving (11) and (12), we have
the predicted mean and covariance matrix; see Step 2 in the CD-UKF algorithm below.

The other equations needed for the CD-UKF are the equations that update the pre-
dicted estimate and covariance matrix based on the observation yk to get the filtered
estimate m(tk|tk) and covariance matrix P (tk|tk), which are the same as those of the
observation update equations in the discrete-time UKF; see Step 3 in the CD-UKF algo-
rithm.

4.1. Continuous-discrete UKF algorithm. In the following, we define the sampling
interval for observations as ∆o, implying that we receive observations at every ∆o seconds,
and the sampling interval for prediction step as ∆p (∆p ≪ ∆o), which is the basic step
for the numerical integration of the prediction equations of (11) and (12). The relation
between ∆p and ∆o is depicted in Figure 2, where the interval ∆p is much smaller than
the observation interval ∆o.

A numerical procedure of the CD-UKF algorithm due to Särkkä [22] is described by
using two sampling intervals defined in Figure 2.

Step 1: (Initial values) Let the initial values for the filtered estimate and covariance
matrix be m(t0|t0) and P (t0|t0), and put k = 1.

Step 2: (Time update) Let j = 0.
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Figure 2. Sampling intervals ∆p and ∆o

Step 2a: Let t = tk−1 + j∆p. If t > tk, then go to Step 3 with the predicted
estimate m(tk|tk−1) and σ points X (tk|tk−1). Otherwise, compute

X (t|tk−1) = [X0(t|tk−1) · · · X2n(t|tk−1)]

=
[
m(t|tk−1) m(t|tk−1) +

(√
cP (t|tk−1)

)
1
· · · m(t|tk−1) +

(√
cP (t|tk−1)

)
n

m(t|tk−1)−
(√

cP (t|tk−1)
)
1
· · · m(t|tk−1)−

(√
cP (t|tk−1)

)
n

]
where

√
(·) denotes the matrix square root, ( · )i is the ith column vector of the

matrix square root, and c = n+ λ.
Step 2b: Integrate (11) and (12) to get m(t+∆p|tk−1) and P (t+∆p|tk−1)) from
m(t|tk−1) and P (t|tk−1), respectively. See, Subsection 5.2 for the detailed nu-
merical algorithm.

Step 2c: Choose the following σ points:

X (t+∆p|tk−1) = [X0(t+∆p|tk−1) · · · X2n (t+∆p|tk−1)]

=
[
m (t+∆p|tk−1) m (t+∆p|tk−1) +

(√
cP (t+∆p|tk−1)

)
1

· · · m(t+∆p|tk−1) +
(√

cP (t+∆p|tk−1)
)
n

m(t+∆p|tk−1)−
(√

cP (t+∆p|tk−1)
)
1

· · · m(t+∆p|tk−1)−
(√

cP (t+∆p|tk−1)
)
n

]
Step 2d: Let j := j + 1, and go to Step 2a.

Step 3: (Measurement update) Given X (tk) :=X (tk|tk−1), we define Y(tk)=hd(X (tk)).
Then, the Kalman gain is obtained as

K(tk) = X (tk)WYT(tk)[Y(tk)WYT(tk) +R]−1

so that the filtered estimate and covariance matrix are given by

m(tk|tk) = m(tk|tk−1) +K(tk)
[
y(tk)− Y(tk)wm

]
(14)

P (tk|tk) = P (tk|tk−1)−K(tk)[Y(tk)WYT(tk) +R]KT(tk) (15)

Step 4: Let k := k + 1, and then go to Step 2.

The filtered and predicted estimates and covariance matrices are recursively computed
by using Step 1 ∼ Step 4 as above.

5. Prediction Step in Continuous-Discrete UKF.

5.1. Time update equations by Euler scheme. We consider the integration of (11)
and (12) satisfied by the conditional mean estimate and error covariance matrix. Let the
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sampling interval be ∆p as shown in Figure 2. Then, integrating (11) and (12), we have

m(t+∆p|tk−1) = m(t|tk−1) +

∫ t+∆p

t

f(X (τ), τ)wmdτ (16)

P (t+∆p|tk−1) = P (t|tk−1) +

∫ t+∆p

t

[
f(X (τ), τ)WXT(τ)

+ X (τ)WfT(X (τ), τ) + LQLT
]
dτ (17)

where t = tk−1 + j∆p with j the number of iteration in Step 2 of the CD-UKF algorithm.
Approximating the value of integrands of (16) and (17) by the values at the left end point
t of integration, we have the following schemes:

m(t+∆p|tk−1) = m(t|tk−1) + f(X (t), t)wm∆p (18)

P (t+∆p|tk−1) = P (t|tk−1) +
[
f(X (t), t)WXT(t)

+ X (t)WfT(X (t), t) + LQLT
]
∆p (19)

These are the Euler approximation-based update equations of the conditional mean and
error covariance matrix, which are to be used in Step 2b to obtain σ points X (t+∆p|tk−1)
in Step 2c. Numerical results, however, show that the Euler approximation-based method
is not very accurate, so that we need to introduce a higher-order approximation in stead
of (18) and (19).

5.2. Time update equations by Heun scheme. In order to improve the Euler-based
approximation of (18) and (19), we shall apply the Heun scheme shown in Section 3 to the
computation of (16) and (17), deriving the update equations for the conditional mean and
error covariance matrix with a higher-order approximation than the Euler approximation.

Recall that t = tk−1 + j∆p with j the number of iteration in Step 2. Let the σ point at
t be given by

X (t) =

 X1,1 · · · X1,2n+1
...

...
Xn,1 · · · Xn,2n+1

 ∈ Rn×(2n+1) (20)

where the argument t in the right-hand side is suppressed. By applying the Heun scheme
to f(X , τ) in (16), we define

c
(s)
fi (1) = fi(X1,s, · · · ,Xn,s, t)

c
(s)
fi (2) = fi

(
X1,s +∆pc

(s)
f1 (1), · · · ,Xn,s +∆pc

(s)
fn(1), t+∆p

)
(i = 1, . . . , n; s = 1, . . . , 2n+ 1)

where c
(s)
fi (2) are supporting values. Moreover, let

f+
i,s =

∆p

2

[
c
(s)
fi (1) + c

(s)
fi (2)

]
and define

F+ =

 f+
1,1 · · · f+

1,2n+1
...

...
f+
n,1 · · · f+

n,2n+1

 ∈ Rn×(2n+1) (21)
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It therefore follows from (16) that a time update equation for the conditional mean esti-
mate is given by

m(t+∆p|tk−1) = m(t|tk−1) + F+wm (22)

where the order of approximation of (22) based on the Heun scheme is higher than that
of (18).
Now we consider the time update equation of error covariance matrix by applying the

Heun scheme to (17), whose integrand includes a matrix product φ(X , τ) = f(X , τ)WXT

(τ) ∈ Rn×n and its transpose. We must first vectorize the matrix φ(X , τ) to apply the
Heun scheme. In view of the definition of (13), it is quite difficult, though not impossible,
to vectorize it due to its rather complicated form. Therefore, here we replace f(X , τ) in
(17) by F+ defined by (21), approximating the other factor X (τ) by X (t) as in the Euler
scheme. Hence, by using σ points X of (20) and F+ of (21), we arrive at a time update
equation for the error covariance matrix of the form

P (t+∆p|tk−1) = P (t|tk−1) + F+WXT + XWF+T +∆pLQLT (23)

where all the elements in the right-hand side are evaluated at time t = tk−1 + j∆p. We
note that (23) is more accurate than (19) as the time update equation of error covariance
matrix. It should be however noted that since the factors f(X , τ) and X (τ) are treated
separately in the product φ(X , τ), the present scheme is not of the exact Heun scheme.
Thus the procedure of discretization of (11) and (12) is summarized as

m(t+∆p|tk−1) = m(t|tk−1) + F+wm (24)

P (t+∆p|tk−1) = P (t|tk−1) + F+WXT + XWF+T +∆pLQLT (25)

where X and F+ are given by (20) and (21), respectively.

5.3. A simple example. To explain our procedure based on the Heun scheme in detail,
we consider a first-order stochastic system

dx1(t)

dt
= −ax1(t) + bu(t) + w(t) (26)

yk = x1(tk) + vk (27)

where a is the unknown parameter to be estimated, u is a known input, and w and vk are
zero mean white noises with variances q and r, respectively. Define the extended state
vector as

x(t) =

[
x1(t)
a

]
=

[
x1(t)
x2(t)

]
Then, we have

dx1(t)

dt
= −x2(t)x1(t) + bu(t) + w(t)

dx2(t)

dt
= 0

where f1 = −x1x2 + bu, and f2 = 0. Since n = 2, there exist five σ points, i.e., X ∈ R2×5,
and the vector wm ∈ R5 and matrix W ∈ R5×5 for UT are given by (9) and (10),
respectively.
We now consider the discretization of f1 = −x1x2 + bu to obtain F+ of (21). It follows

from (20) that

X (t) =

[
X1,1 · · · X1,5

X2,1 · · · X2,5

]
∈ R2×5
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Thus, for s = 1, . . . , 5, the Heun scheme gives

c
(s)
f1 (1) = −X2,s(t)X1,s(t) + bu(t)

c
(s)
f1 (2) = −X2,s(t)

(
X1,s(t) +∆pc

(s)
f1 (1)

)
+ bu(t+∆p)

f+
1,s =

∆p

2

[
c
(s)
f1 (1) + c

(s)
f1 (2)

]
f+
2,s = 0

so that we have

F+ =

[
f+
1,1 · · · f+

1,5

0 · · · 0

]
∈ R2×5

Thus the time update equations are given by (24) and (25) with F+ obtained above.
We assume that q = 0.01, qa = 0.0001 and r = 0.01, where qa is employed for acceler-

ating the parameter estimation of the unknown parameter a. Also, the true values of pa-
rameters are a = 1.0, b = 5.0 (known), the input function is u(t) = sin(2πft), f = 1/200,
and the initial state is x1(0) = 0.01. The sampling intervals are ∆p = 0.025 and ∆o = 0.1,
respectively, and the initial values for the nonlinear filter are m(0|0) = [0.01, 0.01]T and
P (0|0) = 0.01I2, where I2 is the 2× 2 unit matrix.

Figures 3 and 4 display the simulation results by the Heun scheme-based CD-UKF with
λ = 2 and by the Euler CD-EKF. We see from Figure 3 that the estimate of unknown
parameter a is quite good for both methods. Also, from Figure 4, the absolute state
estimation error |x1(tk)−m1(tk|tk)| by both methods are nearly the same.

This simulation result shows that for a linear first-order system with a linear observa-
tion equation, the estimation results are nearly the same. In the next section, we show
simulation results for a nonlinear system and for a linear system with nonlinear obser-
vation equations to show the applicability of the proposed Heun scheme-based CD-UKF
algorithm.
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Figure 3. Estimation of parameter a

6. Further Numerical Results. Two simulation results are shown to illustrate the ap-
plicability of the present CD-UKF method based on the Heun scheme, comparing with the
performance by the CD-EKF method. We first consider a state and parameter estimation
problem of a van der Pol model, and then a two-dimensional tracking problem based on
the range and bearing information.
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Figure 4. State estimation error |x1(tk)−m1(tk|tk)|

6.1. Van der Pol model. Consider the van der Pol model treated in Section 3, i.e.,

dx1(t)

dt
= x2(t) + w1(t) (28)

dx2(t)

dt
= ε

(
1− x2

1(t)
)
x2(t)− x1(t) + w2(t) (29)

yk = x1(tk) + vk (30)

where w1(t) ∼ N(0, q1), w2(t) ∼ N(0, q2) and vk ∼ N(0, r) are Gaussian white noises. We
assume that the time interval for simulation is T = 100, the true value of the parameter
is ε = 1.0, and that q1 = 0.001, q2 = 0.001, qε = 0.00001 (the acceleration parameter
for ε), r = 0.01. Also, the initial states are x1(0) = 0.1 and x2(0) = 0.1. Let the
sampling intervals be ∆p = 0.025 and ∆o = 0.5, so that we have 20 times updates
between output observations. The initial values are m(0|0) = [0.01, 0.01, 0.01]T and
P (0|0) = diag(0.1, 0.1, 0.1). Also, the state estimation error is defined by

Ek =
√

(x1(tk)−m1(tk|tk))2 + (x2(tk)−m2(tk|tk))2 (31)
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Figure 5. Estimation of parameter ε
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Figure 6. State estimation error Ek
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Figure 7. A two-dimensional tracking model

Figure 5 shows the estimation results of unknown parameter ε by the present method
with λ = 2, together with the Euler-based CD-EKF method [9]. We see that the perfor-
mance of the parameter estimation by the present method is better than the CD-EKF
method; also similar results are obtained even if the sampling intervals ∆p and ∆o are
slightly changed. We see from Figure 6 that the state estimation error by the present
method is smaller than that by the Euler-based CD-EKF method.

6.2. A two-dimensional motion model. Consider an object M moving along a circle
centered at the origin as shown in Figure 7. Let (x1, x2) and (ẋ1, ẋ2) be the position and
the velocity of M , respectively. Then, the equations of motion are described by

d

dt

[
x1(t)
ẋ1(t)

]
=

[
0 1
−1 0

] [
x1(t)
ẋ1(t)

]
+

[
0

w1(t)

]
(32)

and

d

dt

[
x2(t)
ẋ2(t)

]
=

[
0 1
−1 0

] [
x2(t)
ẋ2(t)

]
+

[
0

w2(t)

]
(33)

where w1(t) ∼ N(0, q1), w2(t) ∼ N(0, q2) are Gaussian white noises.
Moreover, as shown in Figure 7, the observation point P = (α1, α2) is located outside

the circle, and we observe the distance r = y1 from P to the target M , and the angle
θ = y2 measured from the horizontal line along x1 axis. Then, the observation equations
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are given by

y1(tk) =
√

(x1(tk)− α1)2 + (x2(tk)− α2)2 + v1(tk) (34)

y2(tk) = tan−1

(
x2(tk)− α1

x1(tk)− α1

)
+ v2(tk), k = 0, 1, . . . (35)

We consider the estimation of the state vector and the parameters α1, α2, so that the
extended state vector becomes x = [x1, ẋ1, x2, ẋ2, α1, α2]

T ∈ R6. We assume that the true
values of parameters are α1 = 5, α2 = 3, and that Q = diag(0, 10−3, 0, 10−3, 10−4, 10−4),
R = diag(0.05, 0.05). Also, the true initial state is x(0) = [1, 1, 1,−1, 5, 3]T ∈ R6.
Let the time interval for simulation be T = 100, and let the observation interval be

∆o = 0.2, and the prediction interval ∆p = 0.01, so that we have 20 times updates
between observations. The initial estimate and covariance matrix are given by m(0|0) =
[10−2, 10−2, 10−2, 10−2, 10−1, 10−1]T and P (0|0) = 10−1I6, and the UT parameter is λ = 1.
Also, the estimation error for the position of M is defined by (31).
Simulation results are depicted in Figures 8 and 9, which clearly show that the present

Heun scheme-based CD-UKF yields better performance for the parameter estimation of
(α1, α2) as well as for the state estimation of (x1, x2) than the Euler scheme-based CD-
EKF.

0 20 40 60 80 100

0

2

4

6

E
s
t
i
m
a
t
e
s

Parameter α
1

 

 

0 20 40 60 80 100

0

2

4

6

Time

E
s
t
i
m
a
t
e
s

Parameter α
2

 

 

CD-EKF(Euler)

CD-UKF(Heun)

CD-EKF(Euler)

CD-UKF(Heun)

Figure 8. Estimation of parameters α1 and α2 by CD-UKF (solid line)
and CD-EKF (dashed line)

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
r
r
o
r
s
 
o
f
 
s
t
a
t
e
s

Estimation error

 

 

CD-EKF(Euler)

CD-UKF(Heun)

Figure 9. State estimation error Ek
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7. Conclusions. This paper has developed a numerical integration method for the time
update equations in the CD-UKF method due to Särkkä [22]. Motivated by the fact that
the Heun scheme is superior to the Euler-Maruyama scheme for numerical solutions of
stochastic differential equations, we have employed the idea of Heun scheme to integrate
the time update equations satisfied by the conditional mean and covariance matrix. The
present algorithm is explained in detail by using a state and parameter estimation problem
for a first-order stochastic system. Numerical results of state and parameter estimation
problems for a van der Pol model and a two-dimensional tracking problem based a nonlin-
ear observation are included to show the applicability of the present Heun scheme-based
UKF algorithm, producing better numerical results than Euler-based CD-EKF method
[9]. It should be noted that the present Heun scheme-based method can be applied to
any nonlinear systems, giving superiority to the existing CD-EKF method [9].
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