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Abstract. In this paper, we study an optimization problem for the observations of the
stationary LQG stochastic control systems that employ the stationary Kalman filter. The
performance criterion for the selection of the gain matrix is assumed to be the sum of the
LQG regulator performance value, which is a linear function of the estimation error co-
variance matrix, and a quadratic function of the observation gain matrix. By introducing
the eigenvalues-eigenvectors representation of a nonnegative definite symmetric matrix
that is a function of the gain matrix, we reformulate the problem as that of optimization
with respect to a pair of orthogonal and diagonal matrices. The condition of optimality
for this problem is derived under a weaker assumption than already known. For easy
numerical calculations, we represent the orthogonal matrix in a multi-dimensional polar
coordinates system with angular parameters. Moreover, we apply the connection rule of
the angular parameters that was previously shown by the author. Using this rule, we
can always find a point in the domain of the angular parameters, with the same value of
the performance criterion, from any point outside the domain. A numerical example is
provided for better understanding of the results of this paper.
Keywords: Gaussian processes, Kalman filter, LQG regulator, optimization of obser-
vation

1. Introduction. In this paper, we consider an optimization problem for the observa-
tions of the stationary LQG optimal control systems. The performance index of the
optimal control, which is quadratic in the state and input, becomes a linear function of
the error covariance matrix of the state estimation when we apply the optimal control to
the system [12]. Therefore, the performance of the control system is strongly dependent
on the gain matrix in the linear observation. To improve the performance, it is clearly
better to make the dimension and the value of this gain matrix as large as possible. How-
ever, generally these values are limited by certain physical or economical restrictions. For
this reason, we usually use a criterion, for the optimization of the gain matrix, that is the
sum of the performance index of the LQG control system and a quadratic function of the
gain matrix. In fact, most of the previous studies on the optimization of the observations
employed the criteria that are quadratic in both the estimation error and the gain matrix
[1]-[4].

The estimation error covariance matrix, as it is well-known, is given by a solution of
the matrix Riccati equation and is nonlinearly dependent on the observation gain matrix.
Therefore, it is very difficult to obtain the solution of this problem when we select the gain
matrix as the variable to be optimized. Namely, we cannot obtain the analytical solution
or the condition of optimality, that are easily applicable in numerical computations.
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In view of this situation, we previously employed a new approach for optimizing the
observations [12]. In that approach, we removed the quadratic term of the gain matrix in
the criterion and imposed the information theoretic criterion in advance [12]. Namely, in
[12], we proposed an optimization method by the following two steps:

(i) Information theoretic optimization in order to maximize the mutual information be-
tween the state process and the observations subject to a power constraint concerned
with the innovations process;

(ii) Optimization of the performance of the LQG control system, i.e., minimization of
the performance index.

We derived the condition of optimality and also constructed a numerical algorithm to
easily obtain the observation gain matrix. In particular, we obtained a simple optimiza-
tion scheme without restrictions by introducing a representation of an orthogonal matrix
through a multi-dimensional polar coordinates system and by proving the connection rule
of the angular parameters [12]. However, it transpired that, by the optimization described
by (i), the matrix Riccati equation reduces to a quasi-Lyapunov-type quadratic equation
for which we cannot always obtain a solution [12].
Thus, in this paper, we reconsider the optimization of the observation of the LQG

optimal control systems under the quadratic criterion for both the estimation error and
the gain matrix. Although, the approach is very different from the previous works, but
it is similar to that of [12]. Namely, using the following procedures, we construct and
propose an easily calculable numerical algorithm of the optimization of the observation:

(a) The problem is converted to one with a symmetric-matrix-valued variable that is a
function of the gain matrix and from which we can determine the gain matrix;

(b) By introducing the eigenvalues-eigenvectors representation of the symmetric matrix,
we convert the problem to the one with a pair of orthogonal and diagonal matrices as
the set of variables;

(c) To remove the constraints of orthogonality and normality, the orthogonal matrix is
represented by a multi-dimensional polar coordinates system with angular parameters
(change of variables);

(d) We apply the connection rule of the angular parameters [12] by which we can always
find a point, with the same value of the symmetric matrix, in the domain from any
point outside the domain.

There is not much difference between the mathematical features of the problem discussed
in this paper and the one in Takeuchi [13] which considers the optimization of the observa-
tion for the stationary Kalman filter. However, a new proof of the condition of optimality
is provided in this paper under a weaker assumption than the one in [13]. A numerical
example is provided for better understanding the results of this paper.
Mathematical symbols, in this paper, are used in the following way. R is the space of all

real numbers, i.e., R , (−∞, ∞). For positive integers m and n, Rn and Rm×n denote
the spaces of n-dimensional vectors and m × n-dimensional matrices whose components
take values in R. The prime denotes the transpose of a vector or a matrix and the
Euclidean norm is | · |. Thus, for x ∈ Rn, |x| =

√
x′x . The identity matrix of any

dimension is denoted by I. The components of a matrix are denoted by using subscripts.
Thus, [A]ij is the (i, j)-component of A. In the case where no confusion may arise, we
denote [A]ij simply by aij. If A is a square matrix, det |A| and tr[A] respectively denote
the determinant and the trace of A. We use A > 0 and A ≥ 0 to denote that A is
positive definite and nonnegative definite, respectively. For any pair of matrices A and
B, A ⊗ B denotes the Kronecker product of A and B, and vec(A) is the vector formed
by stacking the columns of A into a single column vector. The triplet (Ω, F , P ) is a



OPTIMIZATION OF OBSERVATIONS 2315

complete probability space, where Ω is a sample space with elementary events ω. F is a
σ-field of subsets of Ω, and P is a probability measure. E{ · } denotes the expectation
and E{ · |G }, G ⊂ F the conditional expectation, given G, with respect to P . σ{ · } is
the minimal sub-σ-field of F with respect to which the family of F -measurable sets or
random variables { · } is measurable.

2. Problem Formulation.

2.1. Stationary optimal LQG regulator system. Let x ≡ {xt(ω); t = 0, 1, · · · }
denote the state process of a control system which is an n-dimensional Gaussian stochastic
process described by {

xt+1(ω) = Axt(ω) + Cu(t) +Gwt(ω),
x0(ω) = x0(ω),

(1)

where A ∈ Rn×n, C ∈ Rn×r, G ∈ Rn×d1 , x0(ω) is a Gaussian random vector with mean
x̂0 and covariance Q0, u ≡ {u(t); t = 0, 1, · · · } is a r-dimensional control input, and
w ≡ {wt(ω); t = 0, 1, · · · } is a d1-dimensional standard white Gaussian noise sequence.
Suppose that the value of x is not available but we have m-dimensional observations
described by

yt(ω) = Hxt(ω) +Rvt(ω), (2)

where y ≡ {yt(ω); t = 1, 2, · · · } is an m-dimensional observation process, H ∈ Rm×n,
R ∈ Rm×d2 , and v ≡ {vt(ω); t = 1, 2, · · · } is a d2-dimensional standard white Gaussian
noise sequence. We will assume the following two conditions throughout this paper.

(C − 1) R0 , RR′ > 0,
(C − 2) x0(ω), w and v are mutually independent.

It is well-known that the least-squares estimate x̂t|t(ω) , E{xt(ω) |Yt} of xt(ω) based

on Yt , σ{ys(ω); s = 1, 2, · · · , t} is given by the Kalman filter:{
x̂t| t−1(ω) = Ax̂t−1| t−1(ω) + Cu(t− 1)
x̂t| t(ω) = x̂t| t−1(ω) +Q−H ′{HQ−H ′ +R0}−1ỹt(ω),

(3)

{
Q− = AQA′ +GG′

Q = Q− −Q−H ′{HQ−H ′ +R0}−1HQ−,
(4)

where

x̂t| t−1 , E{xt(ω) |Yt−1 } , (5)

Q− , E{[xt(ω)− x̂t| t−1(ω)][xt(ω)− x̂t| t−1(ω)]
′}, (6)

Q , E{[xt(ω)− x̂t| t(ω)][xt(ω)− x̂t| t(ω)]
′}. (7)

Also, ỹ ≡ {ỹt(ω); t = 1, 2, · · · } in (3) is the innovations process:

ỹt(ω) , yt(ω)−Hx̂t| t−1(ω)

= H{xt(ω)− x̂t| t−1(ω)}+Rvt(ω).
(8)

The stationary optimal control input u ≡ {u(t); t = 0, 1, · · · } is determined based on
the well-known solution of the LQG regulator problem with the performance criterion:

J̄ , lim
T→∞

1

T
E

{
T∑
t=1

[x′t(ω)Mxt(ω) + u′(t− 1)Nu(t− 1)]

}
, (9)
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whereM ∈ Rn×n and N ∈ Rr×r are non-negative definite and positive definite symmetric
matrices, respectively. As it is well-known, for (1), (2) and (9), the optimal control is given
by [12]

u∗(t) , −{C ′WC +N}−1C ′WAx̂t| t(ω), (10)

where W ∈ Rn×n is given by the positive definite solution of the matrix Riccati equation:{
W = A′Y A+M
Y = W −WC{C ′WC +N}−1C ′W.

(11)

From (9)-(11), the minimal value of J̄ is given by [12]

J̄∗ = tr[A′(W − Y )AQ] + tr[W GG′]. (12)

2.2. Optimization of the observations. As we see from (4) and (12), the performance
of the LQG regulator is strongly dependent on the observation gain matrix that is denoted
by H. Since a larger H is necessary in order to decrease Q, and since the second term
in J̄∗ is independent of H, it may be reasonable to select the performance criterion of
H ∈ Rm×n as the quadratic form:

Ĵ , tr[A′(W − Y )AQ] + tr[HÑH ′], (13)

where Ñ ∈ Rn×n is a positive definite symmetric matrix. Here, the second term denotes,
for example, the cost or the energy consumed by the observation. Now, we are concerned
with

[Problem 1] Find H ∈ Rm×n such that (13) is minimized subject to (4).

The formulation of Problem 1, which is based on (13), as an optimization problem with
respect to the observation gain matrix H is well-known, and there have been many studies
on this problem [1]-[4]. The main difference between the approaches of the present and
the previous studies is that in this study, we do not obtain the condition of optimality for
H itself, but for the eigenvectors and eigenvalues of the nonnegative definite symmetric
matrix: Ñ1/2H ′R−1

0 HÑ1/2. In this approach, Theorem 2.1 below plays an important role.
Since Ñ1/2H ′R−1

0 HÑ1/2 is a symmetric matrix, we have

Ñ1/2H ′R−1
0 HÑ1/2 = Ũ Ξ̃Ũ ′, (14)

where

Ξ̃ , diag(ξ1, ξ2, · · · , ξm̃), ξi > 0, i = 1, 2, · · · , m̃, (15)

m̃ , rank [H] (≤ m) , (16)

and Ũ=[u1 u2 · · · um̃] is the set of eigenvectors of the symmetric matrix Ñ1/2H ′R−1
0 HÑ1/2

in (14) corresponding to the positive eigenvalues ξi, i = 1, 2, · · · , m̃. Note that we have
Ũ ′ Ũ = I. Without loss of generality, we can assume that

ξ1 ≥ ξ2 ≥ · · · ≥ ξm̃ > 0. (17)

Note that since Ñ > 0, (14) implies

H ′R−1
0 H = Ñ−1/2Ũ Ξ̃ Ũ ′ Ñ−1/2. (18)

Then, we have the following theorem which guarantees that we can take H in the form:

H = R
1/2
0 Γ̃Ξ̃1/2Ũ ′ Ñ−1/2, (19)

where Γ̃ ∈ Rm×m̃ denotes the first m̃ columns of an orthogonal matrix Γ ∈ Rm×m such
that ΓΓ′ = Γ′Γ = I.
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Theorem 2.1. ([13], [14]). Assume (C-1) and (C-2). Then, any H ∈ Rm×n which
satisfies (14) for a fixed set of values Ũ , Ξ̃ and Ñ yields the same value of Q.

Proof: The assertion immediately follows since the second relation of (4) can be rewrit-
ten as

Q−1 =
(
Q−)−1

+H ′R−1
0 H. (20)

Thus, without loss of generality, we can take H in the form given by (19) that is an
expression of H with property (14) and/or (18). Thus, the problem has been converted to
the optimization with respect to Γ̃ ∈ Rm×m̃, Ũ ∈ Rn×m̃ and Ξ̃ , diag(ξ1, ξ2, · · · , ξm̃).

3. The condition of Optimality. As we see from (18), (19) and (20), Q is independent
of Γ̃ ∈ Rm×m̃ and is determined by (18), (20) and the first part of (4). Hence, the optimal

value of Γ̃ should be determined in such a way that tr
[
HÑH ′

]
, the second term in (13),

is minimized.

Theorem 3.1. Assume (C-1) and (C-2). Then the optimal value of Γ̃ ∈ Rm×m̃ is given
by the set of eigenvectors of R0 corresponding to the first m̃ eigenvalues in ascending
order, i.e.,

R0 =
[
Γ̃ Γ̄

]
Ψ

[
Γ̃′

Γ̄′

]
, Ψ = diag(ψ1, ψ2, · · · , ψm̃, · · · , ψm),

ψ1 ≤ ψ2 ≤ · · · ≤ ψm̃ ≤ · · · ≤ ψm.

(21)

Remark 3.1. If we take Γ̃ ∈ Rm×m̃ according to Theorem 3.1, we have

H = Γ̃Ψ̃1/2Ξ̃1/2Ũ ′ Ñ−1/2, (22)

where

Ψ̃ , diag(ψ1, ψ2, · · · , ψm̃). (23)

The form of H that is given by (22) is very similar to the result of the optimization by an
information theoretic criterion [12; Theorem 3.2] which has the following form.

H = Γ̃Ξ̃1/2Ũ ′(Q−)−1/2

In both cases, Γ̃ is the set of eigenvectors of R0. The main differences between these two
expressions of H are:

(i) Ñ−1/2 is a constant matrix in the present problem whereas it is replaced by (Q−)−1/2

which is a variable to be determined in [12].

(ii) Ξ̃ is, here, determined to achieve the minimal value of Ĵ given by (13), whereas it
is determined by a Generalized Water Filling Theorem in [12], i.e., Ξ̃ = αI − Ψ̃ for
some positive constant α.

Thus, we have converted Problem 1 to the following form.

[Problem 2] Find Ũ ∈ Rn×m̃ and Ξ̃ = diag(ξ1, ξ2, · · · , ξm̃) such that

Ĵ = tr[A′(W − Y )AQ] + tr
[
Ψ̃Ξ̃

]
→ min ., (24)

subject to (4), (17) , (22) and

Ũ ′ Ũ = I. (25)
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For Problem 2, let us define the Lagrangean by

L(Ξ̃, Ũ , Λ̃) , tr[A′(W − Y )AQ] + tr
[
Ψ̃Ξ̃

]
+ tr

[
Λ̃(Ũ ′ Ũ − I)

]
, (26)

where Λ̃ ∈ Rm̃×m̃ is a symmetric matrix whose (i, j)-component is a Lagrange multiplier
for the same component of (25), i.e.,

tr
[
Λ̃(Ũ ′ Ũ − I)

]
=

m̃∑
i=1

m̃∑
j=1

λij

[
(Ũ ′ Ũ − I)

]
ji

=
m̃∑
i=1

m̃∑
j=1

λij

[
(Ũ ′ Ũ − I)

]
ij
.

(27)

For Problem 2 and (26), we have the following result.

Theorem 3.2. (Condition of Optimality). Assume (C-1), (C-2) and

(C − 3) For F , Q(Q−)−1A, the set:

H ,
{
(Ũ , Ξ̃); det |F ⊗ F − I| ̸= 0

}
,

is not empty.

Then, the condition of optimality of Ũ and Ξ̃ is given by

Ñ−1/2QXQÑ−1/2 Ũ = Ũ Ψ̃, (28)

where X ∈ Rn×n is a solution of

X = F ′XF + A′(W − Y )A. (29)

Since Ψ̃ is a diagonal matrix given by (23), (28) implies

Corollary 3.1. Assume (C-1)-(C-3). The optimal (Ũ , Ξ̃) is such that

(i) Each column vector of Ũ is an eigenvector of Ñ−1/2QXQÑ−1/2.
(ii) The order of the column vectors in Ũ is such that the corresponding eigenvalues are

in ascending order.
(iii) The m̃ eigenvalues of Ñ−1/2QXQÑ−1/2 corresponding to Ũ coincide with the first

m̃ eigenvalues of R0.

Remark 3.2. Clearly, the condition det |F ⊗ F − I| ̸= 0 is equivalent to the one that no
eigenvalue of F ⊗ F is equal to 1. Let µi, i = 1, 2, · · · , n denote the eigenvalues of
F , Q(Q−)−1A. Then, the condition holds if and only if the following two conditions are
fully satisfied.

(i) µi ̸= 1, i = 1, 2, · · · , n.
(ii) µiµj ̸= 1, i < j, i, j = 1, 2, · · · , n.

Remark 3.3. As we see, the set of optimal values (Q, Q−, Ũ , Ξ̃) is given by a solution
of the set of equations (4), (22), (25), (28) and (29). Although it is not easy to obtain an
analytical solution of these equations, these relations together with the properties given in
Corollary 3.1 are applicable in constructing recursive numerical algorithms.
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4. Proofs of Theorems. In this section, we will give proofs of the theorems presented
in the previous section.

(Proof of Theorem 3.1) From (19), it is seen that

tr
[
HÑH ′

]
= tr

[
R

1/2
0 Γ̃Ξ̃1/2Ũ ′ Ñ−1/2 · Ñ · Ñ−1/2 Ũ Ξ̃1/2 Γ̃′R

1/2
0

]
= tr

[
R

1/2
0 Γ̃Ξ̃Γ̃′R

1/2
0

]
= tr

[
Γ̃′R0Γ̃Ξ̃

]
,

(30)

where we used (25) and the relation tr [XY ] = tr [Y X]. From (17) and the last expression

in (30), we see that tr
[
HÑH ′

]
is minimized when the diagonal components of Γ̃′R0Γ̃ are

minimized and are in ascending order. Since R0 > 0, we can conclude that Γ̃ is optimal
when the diagonal components of Γ̃′R0Γ̃ are the first m̃ eigenvalues of R0 which satisfy
the relations in (21). Hence, the column vectors of Γ̃ are the corresponding eigenvectors.
This completes the proof.

For the proof of Theorem 3.2, we need the following lemma.

Lemma 4.1. Assume (C-1)-(C-3). Then, the solutions of the matrix Lyapunov equations:

X = F ′XF + Z, (31)

and

X̂ = FX̂F ′ + Z, (32)

are respectively given by

vec(X) = (I − F ′ ⊗ F ′)−1vec(Z), (33)

and

vec(X̂) = (I − F ⊗ F )−1vec(Z). (34)

(Proof) Noting the well-known relation vec(XY Z) = (Z ′ ⊗X)vec(Y ), (31) implies

(I − F ′ ⊗ F ′)vec(X) = vec(Z). (35)

Thus, we have (33). We also have (34) from (32) in the same way. This completes the
proof.

Now, let us proceed to the proof of Theorem 3.2.

(Proof of Theorem 3.2) Substituting (18) into (20), we have

Q−1 =
(
Q−)−1

+ Ñ−1/2Ũ Ξ̃ Ũ ′Ñ−1/2. (36)

First, let us note that

∂Q

∂uij
=
∂(Q−1)−1

∂uij
= −Q∂Q

−1

∂uij
Q. (37)

Then, substitution of (36) into (37) yields

∂Q

∂uij
= Q(Q−)−1∂Q

−

∂uij
(Q−)−1Q−QÑ−1/2{EijΞ̃Ũ

′ + Ũ Ξ̃Eji}Ñ−1/2Q, (38)
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where

Eij ,

j

0

0 ... 0
0

0 · · · · · · 0 1 0 · · · 0
0

0 ... 0
0


i
. (39)

Note that from the first relation of (4), we have

∂Q−

∂uij
= A

∂Q

∂uij
A′. (40)

Substituting (40) into (38), we have

∂Q

∂uij
= F

∂Q

∂uij
F ′ −QÑ−1/2{EijΞ̃Ũ

′ + Ũ Ξ̃Eji}Ñ−1/2Q. (41)

Hence, using (32) and (34) in Lemma 4.1, we have

vec

(
∂Q

∂uij

)
= − (I − F ⊗ F )−1 vec

(
QÑ−1/2{EijΞ̃Ũ

′ + Ũ Ξ̃Eji}Ñ−1/2Q
)
. (42)

For simplicity, let

M̃ ,M + A′(W − Y )A, (43)

and

S , QÑ−1/2{EijΞ̃Ũ
′ + Ũ Ξ̃Eji}Ñ−1/2Q. (44)

Then, it follows from the relation tr [AB′] = vec (A)′ vec (B) and (42) that

∂

∂uij
tr[M̃Q] = vec(M̃)′vec

(
∂Q

∂uij

)
= −vec(M̃)′ (I − F ⊗ F )−1 vec (S)

= −
[
(I − F ′ ⊗ F ′)−1 vec(M̃)

]′
vec (S)

= −vec(X)′vec (S)
= − tr [XS] ,

where we used the fact (F ⊗ F )′ = F ′ ⊗ F ′ in the third equality, and applied (31) and
(33) with Z = M̃ in the fourth equality. Thus, we see that

∂

∂uij
tr[M̃Q] = − tr [XS]

= − tr
[
XQÑ−1/2{EijΞ̃Ũ

′ + Ũ Ξ̃Eji}Ñ−1/2Q
]

= −2 tr
[
Ñ−1/2QXQÑ−1/2Ũ Ξ̃Eji

]
= −2

[
Ñ−1/2QXQÑ−1/2Ũ Ξ̃

]
ij
,

where in the last equality, we used the fact tr [XEji] = [X] ij. Thus, we have shown that

∂

∂ Ũ
tr[M̃Q] = −2Ñ−1/2QXQÑ−1/2Ũ Ξ̃. (45)
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Using (45) and (26), we have the condition

∂L(Ξ̃, Ũ , Λ̃)

∂Ũ
= −2Ñ−1/2QXQÑ−1/2Ũ Ξ̃ + 2Ũ Λ̃ = 0, (46)

which implies

Ñ−1/2QXQÑ−1/2Ũ Ξ̃ = Ũ Λ̃. (47)

Here, note that we can take Λ̃ as a diagonal matrix because Ñ−1/2QXQÑ−1/2 is sym-
metric and Ξ̃ is diagonal [10; Lemma 4.2]. Similarly, the derivatives with respect to ξi are
computed as

vec

(
∂Q

∂ξi

)
= − (I − F ⊗ F )−1 vec

(
QÑ−1/2ŨEiiŨ

′Ñ−1/2Q
)
, (48)

∂

∂ξi
tr[M̃Q] = −

[
Ũ ′ Ñ−1/2QXQÑ−1/2Ũ

]
ii
, (49)

∂

∂ Ξ̃
tr[M̃Q] = −Ũ ′ Ñ−1/2QXQÑ−1/2Ũ , (50)

and

∂

∂ Ξ̃
tr[Ψ̃Ξ̃] = Ψ̃, (51)

where (49) implies (50) because of (47) and the fact that Λ̃ is diagonal. Now, using (50)
and (51), we have the condition

∂L(Ξ̃, Ũ , Λ̃)

∂Ξ̃
= −Ũ ′ Ñ−1/2QXQÑ−1/2Ũ + Ψ̃ = 0, (52)

and, hence, we have

Ũ ′ Ñ−1/2QXQÑ−1/2 Ũ = Ψ̃ . (53)

By applying (53) and (25) to (47), we have

Λ̃ = Ψ̃Ξ̃, (54)

and which, together with (47), implies (28). This completes the proof.

5. Representation of Ũ by a multi-dimensional Polar Coordinates System. In
this section, we convert the constrained problem given by (24) and (25) to an uncon-
strained one by introducing a multi-dimensional polar coordinates system in Rn. Let us
denote

Ũ = T (n)

{
k̄∏

ℓ=1

[
Iℓ×ℓ 0
0 T (n− ℓ)

]}[
Im̃×m̃

0

]
, (55)

where

k̄ , min (m̃− 1, n− 2) , (56)

and, for k = n, n− 1, · · · , n− k̄,

T (k) , T (k; θk1, θk2, · · · , θk k−1)
= [zk1 zk2 · · · zkk],

(57)
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zk1 =



k−1∏
i=1

cos θki

sin θk1
k−1∏
i=2

cos θki

...

sin θk j−1

k−1∏
i=j

cos θki

...

...

...

...
sin θk k−2 cos θk k−1

sin θk k−1



, zkℓ =



− sin θk k−ℓ+1

k−ℓ∏
i=1

cos θki

− sin θk k−ℓ+1 sin θk1
k−ℓ∏
i=2

cos θki

...

− sin θk k−ℓ+1 sin θk j−1

k−ℓ∏
i=j

cos θki

...

− sin θk k−ℓ+1sin θk k−ℓ

cos θk k−ℓ+1

0
...

0



,

ℓ = 2, 3, · · · , k,

(58)

and

0 ≤ θk1 ≤ 2π, −π
2
≤ θk i ≤ π

2
, i = 2, 3, · · · , k − 1. (59)

Then, it can be easily seen that T ′(k)T (k) = T (k)T ′(k) = Ik×k and, hence, we have (25)
for Ũ which is given by (55). The fact that all Ũ ∈ Rn×m̃ for which we have (25) can be
expressed by (55)-(59) is shown in [12], [13].
Thus, we have converted Problem 2 with constraint (25) to the one with the uncon-

strained angular variables given by (59) for k = n, n− 1, · · · , n− k̄.

6. A method of Connections of the Angular Parameters at the Boundary of
the Domain. For simplicity, let

Θ ,
{
θk1, θk i, i = 2, 3, · · · , k − 1, k = n, · · · , n− k̄

}
. (60)

Clearly, Ũ = Ũ(Θ) is a periodic function of Θ. Hence, for an exterior point of the

domain given by (59), there always exists an interior point (of the domain) for which Ĵ
has the same value as the exterior point. If we can find such a pair of values of Θ, the
optimization of searching the minimal point of Ĵ becomes much simpler. Namely, we
can replace the exterior point generated by the algorithm with the corresponding interior
point, and continue searching. In usual cases of optimization, we must stop searching
when the algorithm generates an exterior point. In such a case, we usually take a nearest
boundary point and memorize the value of the objective function at that point as a local
minimal point. However, if we can replace the exterior point with the interior point at
which Ĵ has the same value as that at the exterior point, we can continue searching until
we find a minimal point. By the following theorem, we show that it suffices to search over

the following set of the angular parameters with 1
/
2k̄+1 size:

0 ≤ θk1 ≤ π, −π
2
≤ θk i ≤ π

2
,

i = 2, 3, · · · , k − 1, k = n, n− 1, · · · , n− k̄,
(61)

and also the rule by which we can replace any exterior point of (61) with the corresponding
interior point.
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Theorem 6.1. (Connections of Angular Parameters [12]). For Ũ given by (55),
we have the following rules for the case when only one parameter violates (61). For
k = n, n− 1, · · · , k̄, let

θk , [θk1 θk2 · · · θk k−1]
′ , (62)

q ∈
{
n, n− 1, · · · , n− k̄

}
, (63)

and assume that only one parameter in θq violates (61), and the other parameters in θq
and θk, k ̸= q all satisfy (61). Then, by (i)-(iii) below, we can find the corresponding

value of Θ which is in the domain given by (61), and for which Ĵ given by (24) has the
same value.

(i) When θq1 ∈ [−π, 0) or θq1 ∈ (π, 2π] and θq i ∈
[
−π

2
, π

2

]
, i = 2, 3, · · · , q − 1, Ĵ

keeps the same value after the following replacements.
(a) q: odd,

θq1 → θq1 ± π, θq i → −θq i, i = 2, 3, · · · , q − 1,{
θ(2j) (2j−1) → −θ(2j) (2j−1)

θ(2j−1) 1 → π − θ(2j−1) 1
, j = 2, 3, · · · , (q − 1)/2,

θ2 1 → π − θ2 1,

(b) q: even,

θq1 → θq1 ± π, θq i → −θq i, i = 2, 3, · · · , q − 1,{
θ(2j+1) (2j) → −θ(2j+1) (2j)

θ(2j) 1 → π − θ(2j) 1
, j = 1, 2, · · · , (q − 2)/2,

(ii) When θq q−1 ∈
[
−3π

2
, −π

2

)
or θq q−1 ∈

(
π
2
, 3π

2

]
, and θq 1 ∈ [0, π] and θq i ∈

[
−π

2
, π

2

]
,

i = 2, 3, · · · , q − 2, Ĵ keeps the same value after the following replacements.
(a) q: odd,

θq q−1 → θq q−1 ± π,{
θ(2j) 1 → π − θ(2j) 1,
θ(2j−1) (2j−2) → −θ(2j−1) (2j−2),

j = 1, 2, · · · , (q − 1)/2,
j = 2, 3, · · · , (q − 1)/2,

(b) q: even,

θq q−1 → θq q−1 ± π,{
θ(2j+1) 1 → π − θ(2j+1) 1, j = 1, 2, · · · , (q − 2)/2,
θ(2j) (2j−1) → −θ(2j) (2j−1), j = 2, 3, · · · , (q − 2)/2,

θ2 1 → π − θ2 1.

(iii) When θq τ ∈
[
−3π

2
, −π

2

)
or θq τ ∈

(
π
2
, 3π

2

]
, τ = 2, 3, · · · , q − 2, and θq1 ∈ [0, π]

and θq i ∈
[
−π

2
, π

2

]
, i ̸= τ, i = 2, 3, · · · , q − 1, Ĵ keeps the same value after the

following replacements.
(a) 2τ < q,

θq τ → θq τ ± π, θq i → −θq i, i = τ + 1, τ + 2, · · · , q − 1,{
θ(q−2j+1) (q−τ−j) → −θ(q−2j+1) (q−τ−j),

θ(q−2j) (τ−j) → −θ(q−2j) (τ−j),
j = 1, 2, · · · , τ − 1,
j = 1, 2, · · · , τ − 2,

θ(q−2τ+2) 1 → π − θ(q−2τ+2) 1, θ(q−2τ+2) i = −θ(q−2τ+2) i,

i = 2, 3, · · · , q − 2τ + 1,



2324 Y. TAKEUCHI

(b) 2τ ≥ q,

θq τ → θq τ ± π, θq i → −θq i, i = τ + 1, τ + 2, · · · , q − 1,{
θ(q−2j+1) (q−τ−j) → −θ(q−2j+1) (q−τ−j),

θ(q−2j) (τ−j) → −θ(q−2j) (τ−j),
j = 1, 2, · · · , q − τ − 2 ,

θ(−q+2τ+3) 1 → π − θ(−q+2τ+3) 1, θ(−q+2τ+3) i = −θ(−q+2τ+3) i,

i = 2, 3, · · · , −q + 2τ + 2.

(Proof) The outline of the proof is given in [12].

7. A Numerical Example. In this section, we will give an illustrative example for a
3-dimensional LQG system with 3-dimensional observations (n = m = 3).

Example 7.1. Let us consider a 3-dimensional system with

A =

 0.5 0.3 0.1
0.2 0.4 0.2
0.1 0.5 0.6

 , G =

 0.5 0 0
0 0.5 0
0 0 0.5

 ,
C =

 1.2 0.1 0.2
0.2 1.4 0.2
0.1 0.5 1.1

 ,
M = diag(40.0, 100.0, 55.0), N = I,

R0 =

 −1
8

−3
√
3

8
3
4

−3
√
3

8
5
8

√
3
4

−3
4

−
√
3
4

−1
2


 0.49 0 0

0 1.0 0
0 0 1.44


 −1

8
−3

√
3

8
−3

4

−3
√
3

8
5
8

−
√
3
4

3
4

√
3
4

−1
2


=

 1.2395 0.1015 −0.2128
0.1015 0.8673 −0.3437
−0.2128 −0.3437 0.8231

 ,
i.e.,

Ψ = diag(0.49, 1.0, 1.44), Γ =

 −1
8

−3
√
3

8
3
4

−3
√
3

8
5
8

√
3
4

−3
4

−
√
3
4

−1
2

 .
For the above system and observations, the solution of (11) is given by

W =

 40.1699 0.0937 0.0117
0.0937 100.1910 0.1872
0.0256 0.1872 55.2648

 ,
and

Y =

 0.7184 −0.0857 −0.1342
−0.0857 0.6969 −0.4178
−0.1342 −0.4178 0.9710

 .
By taking Ñ = (1/150.0) · I, we made numerical computations for the three cases:

m = 3, m̃ = 2 and m̃ = 1. We carried out the optimization by a simple alternate
search algorithm with respect to the angular parameters: θ31, θ32 and θ21, and Ξ̃ ,
diag(ξ1, · · · , ξm̃) by making use of the connection rule shown in Section 5. The results
are summarized in Table 1.
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In Figure 1, the result of the optimization of ξ1, ξ2 and ξ3 by the alternate search
for m̃ = 3 with the initial values ξ1 = ξ2 = 1.0 and ξ3 = 2.0 is shown. Figure 2
shows the corresponding change of the value of Ĵ . As we see from Figures 1 and 2, we
have good convergence. Also, for m̃ = 2, the runs of θ31, θ32 and θ21 are respectively
shown in Figures 3, 4 and 5, for 27 different initial values of Θ = {θ31, θ32, θ21} and
Ξ̃ = diag(ξ1, ξ2). Thus, we obtained good convergence for all runs to the optimal value
shown in Table 1.

Table 1. The optimal values of Θ = {θ31, θ32, θ21}, Ξ̃, Ũ , H, Q, Q− and Ĵ
for m̃ = 3, 2 and 1

2=m 1=m

1.1019 1.1016 1.1014 

0.6179 0.6183 0.6177 

0.7854 0.7854 

0.8951 0.8955 0.8957 

0.2162 0.2163 

0.0354 

1.4873 1.5565 3.8220 

 Θ

 Ξɶ

 Uɶ

 H

 Q

 
−Q

 Ĵ

 31
θ

 32
θ

 21
θ

 1
ξ

 2
ξ

 3
ξ

 3=mɶ

 0.3684 0.8159 0.4457

0.7271 0.0459 0.6850

0.5793 0.5764 0.5764

− −

−

−

 
 
 
 
  

 1.7210 0.8519 3.9141

5.3783 3.1747 1.6900

0.3868 5.2570 4.1493

−

− − −

− −

 
 
 
 
  

 0.0300 0.01630.0407

0.0300 0.0545 0.0403

0.0163 0.0403 0.0474

−

− −

−

 
 
 
 
  

 0.2558 0.0017 0.0005

0.0017 0.2523 0.0018

0.0005 0.0018 0.2559

 
 
 
 
  

 0.3684 0.8160

0.7268 0.0459

0.5796 0.5762

−

−

 
 
 
 
  

 2.6454 0.5675 2.7197

4.8466 3.9934 1.0030

0.2292 4.3096 4.9481

− −

− − −

− − −

 
 
 
 
  

 0.0697 0.05380.0745

0.0745 0.1229 0.0978

0.0538 0.09580.0978

−

− −

−

 
 
 
 
  

 0.2566 0.0009 0.0010

0.0009 0.2530 0.0013

0.0010 0.0013 0.2562

 
 
 
 
  

 0.3688

0.7270

0.5791

 
 
 
 
  

 0.3741 0.7374 0.5874

1.9436 3.8317 3.0522

2.2443 4.4245 3.5244

− − −

− − −

− − −

 
 
 
 
  

 0.0626 0.07940.2559

0.0626 0.1237 0.1064

0.19130.0794 0.1064

− −

− −

− −

 
 
 
 
  

 0.2939 0.0078 0.0238

0.0078 0.2543 0.0033

0.0238 0.0033 0.2727

−

−

− −

 
 
 
 
  

8. Concluding Remarks. In this paper, we have considered the optimization of the
observations of the stationary LQG stochastic control systems under a quadratic criterion.
The numerical algorithm used in Section 7 is simple but does not use the condition of
optimality very efficiently. It may be possible to improve the algorithm by doing so.
Furthermore, the gradient methods usually give better results than the algorithm used in
this paper. For the gradient methods, however, we need explicit representations of the
derivatives of Ĵ with respect to Θ and Ξ̃. This point will be discussed in the near future.

Acknowledgment. The author would like to express his sincere thanks to Mr. T. Teran-
ishi for his help in the numerical computations.
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Figure 1. The results of the optimization of ξ1, ξ2 and ξ3 by the alternate
search for m̃ = 3 with the initial values ξ1 = ξ2 = 1.0 and ξ3 = 2.0
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Figure 2. The results of the optimization by the alternate search form̃ = 3
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