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Abstract. In this paper, a blind detection method is proposed to evaluate the infor-
mation that can be drawn from the received phase shift keying (PSK) signals without
channel knowledge at the receiver. First, we develop a method to determine the decision
regions for detecting PSK symbols based on the maximum a posterior (MAP) criterion.
Then, to reduce the numerical complexity, an approximated MAP criterion equivalent to
a least squares criterion is derived. Numerical simulations are conducted to evaluate the
performance of our proposed methods in terms of the mean squared error (MSE) and the
bit error rate (BER).
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1. Introduction. For an unknown system where only the output signal is known, the
blind equalization technique can be used to recover the input signals. The technique
has been studied for single-input single-output (SISO) systems since 1980s (see, e.g.,
[1] and the references therein). It has been explored also for multiple-input multiple-
output (MIMO) systems, where it is commonly referred to as independent components
analysis (ICA) [2] or blind signal separation [3, 4]. Many applications based on blind
equalization have been developed, e.g., in medical engineering, signal analysis and wireless
communication.

It has been shown that under some conditions, blind equalization for SISO systems can
recover the original signal up to an unknown complex value. This means that, if there
are no noises then the recovered signals are scaled and rotated in two-dimensional signal
space.

Blind equalization technique has received much attention in wireless communication,
since it does not require estimation of the unknown channel. However, at least phase
information is required for coherent detection of digitally modulated signals. Incoherent
detection is possible for some digital modulation when at least one symbol (usually the
first transmitted symbol) is known (e.g., see [5]).

Despite the advantages of blind equalization, it may be still used, e.g., by eavesdrop-
ping a wireless communication. Due to the presence of this disadvantage, we need to
pay more attention to the security issue of communication systems especially in wireless
communication. Usually, the security is maintained by using secret-key sharing only by a
specific pair of transmitter and receiver. The disadvantage of the secret-key sharing is the
development of a method to share the secret-key before data communication. Recently,
new techniques based on information theory have been proposed in [6, 7] for secret com-
munication. However, it remains unclear whether they are robust to blind equalization.

In this paper, we study the blind detection of phase shift keying (PSK) signals to know
the extent of the information that can be eavesdropped and the corresponding probability.
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Using the maximum a posterior (MAP) criterion, we develop a method to determine the
decision regions for detecting PSK symbols, which is equivalent to estimating the unknown
phase of the received PSK symbols after blind equalization. Since the proposed method
requires many logarithmic and exponential computations, to reduce the computational
complexity, we use the approximation of the log-sum-exp function, as an approximate
MAP based method which can also be considered as a least squares (LS) based estimator.
By taking quadrature PSK (QPSK) and 8PSK signaling as examples, the mean squared

error (MSE) of the phase and gain estimates are numerically evaluated and the bit er-
ror rate (BER) of the detection using the phase estimates is also given to assess the
performances of our estimators.
This paper studies the security aspect of blind equalization. Comparing with other

works on blind equalization and separation such as [8, 9], where their objects are to
equalize signals blindly under the assumption that the prior knowledge of the transmitted
signals is available at the receiver (which is usually obtained through pilot or training sym-
bols) and to separate signals blindly, our proposed methods detect and recover digitally
modulated signals as possible as it can without any prior knowledge of the transmitted
signals at the receiver. By using our method, we can numerically evaluate to what extent
information is eavesdropped.

2. Problem Formulation. Suppose that a transmitter transmits K M -ary phase shift
keying (MPSK) signals for a specified time duration. Let sk be the symbol from the
transmitter at the kth time-slot, which is assumed to be a PSK symbol.
After some processing at the receiver, let the received baseband signal corresponding

to sk be

yk = rejθsk + wk, k = 1, . . . , K (1)

where j is the imaginary unit, r(≥ 0) and θ are unknown gain and phase respectively,
and wk is a complex Gaussian noise with zero mean and variance σ2

w. Let us define the
received signal vector y as

y = [y1, y2, . . . , yK ]. (2)

From (1), we consider a case where the receiver does not know the channel and a blind
equalization is conducted as in [1]. It is well-known that if sk is non-Gaussian and wk

is absent, then the transmitted signals can be recovered up to the unknown amplitude r
and phase θ. Thus, if the transmitter sends a pilot symbol known to the receiver, then
the phase can be estimated based on the received pilot symbol and the detection of sk
becomes possible.
Figure 1 plots the received signal points when the signal to noise ratio (SNR) is 10dB

and θ = π/8 (radian). One can guess the existence of quadrature PSK (QPSK) signals
but cannot estimate θ without additional information.
Suppose that there is an eavesdropper that can blindly equalize the transmitted symbols

up to the unknown amplitude r and phase θ. We would like to evaluate how much
information is eavesdropped from yk in (1).
Since all PSK signals have constant amplitude, then the amplitude r is not necessary

for the detection of PSK signals. Thus, we mainly study the estimation of θ to obtain
information from the received signals. Note that, even if there are no noises, there is still
an ambiguity on estimating θ due to the symmetry of MPSK signal points. To avoid this,
without loss of generality, we assume that

− π

M
≤ θ <

π

M
. (3)
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Figure 1. Received signal points (10dB)

3. Symbol Detection with Phase Estimation. Now we consider the detection of the
transmitted symbols. We utilize the maximum a posterior (MAP) criterion to estimate
the unknown phase θ for symbol detection. For the simplicity of presentation, we only
consider QPSK signaling; however, our method can be easily extended to general MPSK
signals.

QPSK signals can be represented by 4 constellation points (1, 0), (0, j), (−1, 0), (0,−j)
in the two-dimensional complex signal space. Using complex values, we denote the con-
stellation as C = {ej·0·π2 , ej·1·π2 , ej·2·π2 , ej·3·π2 }. In this case, phase differences are a multiple
of π/2. And there are 4 possible cases:

yk = rejθ + wk (4)

yk = −rejθ + wk (5)

yk = jrejθ + wk (6)

yk = −jrejθ + wk. (7)

Let us assume that the 4 constellation points are taken with equal probability and θ is uni-
formly distributed between [0, 2π). Since θ and sk are independent, the joint probability
density function (PDF) of yk can be expressed as

p(yk, θ, r, sk) = p(θ)p(r)p(sk)p(yk|θ, r, sk) (8)

where p(x) denotes the PDF of x. Since the noise is Gaussian, then marginalizing
p(yk, θ, r, sk) over sk leads to

p(yk, θ, r) =
p(r)

8π2σ2
w

I(yk, θ, r) (9)

where

I(yk, θ, r) =
∑
sk∈C

exp

(
−|yk − rejθsk|2

σ2
w

)
(10)

We assume that the transmitted symbols s1, . . . , sK are independent of each other.
Then we obtain

p(y, θ, r) = ΠK
k=1p(yk, θ, r) =

p(r)

8π2σ2
w

ΠK
k=1I(yk, θ, r). (11)
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By taking the logarithm of p(y, θ, r) and ignoring the constant terms, the MAP estimates
of θ and r can be obtained by maximizing

JMAP (θ, r) =
K∑
k=1

log I(yk, θ, r) + log p(r). (12)

The criterion function JMAP (θ, r) is non-linear. Moreover, the computational complexity
of (12) is higher due to the presence of logarithmic and exponential functions. To reduce
the complexity, we develop an approximate of JMAP (θ, r) in the following.
As K gets larger, the first term in the R.H.S. of (12) gets larger, while the last term is

constant (for a given r). Thus, for large K, we can ignore the last term in the R.H.S. of
(12). Applying the approximation of the log-sum-exp function such as

log(ex1 + ex2 + · · ·+ exN ) ≈ max(x1, x2, . . . , xN) (13)

to log I(yk, θ, r), we obtain

JMAP (θ, r) ≈
K∑
k=1

max
sk∈C

(
−|yk − rejθsk|2

)
= J(θ, r) (14)

where

J(θ, r) =
K∑
k=1

min
sk∈C

|yk − rejθsk|2 (15)

This shows that the maximization of JMAP (θ, r) can be approximately achieved by the
minimization of J(θ, r).
The criterion function J(θ, r) has another important interpretation: If we resort to the

least squares to estimate θ and r for our model (1), then it follows that the LS estimates
of θ and r are given by minimizing J(θ, r).
Let us define

J̃(θ) =
K∑
k=1

min
(
±ℜ{y∗kejθ},±ℑ{y∗kejθ}

)
, (16)

where ℜ{·} is the real part of the argument, while ℑ{·} is the imaginary part. It should
be noted that the selection of the minimum of ℜ{y∗kejθ},−ℜ{y∗kejθ},ℑ{y∗kejθ},−ℑ{y∗kejθ}
corresponds to the estimation of sk.
Using J̃(θ), we re-express J(θ, r) as

J(θ, r) = 2rJ̃(θ) + C(r) (17)

where

C(r) = Kr2 +
K∑
k=1

|yk|2. (18)

Since J̃(θ) does not depend on r, all we have to do is to minimize J̃(θ) to find the optimal
θ such as

θ̂ = argmin
θ

J̃(θ). (19)

Unfortunately, (16) cannot be solved analytically, since the metric above is non-linear in
θ. Thus, we resort to the line search to find the optimal θ.
The decision regions for yk are determined by θ̂ obtained from the corresponding sym-

bols in the selection of the minimum of ℜ{y∗kejθ},−ℜ{y∗kejθ},ℑ{y∗kejθ},−ℑ{y∗kejθ}. How-
ever, there is still an ambiguity in the phase rotation of the estimated symbols.
Although the detection of PSK signals does not require the estimation of the unknown

amplitude r, suppose that one may need to estimate the unknown amplitude. Then, (17)
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shows that the joint minimization of J(θ, r) can be decoupled into two-step minimization.
It follows from (17) that

∂J(θ, r)

∂r
= 2J̃(θ) + 2Kr. (20)

Thus, the optimal r̂ is given by

r̂ = − 1

K
J̃(θ̂). (21)

4. Simulation Results. To demonstrate performance of our proposed methods, we de-
fine signal energy as E{|sk|2} = Es (where E{·} is called the expected value operator)
and set the noise variance to be σ2

w = N0, and define signal to noise ratio (SNR) as
10 log(Es/N0) in dB.

For the simplicity of illustration, we only consider QPSK and 8PSK signals as examples,
although our methods can be extended to the detection of any PSK modulation scheme.

Since (12) depends on θ and r, we fix r = 1 to evaluate the performance of our MAP
phase estimates obtained by maximizing (12). We generate 104 uniform random phases
between [− π

M
, π
M
). For each realization, the cost function in (16) is evaluated at 103

points that are uniform in [− π
M
, π
M
). In other words, the distance of two neighboring

search points is 2π/(M · 103). Then, we select the best among 103 values of the cost
function to obtain the estimate of θ.

Figure 2 presents the mean squared error (MSE) of the estimated θ̂ for different values of
K received signals for QPSK symbols. MSE curves are represented by using two different
criterion functions (12) and (16). We have small MSE even at relatively low SNR with
(12). For the same SNR, the performance gets better asK increases. In terms of MSE, the
approximated criterion does not seem to work well and its performance slightly improves
with increasing K compared with the MAP criterion. However, as which can be shown
later in Figure 4, in terms of BER, it works as good as the MAP criterion. Similar
phenomena can be seen in Figure 3 which demonstrates the MSE of estimated θ̂ on 8PSK
symbols.

1 2 3 4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

−5

Es/N0(dB)

M
SE

(d
B)

 o
f u

nk
no

w
n 

ph
as

e

 

 

K=10
K=25
K=50
K=100
K=10
K=25
K=50
K=100

Figure 2. MSE of phases estimated by (12) (dash-dot curves) and by (16)
(solid curves) for QPSK
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Figure 3. MSE of phases estimated by (12) (dash-dot curves) and by (16)
(solid curves) for 8PSK
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Figure 4. BER using phases estimated by (12) (dash-dot curves) and by
(16) (solid curves) for QPSK

In the following, from the estimated θ̂, we compute e−jθ̂yk to detect the symbols with
the conventional decision regions. Figure 4 and Figure 5 show bit error rate (BER)
performance for different K for QPSK and 8PSK symbols respectively, where the curves
with ⋆ are the BER with the true value of θ, that is, when the value of θ is known at the
receiver.
Again, two different cost functions, the MAP given by (12) and the approximated MAP

(16) are considered. Unlike MSE, BER with phases estimated using the approximated
criterion is comparable to BER with phases estimated using the MAP criterion. Mean-
while BER improvements with the increase of K are not significant. This implies that
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Figure 5. BER using phases estimated by (12) (dash-dot curves) and by
(16) (solid curves) for 8PSK
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Figure 6. MSE of gain estimates for QPSK

sufficiently good phase estimates are obtained even with small K. This is also verified by
the comparison of the BER of the estimated phases with the BER of the known phase,
that is, the performance limit, where BERs obtained by using estimated phases are close
to the performance limit.

Since PSK modulations have a constant modulus, their gains are not necessary for the
detection. However, other modulations like quadrature amplitude modulations (QAM),
both phase and gain are needed for their detection. Since we would like to extend our
method to other modulations, we evaluate the gain estimates obtained by (21) for PSK
signals.
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Figure 7. MSE of gain estimates for 8PSK

Figure 6 illustrates the MSE of estimated r̂ of QPSK symbols for different K. It
can be observed that small MSE is also obtained at low SNR even for small K. As K
increases, the performance gets better. The same conclusion can be drawn from the MSE
of estimated r̂ for different K on 8PSK as described in Figure 7.

5. Conclusions. The problem of blind detection of PSK signals is studied. Different
from other works on blind separation, we detect and recover digitally modulated signals
as possible as we can without any prior knowledge of transmitted signals at the receiver
(which is commonly obtained through pilot or training symbols). By using our method,
we can also numerically evaluate the extent that information is eavesdropped. We have
designed a method to determine the decision regions to detect PSK symbols based on
the MAP criterion. We have also presented another method by approximating the MAP
criterion, which is equivalent to the least squares based determination of decision regions.
The MSE of the phase estimates and the BER of the detection using the estimated
phases have been also provided to assess the performance of our estimator. The accuracy
of estimated amplitude is also demonstrated by its MSE performance.
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