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Abstract. In this paper, we present statistical models based on the Rice distribution
and ML (maximum likelihood) positioning algorithms for received signal powers in sen-
sor networks. The purpose of this study is to develop the indoor positioning system with
utilizing the IEEE Std 802.15.4 [1] based the wireless sensor network. We estimate the
position of nodes (active tags) in sensor networks. Reference nodes (base stations) ex-
ist with known coordinates, typically because they are part of an installed infrastructure.
Other nodes are blind nodes, whose coordinates need to be estimated. These blind nodes
are often mobile and attached to assets that need to be tracked. The variation of the
RSSI is large because of the influence by the measurement environment. Therefore, it
is necessary to acquire a lot of the RSSI (Received Signal Strength Indicator) data to
improve the position estimation. In this paper, we present the models of RSSI of radio
signal propagation applying the Rice distribution, in the special occasion, including the
Rayleigh and gamma distributions. We propose a positioning algorithm based on the ML
method from the probability density functions of the signal powers.
Keywords: Indoor positioning, Received signal strength, Rice distribution, Sensor net-
work

1. Introduction. Wireless sensor networks can supply sensing data to applications that
adapt to the user’s circumstances in a ubiquitous computing environment. Their systems
are applied in a variety of fields, such as commodities management, energy monitoring,
and a wireless attraction system. Thus, position information is very important in sensor
networks.

Therefore, sensor nodes send sensing data to a base station for data collection. If they
are appropriately designed, sensor nodes can work autonomously to measure temperature,
humidity, acceleration, and so on. In addition, sensor locations are important too, because
sensing data are meaningless if the sensor location is unknown in various applications.

The most popular method to acquire position information is GPS (Global Positioning
System). GPS provides highly accurate position and velocity. The main factor limit-
ing the use of GPS is the requirement for line-of-sight between the receiver antenna and
the satellites. Therefore, methods of the indoor measurement applying GPS, pseudolite
method and IMES (Indoor Messaging System) are proposed [2, 3]. However, position-
ing of pseudolite method is difficult due to multipath signals and cycle slips in indoor
environment. Furthermore, the cost of the infrastructure maintenance rises because a
tightly-synchronized signal is necessary. On the other hand, IMES method is constructed
by using the same frequency of the GPS signal and the modulation method. It is expected
as a technique of a seamless measurement using GPS though there are problems of the
measurement time and the operation method, etc.

2359



2360 M. TANIKAWARA, K. OHBA, Y. KUBO AND S. SUGIMOTO

As alternative to GPS, some methods to acquire position information without GPS have
been studied [4, 5, 6]. Consequently, in indoor positioning an Inertial Navigation System
(INS) provides position, velocity and attitude autonomously at a rate of several tens of
Hz. However, its errors are accumulated owing to drift of IMU (Inertial Measurement
Unit) [7, 8].
The positioning method uses wireless communication, especially, methods using radio

property such as received signal power, time of arrival (TOA), directional antenna (Cell-
ID) and angle of arrival (AOA).
In this paper, a location estimation method which utilizes the RSSI (Received Signal

Strength Indicator) obtained as a by-product of the data communication between nodes
for wireless sensor networks is focused on. However, the RSSI has a larger variation
because it is subject to the effects of fading or shadowing. Thus we propose the ML based
distance estimation method that can take into account the radio environment. First, in
Section 2, we introduce the specification and functions of a ubiquitous device which is
applied in this paper. Next, in Section 3, we present the statistical models of RSSI of radio
propagation based on the Rice distribution [9, 10] and the ML methods of estimating the
parameters in these models derived from the Rice distribution. Furthermore, based on
these statistical models of RSSI, ML algorithms are derived for estimating locations of
tags. The fitness test for the many statistical models of RSSI is derived based on AIC
(Akaike’s Information Criterion) [11, 12]. Also we show the experimental results for the
model determination of RSSI and the location estimation of tags based on our derived
methods. Finally, in Section 6, we conclude the paper.

2. System Equipments. In this paper, we construct a system to use the following
equipment.

2.1. IEEE STD 802.15.4. IEEE Std 802.15.4 has three frequency bands: 868 MHz
(868-868.6 MHz), 915 MHz (902-928 MHz) and 2.4 GHz (2.4-2.4835 GHz) bands; however,
only the 2.4 GHz band is allowed in Japan. The bit rate, symbol rate and modulation
are 250 kbits/sec, 62.5 ksymbols/sec and offset-quadrature phase shift keying (O-QPSK),
respectively. The 2.4 GHz band is included in industrial, scientific and medical (ISM)
band, so it is rich in interference. To mitigate the interference, therefore, direct sequence
spread spectrum (DS-SS) with processing gain of 8 is adopted in the standard. The chip
rate is 2 Mchips/sec.

Figure 1. Description of the system
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We implemented our techniques in Ubiquitous Device the “smartMODULE”, which is
a sensor network developed by Hitachi Industrial Equipment System Co. Ltd., Japan.
The “smartMODULE” is compliant with IEEE 802.15.4 (2.4GHz band). The products
include active tags, the base stations, and the relay stations. The sensor network is simply
constructed with these products. Figure 1 shows an example of the system configurations.
Active tags with omnidirectional pattern antennas and the base stations with the whip
antennas are used in our experiments.

3. Statistical Models of RSSI. In wireless telecommunications, RSSI measurement
data at each base station have large variations due to the influence of the radio environ-
ment. Often the Rice distribution (or Rician distribution) is used as a model of the PDF
(probability density function) of the amplitude (: X) of the radio wave. Namely,

fX(x) =
x

σ2
e−

x2+A2

2σ2 I0

(
xA

σ2

)
, (1)

where In(x) is the n-th order modified Bessel function [13] of the first kind. Namely,

In(x) ≡
1

π

∫ π

0

ex cos θ cosnθdθ. (2)

Especially, n = 0, we have the relations

I0(x) =
1

π

∫ π

0

e±x cos θdθ =
1

π

∫ π

0

cosh(x cos θ)dθ =
1

π

∫ π

0

cosh(x sin θ)dθ. (3)

Also the power series expressions of In(x) are given by

In(x) =
(x
2

)n ∞∑
k=0

(
x2

4

)k
k!Γ(n+ k + 1)

(4)

and when specially n = 0, we have,

I0(x) =
∞∑
k=0

(x)2k

22kk!k!
. (5)

Further, the PDF for the average power (or strength, Y = X2

2
) of X is obtained by

applying the relations

dx

dy
=

1√
2
y−

1
2 , (6)

and

fY (y) = fX(x)
∣∣∣dx
dy

∣∣∣ = fX
(√

2y
)

√
2y

. (7)

Therefore, we have the PDF for the RSSI as follows

fY (y) =
1

σ2
e−

2y+A2

2σ2 I0

(√
2yA

σ2

)
. (8)
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3.1. Friis transmission formula – relation between RSSI and the distance. In
wireless communications, the RSSI attenuates by powers of the distance [14]. Therefore, in
indoor environments, relations of the RSSI and the distance are unformulated by “power
decay factor” due to near/far effect and “fading distribution”.
The formula originally proposed by Friis in 1946 [15], gives the relationship between the

transmitted signal power Pt and receiver signal power Pr in a one-way, free-space radio
link:

Pr = Pt
GtGrλ

2

(4π)2dn

where Gt and Gr are the transmitting and receiving antenna gains, λ is the wavelength,
d is the distance between antennas, and n is the path loss exponent. This model is only
assumed as the attenuation model that does not consider the reflection of radio waves.
The correct values of antenna gains Gt and Gr are difficult to be obtained due to their
large variations depending on circumstances of the nodes.

Figure 2. Friis equation curves

Figure 2 shows the Friis equation curves (Gt = 1, Gr = 1, Pt = 1, λ = 0.1243)
with different values of n, that show a large change. Here, let us show the experimental

Figure 3. Measurement environment for testing the relation between RSSI
and distance

results between the RSSIs and distances, where the measurement environment is shown
in Figure 3. In experiments, two base stations are located at 1 meter high, and 1 [Hz]
rate measurement data were collected for one minute at several points. Figure 4 shows
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the RSSI measurement data at several points that are separately-placed (from 1 to 10
meters) from the base stations.

Figure 4. Measured RSSI values (15,000 measurements are plotted at each distance)

From Figure 4, we can observe that a large difference of values of the RSSI measured
between each active tag and each base station exists. The distribution of values of the
RSSI is changed by the installation environment and the individual differences in each
base station. Therefore, it is important to consider the radio propagation model of the
RSSI.

4. ML Estimation Based on the Rice Distribution. The PDF of the RSSI is given
in (8). Then we assume from the Friis formula:

A = ad−b (9)

σ2 = αd−β (10)

where d is the distance between the transmitter (a tag) and receiver (a node). a and α
are intensities and b and β are attenuations. Substituting (9) and (10) into (8), we have
a statistical model of RSSI, which is called the R-model hereafter.

fY (y) =
1

αd−β
e−

2yk+a2d−2b

2αd−β I0

(√
2ykad

−b

αd−β

)
. (11)

Now let us obtain the ML estimates of the unknown vector θ ≡ [a, b, α, β]T based on
the measurements of distances and RSSIs {dk, yk; k = 1, 2, . . . , n}. Then the likelihood
function LR(θ) and the log-likelihood function lR(θ) are respectively obtained by

LR(θ) =
n∏

k=1

1

αd−β
k

e
−

2yk+a2d−2b
k

2αd
−β
k I0

(√
2ykad

−b
k

αd−β
k

)
, (12)

and

lR(θ) = lnL(θ)

=
n∑

k=1

[
− lnα + β ln dk −

2yk + a2d−2b
k

2αd−β
k

+ ln I0

(√
2ykad

−b
k

αd−β
k

)]
. (13)
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4.1. ML estimates of a, b, α, β. Here we derive to obtain the ML estimates of the
unknown vector θ ≡ [a, b, α, β]T in (13). Applying the differential rule to the Modified
Bessel function as follows:

d

dx
ln I0(Fx) =

d
dx
I0(Fx)

I0(Fx)

=
I1(Fx)

I0(Fx)
F, (14)

then differentiation of (13) with respect to a, b, α, β yields

∂lR(θ)

∂a
=

n∑
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− a

α
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k +
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(√
2ykad
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k
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k

)
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(√
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−b
k
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k

)√2ykd
−b+β
k

α

= 0, (15)

∂lR(θ)

∂b
=
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a2

α
d−2b+β
k ln dk −

I1

(√
2ykad

−b
k
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k

)
I0

(√
2ykad

−b
k
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k

) a

α

√
2ykd

−b+β
k ln dk

= 0, (16)

∂lR(θ)

∂α
=

n∑
k=1

− 1

α
+
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k

2d−β
k α2

−
I1

(√
2ykad

−b
k

αd−β
k

)
I0

(√
2ykad

−b
k

αd−β
k

)√2ykad
−b+β
k

α2

= 0, (17)

∂lR(θ)

∂β
=

n∑
k=1

ln dk − dβk ln dk

(
2yk + a2d−2b

k

2α

)
+
I1

(√
2ykad

−b
k
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k

)
I0

(√
2ykad

−b
k
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k

)√2ykad
−b+β
k

α
ln dk

= 0.(18)

Then we can obtain the ML estimates for solving simultaneously four equations in (15)-
(18).
ML estimates of relative locations
Once we get the model parameters in the log-likelihood function in (13), then inversely

we can obtain the location (xu, yu, zu) of the tag by obtaining the RSSI data {yk, k =
1, . . . , ns} for the receivers k = 1, . . . , ns, whose locations (xrk , yrk , zrk), k = 1, . . . , ns are
known. The log-likelihood function of the tag’s location is given by

lR(xu, yu, zu) =
ns∑
k=1

[
− lnα + β ln dk −

2yk + a2d−2b
k

2αd−β
k

+ ln I0

(√
2ykad

−b
k

αd−β
k

)]
, (19)

where

dk ≡
√
(xrk − xu)2 + (yrk − yu)2 + (zrk − zu)2. (20)

The derivative of each term in (19) is evaluated as follows.
The derivative of the first term in (19):

∂(− lnα)

∂xu

= 0. (21)

The derivative of the second term in (19):

∂

∂xu

(β ln dk) = β
∂

∂xu
{dk}
dk

=
−β(xrk − xu)

(xrk − xu)2 + (yrk − yu)2 + (zrk − zu)2
. (22)
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The derivative of the third term in (19):

∂
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k
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The derivative of the fourth term in (19):
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Therefore, we finally have the relation

∂l(xu, yu, zu)

∂xu

=
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2
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In the similar computation, we have

∂lR(xu, yu, zu)

∂yu
=
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k=1
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2
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2
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+
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α

(
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β

2
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2
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2
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−
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(√
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√
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k
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k

)

a
√
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α
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×
[
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2
]−b+β

2
−1
}
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and

∂lR(xu, yu, zu)

∂zu
=

ns∑
k=1

{
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(xrk − xu)2 + (yrk − yu)2 + (zrk − zu)2

+
ykβ

α
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[
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2
]β

2
−1

+
a2

α

(
−b+

β

2

)
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[
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2
]−b+β

2
−1

−
I1

(√
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−b
k
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k

)
I0

(√
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k
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k
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α
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×
[
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2
]−b+β

2
−1
}

= 0 (27)

4.2. A special model I (a = 0 = A) – (S1-model). Here we assume a ≡ 0 (then
A = 0) in (9), then the PDF in (8) is the exponential distribution, which corresponds to
the strength (average power) of the random variable of the Rayleigh distribution. Namely,
with (10), the PDF in (8) becomes

fY (y) =
1

σ2
exp

{
− y

σ2

}
=

1

αd−β
k

exp

{
− y

αd−β
k

}
(28)

Then the log-likelihood function is given by

l1(θ) ≡ ln

[
n∏

k=1

1

αd−β
k

e
− 2yk

2αd
−β
k I0(0)

]

=
n∑

k=1

[
− lnα + β ln dk −

yk

αd−β
k

]
, (29)

where we use the relation I0(0) = 1.
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4.3. ML estimates of α, β in (28). For the log-likelihood function (29), we also obtain
the ML estimates of α, β in the S1 model. Taking the partial derivatives of (29) by α and
β, we have

∂l1(θ)

∂α
=

n∑
k=1

[
− 1

α
+

yk

α2d−β
k

]
= 0 (30)

∂l1(θ)

∂β
=

n∑
k=1

[
ln dk −

yk
α
dβk ln dk

]
= 0 (31)

By solving simultaneously the above two equations in (30) and (31), we can obtain ML
estimates of α, β, in case of A = 0.

4.4. Gamma distribution – (the G-model). The measurement data of RSSI are
usually provided by the average values Ȳ of {Yk, k = 1, . . . ,m}:

Ȳ =
1

m

m∑
k=1

Yk,

where we assume each measurement is statistically independent each other. Then the
PDF of Ȳ can be obtained as the following gamma distribution

pȲ (ȳ) =
1(

σ2

m

)m
Γ(m)

ȳm−1 exp

{
− ȳ

σ2

m

}
. (32)

where Γ(m) is the gamma function defined by

Γ(m) ≡
∫ ∞

0

zm−1e−zdz (33)

ML estimation for parameters in the gamma distribution
Combining (10) and (32), the likelihood function of the α and β is provided by

Lγ(α, β) =
n∏

i=1

pȲi
(ȳi). =

n∏
i=1

1(
σ2
i

m

)m
Γ(m)

ȳm−1
i e

−mȳi
σ2
i (34)

Then, the log likelihood function l(α, β) is also given by

lγ(α, β) = lnLγ(α, β)

= ln

 n∏
i=1

1(
σ2
i

m

)m
Γ(m)

ȳm−1
i e

−mȳi
σ2
i

 (35)

where σ2
i = αd−β

i . Therefore, the log likelihood function given by the observation
{ȳ1, ȳ2, . . . , ȳn} in each distance di from the above equation as follows:

lγ(α, β) =
n∑

i=1

[
−m ln

(
α

mdβi

)
− ln Γ(m) + (m− 1) ln ȳi −

mȳid
β
i

α

]
(36)
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Then we have the following relations:

∂lγ
∂α

=
n∑

i=1

[
−m

α
+

mȳid
β
i

α2

]
= 0 (37)

∂lγ
∂β

=
n∑

i=1

m ln di −
mȳid

β
i

α
ln di = 0. (38)

The solutions of the above nonlinear simultaneous equations are derived. From (37),

1

α

[
n∑

i=1

(−m) +
1

α

n∑
i=1

mȳid
β
i

]
= 0.

If α ̸= 0,

n∑
i=1

(−m) +
1

α

n∑
i=1

mȳid
β
i = 0,

or

α =
1

n

n∑
i=1

ȳid
β
i . (39)

Now, we define η ≡ eβ and remark the following relation:

dβi = eβ ln di = ηln di . (40)

Then, from (38) and (40), we have

n
n∑

i=1

ȳiη
ln di ln di −

(
n∑

i=1

ln di

)
n∑

k=1

ȳkη
ln dk = 0. (41)

Therefore, α and β can be estimated by solving the nonlinear equation of η in (41). Then
we can obtain

β̂ = ln η̂, (42)

α̂ =
1

n

n∑
i=1

ȳri

(di)β̂
.

Location estimation
The node position [xu yu zu]

T is estimated by the distance measured from the multiple
base stations [xi yi zi]

T; (i = 1, 2, . . . , ns). The distance between the node and the base
station i is expressed by

di =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 (43)

From (32), the log-likelihood function of the unknown position [xu yu zu]
T is provided by

Lγ(xu, yu, zu) =
ns∏
i=1

pȲi
(ȳi)
∣∣∣
σ2=α[(xi−xu)2+(yi−yu)2+(zi−zu)2]

−β
2

(44)

The node position [xu yu zu]
T is estimated by the ML method. Then, the log likelihood

function l(xu, yu, zu) is also given by

lγ(xu, yu, zu) = lnLγ(xu, yu, zu) (45)
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namely,

lγ(xu, yu, zu) =
ns∑
i=1

lnPȲi
(ȳi)

∣∣∣
θ

=
ns∑
i=1

ln
1(

θ
m

)m
Γ(m)

ȳm−1
i e−

mr̄i
σ2

∣∣∣
σ2

=
ns∑
i=1

(−m) ln

(
σ2

m

)
− ln Γ(m) + (m− 1) ln ȳi −

mȳi
σ2

∣∣∣
σ2

=
ns∑
i=1

{
− −mβ

2
ln
[
(xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2
]

−mr̄i

[
α−1((xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2)
β
2

]
+(−m) lnα + const.

}
(46)

The maximum likelihood estimate of [xu yu zu]
T is obtained by maximizing (46); therefore,

(xu, yu, zu) is derived by nonlinear simultaneous equations:

∂lγ
∂xu

=
n∑

i=1

{
−mβ(xi − xu)

(xi − xu)2 + (yi − yu)2 + (zi − zu)2

+
2mȳi(xi − xu)

α[(xi − vu)2 + (yi − yu)2 + (zi − zu)2]
−β+2

2

}
= 0

∂lγ
∂yu

=
n∑

i=1

{
−mβ(yi − yu)

(xi − xu)2 + (yi − yu)2 + (zi − zu)2

+
2mr̄i(yi − yu)

α[(xi− vu)2 + (yi − yu)2 + (zi − zu)2]
β+2
2

}
= 0

∂lγ
∂zu

=
n∑

i=1

{
−mβ(zi − zu)

(xi − xu)2 + (yi − yu)2 + (zi − zu)2

+
2mȳi(zi − zu)

α[(xi − vu)2 + (yi − yu)2 + (zi − zu)2]
β+2
2

}
= 0 (47)

4.5. A special model II (b = β) – (the S2 model). Also if we assume the attenua-
tions b and β are the same (b = β) in the R-model in (11), then we have the log-likelihood
function as follows.

l2(θ) ≡
n∑

k=1

[
− lnα + β ln dk −

2yk + a2d−2β
k

2αd−β
k

+ ln I0

(
a
√
2yk
α

)]
. (48)

ML estimates of a, α, β = b
Similarly for the log-likelihood function (48), we can obtain the ML estimates of a, α,

β(= b). Namely Taking the partial derivatives of (48) with respect to a, α and β, we have

∂l2(θ)

∂a
=

n∑
k=1

− a

α
d−β
k +

I1

(
a
√
2yk
α

)
I0

(
a
√
2yk
α

)√2yk
α

 = 0 (49)
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∂l2(θ)

∂α
=

n∑
k=1

− 1

α
+

yk

α2d−β
k

− a2

2α2
d−β
k −

I1

(
a
√
2yk
α

)
I0

(
a
√
2yk
α

) a
√
2yk
α2

 = 0 (50)

∂l2(θ)

∂β
=

n∑
k=1

[
ln dk +

(
ln dk
α

)(
−ykd

β
k +

a2

2
d−β
k

)]
= 0 (51)

By solving three equations in (49)-(51), we have ML estimates of a, α, β in case of
assuming β = b.

4.6. Fittness of models. Four models of RSSI, namely, the R-model in Section 4, the
S1-model in Section 4.2, the G-model in Section 4.4, and the S2-models in Section 4.5,
have been presented. The best model of the RSSI among these four models is chosen by
minimizing the famous AIC (Akaike’s information criterion) [11, 12] as follows:

AIC ≡ (−2)× ln (maximum likelihood) + 2× (No. of parameters in the model). (52)

5. Experimental Results. The experiments of estimating the parameters and location
were carried out in the same environment shown in Figure 3. The parameters of the nodes
(tag) are shown in Table 1.

Table 1. Experimental condition of active tag

Condition parameter

Frequency 2405 [MHz]
Power (Pt) 1 [mW]

Sampling interval 1 [sec]

5.1. Estimating the parameters. We show the estimation results of a, b, α and β using
the RSSI data with 1-18 meters. The proposed models were evaluated for using about
1,000 data in each distance. Table 2 shows the results of ML estimation for parameters
and AIC, where the data set of G-model is m = 8.

Table 2. Estimation results of a, b, α, β and AIC

Models â b̂ α̂ β̂ AIC

G-model – – 0.00008 2.315215 –81291.955170
S1-model – – 0.00001 1.228144 –172159.258796
S2-model 0.000034 – 0.000089 2.356846 –165752.990581
R-model 0.000018 1.664221 0.000091 2.365100 –165670.485998

We can see that α, β of G-model, S1-model and S2-model produced the almost same
results. Also, S1-model is best model from AIC results, but there is not much difference
among these four models.
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Figure 5. Experimental environment

Figure 6. Measurement
points in 10 [m] square shape

Figure 7. Measurement
points in 5 [m] square shape

Table 3. Experimental condition of equipments

Device number Notes

Active tag 1 Height: 1.0 [m]
Base station 4 Height: 1.0 [m]

5.2. Location results. Next, we experimented on the location estimation by using the
estimation results of a, b, α and β (Table 2). As shown in Figure 5, four base stations
were located in a 10 [m] or 5 [m] square shape. Therefore, the evaluation data are different
from estimating the parameters. Figures 6 and 7 show the coordinates of the base stations
and tags.

The heights of all the objects, namely the base stations and tags were fixed at 1.0 [m]
from the floor. Therefore, in this experiment, the location estimation was implemented in
the horizontal (2D) plane. In the experiments, the location of tags plotted by a symbol of
square in Figure 6 were estimated twice by using two independent datasets. The location



2372 M. TANIKAWARA, K. OHBA, Y. KUBO AND S. SUGIMOTO

of tags plotted by a symbol of square in Figures 6 and 7. Each dataset was RSSI data
collected at 1 [Hz] rate for about 400 seconds by the base stations. In addition, experi-
ments of Figure 6 were estimated twice by using two independent datasets. We compared
the difference between the position calculated and the true position, and evaluated by
calculating the average and variance of each of the X and Y axis.

Figure 8. The position errors in 10 [m] square shape

Figure 8 shows the results of position errors applying ML estimation based on the
proposed four models for the measurement points in the 10 [m] square shape shown in
Figure 6. It can be seen that estimated position errors based on each model are about
0.5 to 4 meters. Especially, the G-model provided good accuracy in almost measurement
points.
Table 4 shows the results of the averages of estimated positions and the variances of

positioning errors, for each axis in Figure 8. We can see from Table 4 that the S2-model
and the R-model achieved almost equivalent good performance. On the other hand in
case of the S1-model and G-model, these values of the variance are large compared with
the S2-model and the R-model.

Figure 9. The position errors in the 5 [m] square shape

Figure 9 shows the results of positioning errors applying these four models in the 5 [m]
square shape. We can see from Figure 9, the each models are calculated error of about 1
meter.
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Table 4. Positioning results in the 10 [m] square shape

data 1(First) 1(Second)
X axis Y axis X axis Y axis

True 5 [m] 5 [m] 5 [m] 5 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 5.064 0.839 4.426 1.362 5.621 1.089 3.353 0.707
S1-model 5.372 2.579 4.103 3.042 6.191 1.693 2.432 1.004
S2-model 5.063 0.822 4.439 1.328 5.614 1.079 3.376 0.684
R-model 5.062 0.817 4.441 1.323 5.612 1.076 3.381 0.682

data 2(First) 2(Second)
X axis Y axis X axis Y axis

True 5 [m] 0 [m] 5 [m] 0 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 3.371 1.981 0.159 1.989 4.172 3.037 1.302 3.846
S1-model 2.957 2.929 –0.009 1.424 4.047 3.718 1.701 4.404
S2-model 2.670 2.358 1.194 2.432 4.126 2.493 2.523 3.634
R-model 2.666 2.357 1.196 2.438 4.128 2.491 2.528 3.625

data 3(First) 3(Second)
X axis Y axis X axis Y axis

True 0 [m] 5 [m] 0 [m] 5 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 0.333 2.405 5.045 1.060 2.288 0.823 5.177 0.468
S1-model 0.782 1.645 5.514 2.326 1.212 0.782 5.312 1.496
S2-model 0.436 2.075 5.000 0.842 2.401 0.748 5.182 0.478
R-model 0.433 2.078 4.999 0.837 2.409 0.746 5.181 0.476

data 4(First) 4(Second)
X axis Y axis X axis Y axis

True 2.5 [m] 2.5 [m] 2.5 [m] 2.5 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 5.215 1.425 5.204 1.160 2.887 0.586 2.963 1.260
S1-model 4.629 2.458 5.113 2.703 0.907 1.465 1.339 0.862
S2-model 5.250 1.446 5.194 1.131 2.876 0.615 2.929 1.369
R-model 5.251 1.443 5.194 1.127 2.797 0.597 3.130 1.167

Table 5. Positioning results in the 5 [m] square shape

data 1 2
X axis Y axis X axis Y axis

True 2.5 [m] 2.5 [m] 2.5 [m] 0 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 2.125 0.458 2.852 0.463 2.300 1.052 0.575 1.059
S1-model 1.746 1.079 3.092 0.993 2.077 1.262 0.470 1.053
S2-model 2.126 0.462 2.848 0.451 2.397 1.144 0.436 1.091
R-model 2.127 0.461 2.847 0.449 2.398 1.144 0.441 1.092

data 3 4
X axis Y axis X axis Y axis

True 0 [m] 2.5 [m] 1.25 [m] 1.25 [m]
Average Std. Dev. Average Std. Dev. Average Std. Dev. Average Std. Dev.

G-model 0.791 0.790 1.758 0.710 1.438 1.050 2.037 1.029
S1-model –0.662 0.275 1.402 0.811 0.833 1.021 2.063 1.357
S2-model 0.715 0.746 1.904 0.510 1.415 0.991 2.126 0.936
R-model 0.720 0.748 1.904 0.509 1.416 0.993 2.127 0.933
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Table 5 shows the results of the average of estimated position errors, and the variance
of position errors at each axis in Figure 9. Similarly, it can be seen that the S1-model
and the R-model results are good performance regarding the variance. From Tables 4
and 5, the R-model is considered to increase the reliability of the positioning due to less
variability when compared with other models.

6. Conclusions. In this paper, we considered positioning method by utilizing the mod-
els of radio propagation in sensor network. The models were identified from the Rice
distribution using the maximum-likelihood method. We carried out experiments of the
estimation of the model parameters and the location. In installation environment, the
model of radio propagation was identified accurately, and the location estimation results
show superior performance of ML method based on Rice distribution. Especially, the
R-model applying the different parameter of attenuation coefficient provides better po-
sitioning accuracy. However, for the applications of positioning using RSSI, more stable
positioning results are desired. In the future works, an accurate positioning estimation
algorithm will be developed for practical use.
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