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ABSTRACT. In the long baseline GPS (Global Positioning System)/GNSS (Global Navi-
gation Satellite System) relative positioning the ionospheric and tropospheric delays are
dominant factors for the positioning accuracy. In this paper, we present Real Time
Kinematic (RTK) relative positioning algorithms for long baselines with simultaneously
estimating ionospheric and tropospheric delays and their gradients. Also some dynamical
models [1-3] of the rover station are reviewed for applying Kalman filters, and we show
the experimental results of relative positioning for various baselines (short, medium, long)
by using the Gps Earth Observation NETwork (GEONET) data provided by Geospatial
Information Authority (GSI) of Japan.

Keywords: GNSS regression models, Ionospheric delay, VTEC, GEONET, Orthogonal
polynomials

1. Introduction. The GNSS relative positioning is one of the positioning methods which
can provide most precise relative position between a receiver at a known point (reference
station) and a receiver at a unknown point (rover station). In general relative position-
ing method, the unknown position is estimated by using so-called double differences of
pseudorange and carrier phase measurements obtained by the receivers [4, 5].

Generally, the dominant error sources of the estimated unknown position are the iono-
spheric and tropospheric delays of waves from satellites. However, if the distance between
the receivers is not so long (generally less than 20 [km]), they can be canceled out by
applying the double differencing technique because the propagation paths of the waves
can be assumed to be almost the same, so that the ionospheric and tropospheric delays
also can be assumed to be almost the same.

On the other hand, the double differencing technique is no longer effective for the
medium and long baselines (more than 20 [km]) positioning due to large differences of the
ionospheric and the tropospheric delays between the reference and rover GNSS receiver
stations. For long baseline positioning, it is extremely important to obtain accurate
information of the ionospheric and tropospheric delays in order to achieve rapid and
accurate positioning results. Therefore, in this paper we propose the long baseline relative
positioning algorithms with simultaneously estimating the ionospheric and tropospheric
delays and their gradients at the reference and rover stations as the state variables in the
Kalman filter.

In our previous research [6, 7], for the tropospheric delays, we have applied the formula
which expresses the total tropospheric delay as the sum of the zenith hydrostatic and
wet delays multiplied by mapping functions. Then we assume that the zenith hydrostatic
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delay is given by the Saastamoinen model where the zenith wet delay is treated as an
unknown parameter and it is estimated simultaneously in the position calculations. As
an extension of our previous research, in this paper, we focus on the horizontal deformation
of the tropospheric delays in the lower atmosphere by using the inhomogeneous mapping
function, which models the effects of water vapor horizontal deformation as the gradient
of the first order plane [8]. It seems to be effective for the mitigation of the horizontal
component of the tropospheric delays. Therefore, the improvement of the horizontal
positioning accuracy is expected by considering the horizontal deformation.

For the ionospheric delays, there exist several methods for mitigating their effects. The
Klobuchar model [9] represents the zenith ionospheric delay as a constant value at night-
time and a half-cosine function in day-time with a maximum at 2PM local time. However,
the Klobuchar model can mitigate only approximately 50% rms errors of the ionospheric
delays. As another method, the IGS (International GNSS Service) has been providing the
total electron content (TEC) of ionosphere on a global scale. The IGS products known
as GIM (Global Ionospheric Model) can provide better results than the Klobuchar model
using the same GPS dataset and ephemeris [10].

On the other hand, the method to estimate the ionospheric effect within the positioning
model has also been investigated [6, 7]. Therefore, we also estimate the ionospheric effects
by using the same way as tropospheric delay. Mapping functions are used to map the
zenith ionospheric delay to slant delays. And the ionospheric delays for all satellites are
modeled by using the zenith delays and mapping functions at the reference and rover
stations.

Furthermore, horizontal gradients in the east and north directions are modeled by using
inhomogeneous mapping function. Then the ionospheric delays and ionospheric horizontal
gradients are estimated by the Kalman filter. For applying the Kalman filter, state models
for the zenith ionospheric delay and horizontal gradients are needed. Therefore, in this
paper, both of the zenith ionospheric delay and horizontal gradients are assumed as a
Brownian motion process (Wiener process) or a first order Markov process.

The proposed long baseline relative positioning algorithms with estimating ionospheric
and tropospheric delays and their gradients provide highly rapid and accurate positioning.
The experimental results under various circumstances such as static, kinematic environ-
ments and several lengths of baselines are shown in this paper.

2. Mathematical Models. We use the following mathematical models of the integrated
pseudorange and carrier phase measurements for satellite p and the moving receiver u,
namely, for static and kinematic positioning. When two receivers k and u obtain the
pseudorange and carrier phase measurements from two satellites p and ¢, the double
differenced pseudoranges pi, ,, and ppy ., based on C/A and P(Y) codes and double
differenced carrier phases ¢7 ,, and ¢7%,, based on the L1 and L2 frequency carrier
phases are given as follows [4, 5, 11]:

P?A,ku(t) = 1 () +OI7I () + 6TR0(t) + elé’qA,ku(t)ﬂ (1)

f2
Py ia(t) = rZZ(t)+f—;2M£2(t)+5Té’3 (1) + By u(8), (2)
DL () = Tha(8) — OIE(E) + 0T/ (8) + ANTT oy + METT (), (3)
f2
éi‘]?,ku(t) = TZZ(t) - 7;26152 (t) + 5Tlfg(t) + )‘QNzg,ku + )‘QSi‘IQ,ku(t)a (4)

where

SV = (517 — 517) — (817 — 61IY), (5)



LONG BASELINE GNSS RELATIVE POSITIONING 2377

0T = (5T” — 6T”) — (0T} = 6T)), (6)
Ng({,ku = (N] Lik — N7, u) (Ngl,k - Ngm)a (7)
N%,ku = (Ngzk N7, u) (Ngz,k - NgQ,u)a (8)
6ng,ku = (@CA,k - eCA,u) - (elé’A,k - eqCA,u)a (9)
eII)DqY,ku = (e} €pyk — e:;;Y,u) - (eqPY,k - e?’Y,u)? (10)
611)/(11,1611 = )\ [(6L1 k 621,11,) - (8%1,16 - gil,u)]? (11)
e = N[l = ) = (s — £, (12)

where ¢ is the signal reception time, f, and f, are L1 and L2 carrier frequencies, (namely
1575.42 and 1227.60 [MHz] respectively). 617 and 07} are double differenced ionospheric
and tropospheric propagation delays respectively. &7 ., €7% 1» £¢'a gy and epy ., denote
the observation noises. Also N7, , and N7, are the integer ambiguities, which are un-
known integer numbers associated with the ambiguity of L1 and L2 carrier cycles at the
initial time. A; and Ay denote the wave lengths of the L1 and L2 carrier waves. r2(t)
denotes the distance between the satellite p at the time ¢ — 77 and the receiver u at the
time ¢; where 77 denotes the traveling time of the carrier wave from the satellite p to the
receiver u, namely,

Tou = (g = 13) — (rg — 10),
=/ (@k — 2?)2 + (g — y?)? + (2 — 2)?
SN )y )y e
— (g — 292 + (g — y9)2 + (21, — 29)2
+ \/ ﬁu - ﬁq) + (yu - yq) + (Zu - Zq)Z- (13)

Thus, the 1st order Taylor series approximation of Equation (13) around the estimated
value u? = uP is given by:

orPl T )
Pq ~, ,.PQ ku _ ()
oo+
Teu = That) [ ou L:a(j) (“ u )
= 1l + ghe, (u— a9y (14)

At the short baseline occasion, the magnitude of the ionospheric and tropospheric delays
included in the measurements can be assumed to be almost identical in the reference and
the rover stations. Namely, we can assume

SIP 20, 6T ~ 0. (15)

Therefore, Equations (1)-(4) can be approximated as follows;

P ka(t) 2 T (t) 4 eghy (1), (16)
Pzzjﬂqy,ku( ) & T (t) + 6Pqu(t) (17)
P () = T (8) + MNT g, + g g (0, (18)
P k() ~ 10 (8) + XaNTS 4, + Aol 1, (F)- (19)

However, at the medium or long baseline occasion, we can not assume the relations
in Equation (15). There is a problem that the positioning accuracy is degraded if the
ionospheric and the tropospheric delays in the double difference measurements are not
properly removed.
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Therefore, by using Equations (1)-(4), we propose the long baseline relative positioning
algorithms with estimating simultaneously ionospheric delays at the reference and rover
stations as the state variables and by utilizing parametric models for tropospheric delays.

3. Tropospheric Delay Models.

3.1. Hydrostatic delays and wet delays. The tropospheric delay can be considerable
for satellites at low elevations. Unlike the ionosphere, the troposphere is not a dispersive
medium and it causes the same delay for different frequencies. The tropospheric delay is
normally represented as comprising a wet delay and a hydrostatic delay. The wet delay is
difficult to model because of local variations in the water-vapor content of the troposphere
and accounts for approximately 10% of the tropospheric delay. The hydrostatic delay is
relatively well modeled and accounts for approximately 90% of the tropospheric delay [6].

The tropospheric zenith total delay (ZTD) d7,, can be expressed as the sum of the
zenith hydrostatic delay (ZHD) 6Ty, ,, and zenith wet delay (ZWD) 07, as follows (see
Figure 1) [4, 12]:

5Tz,u — 6Tzh,u + 6Tzw,u' (20)
Then, the slant total delay can be expressed using mapping functions, as follows:

TP = M,f’u(STzh,u + My, 0T s (21)

1
My, =~ 0.00143 > (22)

o sin(EL) + tan(E7)+0.0445

1

M?P = , (23)

w,u . P 0.00035
sin(Ew) + tan(EL)+0.017

where MIIL),u and MP , are the mapping functions for the hydrostatic and wet components,
respectively. EP is the elevation angle of the pth satellite.
Then, the zenith hydrostatic delay is given by the Saastamoinen model [4, 13]:

8T = 0.002277(1 + 0.0026 cos 2¢, + 0.00028h,) Py, (24)

where ¢,, and h,, [km] denote the latitude and altitude, respectively, of the position of the
receiver, and P, [mbar| denotes the atmospheric pressure. The zenith total delay is also
treated as an unknown parameter.

3.2. Tropospheric gradients. When the low elevation data are applied, the variation
of the horizontal tropospheric delay increases as it can not be neglected for precise po-
sitioning. Furthermore it may cause relatively large errors in the positioning results. In
this paper, therefore, the horizontal deformation of the tropospheric delay is applied in
the estimation of the tropospheric delays. Then, by using mapping functions which is
modelled as tropospheric gradients, we estimate tropospheric gradients and correct them.

S Satellite

yiromaic] MPPITE

function

delay Atmosphere
Wet delay
Receiver Earth

Ficure 1. Mapping function for troposephere
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The delay in the GPS signal due to the tropospheric gradient can be modelled as,
0Ta(EP, AP) = §T,s Mya(EY) cos AL + 6T, My, (EP) sin AP, (25)

where
1
sin EY tan EY + 0.0032’

where 07,5, and 67, are the gradients of north-south and east-west directions, A? is an
azimuth, and My, (E?P) cos AP, Mry,(E?)sin AP are the inhomogeneous mapping functions

[7].

In this paper, therefore, the slant total tropospheric delay between the satellite p and
receiver u, 07TF, in Equation (21) is replaced by the sum of the slant hydrostatic, wet
delays and the gradients as follows:

6T? = M}IL),uéTzh,u + Mi,u5Tzw,u + 0T s Mra(EP) cos AL + 8T, Mro(EP) sin AP (27)

Mo (E}) = (26)

where
M, M,,
Wh Mg,
gy M

Therefore, the double difference of tropospheric delay can be expressed as follows:
OTY! = (0T — 0TP) — (0T} — 6T7)
= (M]IZ’(IkéTzh,k - M]IZ’(IuéTzh,u) - (Mg(’]kéTzh,k - Mg;?uéTzh,u)
+(M5;(,Ik6TZ,k — MpLOT, ) + (M:I;ns,k‘STp + Mé)’ew,kéwa,k)

ns,k
—(M%LS,u(STp — Mﬂw’u(STp ) — (M%w’k(STq — M%Ew’k(STgw’k)

ns,u ew,u ns,k
_ q q _ q q
(MTns,u(STns,u MTew,u(STew,u)

= (M]I:’qkéTzh,k - M}fiéTzh,u) - (MZ?kéTzh,k - Mg?uéTzh,u)
+(M5)?k5szk — Mi’fu(STz,u) + (Mggs,k(STns,k — M;gw’u5Tns’u)

+(Mz! 10T ew e — ME 0T ), (29)
where
M}, cos Al M} sin A}
M?, cos A2 M?, sin A?
MTns:* = . ) MTew:* = . (30)
M7 cos Al M7 sin A7

4. Tonospheric Delay Models. The ionosphere is one of the biggest error sources in
GPS positioning. Although dual frequency users can resolve this problem by using an
ionosphere-free combination, ionospheric models for single-frequency users have not been
well developed yet as described in Section 1. Therefore, in this research, by using inho-
mogeneous mapping function, we estimate ionospheric delays and correct them.

4.1. Tonospheric delays. The slant ionospheric delay 6IP(EP) can be expressed by using
the zenith ionospheric delay (ZID) 61, and mapping function M;,(E?) as follows:

5IP = My (EP)SI.... (31)
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where

My (E?) = ! , (32)

2
R
\/1 — (REfH COSEg)

Here, the single-layer model shown in Figure 2 is applied. Rg (= 6,371 [km]) indicates
the mean earth radius, and H is the height of the single layer.

Ionospheric
Pierce IQ

Satellite

H
W Ionosphere
Receiver Earth

FIGURE 2. Single-layer model for ionosphere

4.2. Tonospheric gradients. In the previous section, for the modelling of the tropo-
spheric delays, their gradients are considered to make them more accurate. The idea of
gradients can be also applied to the modelling of the ionospheric delays. The delay due
to the ionospheric gradient can be modeled by [14]

e (EE, ALY = 0105y M7 (EY) cot EF cos AL + 61,y o My, (E?) cot EF sin AP (33)

where I,,, and I, are the horizontal gradients in the north and east directions, and
M7y, (EP) cot EP cos AP and My, (E?) cot E? sin A? are the inhomogeneous mapping func-
tion.

In this paper, therefore, the slant ionospheric delay between the satellite p and receiver
u, 0I? in Equation (31) is replaced by

For the estimation of the ionospheric delays, in this paper, zenith delay of the single

differences of ionosphere between two receiver stations and their gradients are treated as
unknown parameters. The ionospheric total delay can be expressed as follows:

O = (617 — §I7) — (017 — 617%)
= {(Mlp,kélf,k— + 5Ig,k-) - (Mf,u(sjf,u + 6[g,u)} - {(M;],k(sjg,k + 6[é,k)
— (M} 012, + 01 ,)}
= (Mf,kéjf,k + ]\/[ll;m’k(S[P + Mzgew,k(sjp ) - (Mf,uélf,u + Mzgns,uélp

ns,k ew,k ns,u
+ Mzgew,uélp ) - (MIQ,k(SI:,k + M;ns,kélq + M;ew,kélgw,k)

ew,u ns,k
+ (M;],uélj,u + Mz‘ns,uéls\s,u + Mz‘gw,uélgw,u)
~ M7 OI7 y, — MPOL0 , + ME 0l p + M 0 lew

_ MZZS,U(STM,U — Mﬁfw,uélew,u, (35)
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where
M; = My cot E”cos A?, (36)
My, = M} cot E¥sin A?, (37)

and 01, is the zenith delay, M, is the mapping function which transforms 07, into the
delay in direction of route. 01,,, 61, are the north-south and east-west ionosphere gradient
vector.

4.3. Observation equation. By the linearization of the observation Equations (1)-(4)
and revision of ionospheric and tropospheric delays, we can formulate the observation
equation as follows:

/;%,uk pp(%\,ku
PY uk , L (j
o Zk = ?::Z — [, + gz?j)k(—u(]))]
Y i D5 ku
— [(M}f?&Tzh,k — M,’:gﬁTzh,u) — (Mi’f&Tzh,k — Mi’)‘fu5Tzh,u)]. (38)

Applying Equations (29), (35) and (38), we can formulate the observation equation as
follows:

yr = Hiby + vy, (39)
where
. . = =1 1T
Y= [prg'Aa prnga QVED QEQ] ) (40)
H=[A B, C, D], (41)
0=1[u",0I", 6T, \\ N, \aNS] T, (42)
v = [eg’Aa eEY? )‘1831 )‘26%‘2 ]Ta (43)
U= [Ty Yur 2] (44)
A=[GTGTGTGT T, (45)
[ M g, Mg, k Mg, & —Mp,, . —Mp. v
B By J Y S LD Y S L3
B — f22 1.k f22 Frns,k f22 Few,k f22 Frsyu f22 Few,u (46)
;MI k _ZMFM k —2MFM k i Mg, ZMFew u |
i _%Mlk —?—z Frs )k —%ank % Fewst % Few,u
[ Mw,k _Mw,u MTns,k MTew;k MTns:“ MTeunu
C — Mw,k Mw,u MTns,k MTew;k MTns:“ MTeunu (47)
| Myyx —Myy Mrx Mp,x —Mp,. —Mr,. |’
Mw k Mw u MTnS,k MTew k _Z\JTnS u _MTew u
— 6[1 -
Z.Jm [ 5Tz,k: i
O O 6[7:‘ 5Tz,u
1o o _ 2 ku | 6T
D = I O s (SI = 5Ins,k 5 (ST — (STew,k y (48)
O I 0L ek 6T s u
6[77‘5’“ L 5Tew’u, .
L 5Iew,u
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with definitions of the following vectors:

Pca

¢L2

Mr,, «

NLI

€PY

where “x”

that is

1 2
_MI,IC MI,]{)
. ) (49)
1 N
_Ml,k MI,IC
M ~12 ~12 12
PC A ku PPY ku ¢L1,ku
: ) PPy = ) ¢L1 = )
~Ing ~Ing Fln
| PCAku PPY ku P
r 512 712 12
¢L2,ku MFns,* MFew;*
) MFns,*E ) MFew,*E )
Flng Ins Ins
L L2,ku | Fis,x Few
12 M o122 ] M oag12
Ths,* Tew* Mw,*
: , My, «= : , My = : ,
Ing Ing in
Tns,* | Tew:* _ L Mw’: .
roAT12 moAT12 12
NLl,k:u NL2,ku €CAku
: ) NL2 = ) €Eca = )
Ins Ing 1ns
L NLl,ku L NL2,ku | €CA ku
12 12 12
€PY ku €L1,ku €12, ku
: ) €1 = ) €2 = )
1ng 1ng 1ns
| €PYku | €Llku | €L2,ku
is “k” or “u”. G is a partial differentiation coefficient procession
_ 12 13 ing 1T
G=1[9009000 0,0 ] (50)
- 12 12 12 -
Orsine ot OTatng
0T, OUuinr  OZu60k
13 13 13
Oratne ot OTatng
0%, OUutinr 0200k
1ng 1ns 1ns
Orahe O Oraths
L 0,60 OUuioe  OZu0hp J
© A 1 4 2 . 1 4 2 5 1 3 2 ]
<1 52 o1 22 <1 52
(51)
- 1 S ls 1 N oM 5 o1 5 _ Mg
Ty — 2 Ty—2 Tu—1Y  Yu—VY Zu— 2 Zu—=%
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5. Kalman Filter. The Kalman filter [15, 16] is applied to estimate the unknown vecter
0. The measurement equation is shown in Equation (39), and the state equation can be
generally expressed as follows.

9t+1:F9t—|—wt, t:0,1,2,"', (52)

where F' is a known matrix with appropriate dimensions. And w; and v; are assumed to
be white Gaussian processes, such that

E{w} =0, E{y}=0 (53)
e{(z)er )= (3 )
E{w, 0} =0, E{v,0'}=0 s<t (55)
B ~ N(Zo, o) (56)

Then the Kalman filter algorithm can be shown as follows:
1) Predicted and Filtered Estimates

01110 = Fly,, (57)
ét|t = ét|t—1 + K,y [?Jt - Hét\t—l] . (58)
2) Filter Gain (Kalman Gain)
-1
K,=Py H" [HPy \H" +R] . (59)
3) Predicted and Filtered Error Covariance Matrices
Py = FPt\tFT + @, (60)
Py = Py — KeH Py (61)
4) Initial Conditions
é0|,1 == go, PU\fl = Eo. (62)

6. Experiments. The experiment of the proposed positioning algorithms was carried
out by using real receiver data. The observation data were obtained from four GEONET
reference stations (OTSU1 in Shiga, Japan, YASU in Shiga, Japan, HIMEZI in Hyogo,
Japan and FUJI in Shizuoka, Japan.). The coordinates of these stations are shown in
Table 1. Figure 3 shows the locations of the used stations. In the experiments, results
of two methods were compared. Method 1 estimated only the zenith total delays of
the ionospheric and tropospheric delays (our previous results [6]). Method 2 estimated
the both of zenith total delays and their gradients (results by the algorithm proposed
in this paper). Table 2 summarizes the estimation methods. The results of method 1
were plotted by red points and the method 2 were plotted by blue points throughout the
following section.

TABLE 1. Receiver positions

| Station | Lat. [deg.] | Lon. [deg.] |EIl Height [m] |
OTSU1 | 35.13703982 | 135.87080794 220.3448
YASU | 35.08572344 | 136.04119882 134.9507
HIMEZI | 34.86412096 | 134.65966396 68.5357
FUJI | 35.17358988 | 138.72154156 133.9394
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FIGURE 3. Locations

TABLE 2. Estimation methods

Ionospheric and
Tropospheric delays
Ionospheric and
Tropospheric delays

method 1 Zenith total delays

method 2 Zenith + Gradients

TABLE 3. Datasets for static tests

| Dataset | Station | Time (UTC) |
Rov. OTSU1
A Ref. YASU
Baseline | 16.545 [km] 2008.Aug.1
Rov. OTSU1
B Ref. HIMEZI (00:00 ~ 23:59'30)
Baseline | 114.633 [km]
Rov. OTSU1 Interval: 30 [sec]
C Ref. FUIJI
Baseline | 259.758 [km]

6.1. Results. In the experiments, three datasets and two methods were used as shown
in Table 3. An elevation cut-off angle of 15 degrees was applied to these data. At
every station, the Trimble 5700 receiver with the TRM29659.00 antenna observed L1
and L2 carrier phases and C/A and P(Y) code pseudoranges at every 30 seconds. For
implementing the Kalman filter, the dynamical models for state variables and initial
conditions are shown in the following Table 4. The initial values of the unknown position
u was obtained by the standard point positioning method [4, 5], the ionospheric delay
01 by Klobuchar model, the tropospheric delay 7" by Saastamoinen model of Equation
(24) and the ambiguity Np;, Nio by subtracting the measurement of Equation (1) from
Equation (3).

6.1.1. Results for dataset A (16.545 [km] baseline). Figure 4 shows the results for the
dataset A, short baseline (16.545 [km]). The blue and red lines show the positioning errors
along with the local level axes (East, North and Up), where the errors were computed
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TABLE 4. State model and initial condition

. . Initial Condition
State variable Dynamical model ——
y Initial value ‘Std. Dev.
Position (u) Constant Point Pos. 10
Tonosphere (67) Brownian Klobuchar | 1.0
Troposphere 0T Brownian 2.4 0.03
Ambiguity ()\INLI; )\QNLQ) Constant, @dd — Pdd 10
0.1 -
.08 |
0.06 B
€ 0.04-, H _
= 0020 B
5 0 ':‘, =~’- B
Faoil :
—0.06[ ¥ _
7?0018 | | | | | | | | | | | |
0.1 T T T T T T T T T T T
0.08— —
0.06— =
E 0041 B
§ 0.02?'\ —
2 T ]
5w V .
~0.06f -
722187 | | | | | | | | | | | |
0.1 T T T T T T T T T T T
0.08 : i
006*s . -
— 004FF ; e
§ 0'02,5.5;5 ﬁ\-ﬁ‘ﬁ—’i i
ifo.ogj ‘W N\ : —
~0.04 B
-0.06— =
7?3).187 | | | | | | | | |

L L L
0 7200 14400 21600 28800 36000 43200 50400 57600 64800 72000 79200 86400
ToD [sec]

FIGURE 4. ENU errors (Aug.1, baseline length: 16.545 [km])

TABLE 5. Summary statistics (baseline length: 16.545 [km])

| Method | Dir. | Bias [m] | STD [m] | RMS [m] |
East 0.0300 | 0.0056 0.0306
method 1 | North | —0.0004 | 0.0015 0.0015
Up 0.0299 | 0.0178 0.0348
East 0.0025 | 0.0029 0.0039
method 2 | North | —0.0005 | 0.0010 0.0011
Up 0.0096 | 0.0103 0.0140

by differencing the estimated positions from the positions in Table 1. The statistics of
positioning results are summarized in Table 5. The results were calculated time from 7200
to 86400 [sec].

6.1.2. Results for dataset B (114.633 [km] baseline). Figure 5 shows the results for the
dataset B, medium baseline (114.633 [km]). The blue and red lines show the positioning
errors along with the local level axes (East, North and Up), where the errors were com-
puted by differencing the estimated positions from the positions in Table 1. The statistics
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of positioning results are summarized in Table 6. The results were calculated time from
7200 to 86400 [sec].
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FIGURE 5. ENU errors (Aug.1, baseline length: 114.633 [km])

TABLE 6. Summary statistics (baseline length: 114.633 [km])

| Method | Dir. | Bias [m] | STD [m] | RMS [m] |
East | —0.0113 | 0.0027 0.0116
method 1 | North 0.0108 | 0.0063 0.0125
Up | —0.0244 | 0.0100 0.0264
East 0.0016 | 0.0016 0.0023
method 2 | North 0.0061 | 0.0033 0.0070
Up 0.0040 | 0.0053 0.0066

6.1.3. Results for dataset C' (259.758 [km] baseline). Figure 6 shows the results for the
dataset C, long baseline (259.758 [km]). The blue and red lines show the positioning errors
along with the local level axes (East, North and Up), where the errors were computed
by differencing the estimated positions from the positions in Table 1. The statistics of
positioning results are summarized in Table 7. The results were calculated time from
14400 to 86400 [sec].

In this experiments, it was quite effective to estimate ionospheric and tropospheric gra-
dients when we focus on estimating their delays in various baselines. Especially ionosphere
can be active, therefore the estimating so effective.

7. Conclusions. In this paper, the relative positioning algorithms with estimating iono-
spheric and tropospheric delays and their gradients have been proposed. The algorithms
are applied by the Kalman filter. Examinations of the algorithms were done by using real
receiver data of GEONET. Our experimental results show that, in the static situation, the
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TABLE 7. Summary statistics (baseline length: 259.758 [km)])

| Method | Dir. | Bias [m] | STD [m] | RMS [m] |
East | —0.0075 | 0.0140 0.0159
method 1 | North 0.0011 | 0.0035 0.0037
Up | —0.0260 | 0.0409 0.0485
East 0.0010 | 0.0050 0.0052
method 2 | North 0.0013 | 0.0041 0.0044
Up | —0.0143 | 0.0115 0.0183

proposed algorithm with estimating ionospheric and tropospheric gradients can achieve
more accurate positioning than without gradients estimation.
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