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Abstract. This paper describes an optimal state estimator for a class of discrete-time
linear stochastic systems that are subject to both colored observation noise and unknown
inputs. Previously, we proposed an optimal filter for such systems based on Chen and
Patton’s optimal disturbance decoupling observer (ODDO). More recently, we modified
the ODDO by correcting the estimation error covariance matrix. Here, we combine these
results and thus propose a new reliable optimal state estimator for systems having colored
observation noise and unknown inputs.
Keywords: Fault detection, Optimal filter, Stochastic systems, Colored noise, Robust
filter, Unknown inputs, Discrete-time systems, Chi-square test

1. Introduction. Over the past thirty years, a number of model-based fault detection
techniques have been investigated. Fault detection theory for linear systems and their
applications were developed by both Frank [1] and Chen and Patton [2] (also [3, 4]), and
Guo et al. [5] investigated the robust fault diagnosis problem for linear time invariant
systems by using a linear matrix inequality approach. In contrast, Zhang et al. [6] studied
the fault detection problem for nonlinear systems.

In studying the fault detection problem, there are two major difficulties [7, 8]. The first
is that appropriate state estimators for fault diagnosis can be obtained only from accurate
mathematical models. However, derived mathematical models often contain modeling
errors, which significantly increase the state estimation error in a similar manner to the
models having unknown inputs. If such inaccurate models are used, fault detection filters
cannot be considered to be reliable. This issue, known as the modeling error problem, can
be avoided by using algorithms that are robust with respect to unknown inputs [2, 3, 9].
The second difficulty is that in practice an observation system will not be free from colored
random noise. This noise cannot be regarded as white Gaussian noise, and therefore fault
diagnosis for such stochastic systems requires filters robust to colored observation noise.
This type of problems appears in the state estimation problem of infinite-dimensional
systems using finite-dimensional filters [10, 11]. These two practical demands lead to our
major motivation for this paper.

A well-known approach for constructing state estimators is to consider an augmented
system by combining the original stochastic system and the one affected by the colored
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noise (e.g., [9]). Another approach that has been discussed in detail is to transform
systems with colored observation noise into those with white Gaussian noise [10-15]. Pre-
viously, we developed a robust optimal filter for stochastic systems having unknown inputs
and colored observation noise [13]. This optimal filter was based on Chen and Patton’s
Optimal Disturbance Decoupling Observer (ODDO; [2, 3]). However, in another paper
we also corrected the error covariance matrix for the ODDO [16-18]. In the present work,
we apply our corrected recursive algorithm for the ODDO to our proposed optimal filter
in order to diagnose faults in stochastic systems with unknown inputs. We thus obtain
a reliable optimal state estimator with the primary advantage that it can be applied to
systems with not only unknown inputs but also colored observation noise.
The remainder of this paper is organized as follows. In Section 2, we introduce a

discrete-time stochastic system having both unknown inputs and colored observation noise
sequences, and, under several simple assumptions, transform it into a system with white
Gaussian noise sequences. We then apply the modified ODDO to the transformed system
and derive the optimal filter for the described stochastic system in Sections 3 and 4. Nu-
merical simulations and conclusions are presented in Section 5 and Section 6, respectively.

2. Problem Formulation. Consider the following linear discrete-time stochastic sys-
tem, having an unknown input and colored observation noise, of the form

xk+1 = Ak xk +Bk uk + Ek dk + ζk, (1)

yk = Ck xk +Dk βk, (2)

where xk ∈ Rn, yk ∈ Rp, uk ∈ Rm and dk ∈ Rℓ denote the state vector of the system, the
observation vector, the known input vector and the unknown input vector, respectively;
Ak ∈ Rn×n, Bk ∈ Rn×m, Ek ∈ Rn×ℓ, Ck ∈ Rp×n, Dk ∈ Rp×q are real-valued matrices;
ζk ∈ Rn is the independent zero mean white Gussian noise sequence having covariance
matrix Qk (i.e., E{ζk ζTj } = Qk δkj, where E{ · } denotes the mathematical expectation
operator and δkj denotes the Kronecker delta). Moreover, βk ∈ Rq represents the colored
observation noise sequence, which is generated by the following linear system:

βk+1 = Sk βk + wk+1. (3)

Here Sk ∈ Rq×q is a known coefficient matrix, and wk ∈ Rq denotes the independent zero
mean white Gaussian noise sequence with covariance matrix Rk; explicitly, E{wk w

T
j } =

Rk δkj; and β0 = β−1 = 0.
Here, we assume that: (i) pair(Ak, Ck) is observable, (ii) Ek is a full column rank

matrix (i.e., rankEk = ℓ), (iii) Dk is a full raw rank matrix (i.e., rankDk = p), (iv)
rank (Ck+1Ek) = rankEk, and (v) Ker (Dk) ⊂ Ker (Dk+1 Sk).
To apply the approach proposed by Ohsumi and Sawada ([10, 11]) to the system given

by (1)-(3), we introduce a new observation sequence:

ȳk+1 = yk+1 −Dk+1 Sk D
+
k yk, (4)

where superscript + represents the pseudo-inverse matrix defined byM+ :=MT(MMT )−1.
Substituting (2) and (3) into (4), the observation can be rewritten as an observation
system having a white Gaussian noise sequence:

ȳk+1 = Ck+1xk+1 −Dk+1SkD
+
k Ckxk +Dk+1wk+1. (5)

Let us now define a new state vector by vk+1 := [xT
k , x

T
k+1]

T . With this definition, an
augmented system that is subject to the white Gaussian noise sequences is obtained:

vk+1 = Āk vk + B̄k uk + Ēk dk + Ḡk ζk, (6)

ȳk = C̄k vk +Dk wk, (7)
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where

Āk =

[
0 I
0 Ak

]
, B̄k =

[
0
Bk

]
,

Ēk =

[
0
Ek

]
, Ḡk =

[
0
I

]
,

and
C̄k+1 = [−Dk+1 Sk D

+
k Ck Ck+1].

3. Derivation of Robust Optimal Filters. In this paper, we apply the improved
version of the ODDO algorithm presented by Tanikawa and Sawada [16] to the augmented
system given by (6) and (7). This augmented system is directly related to the discrete-
time system having colored observation noise described by (1)-(3). Our optimal filter
algorithm is given as follows.

The form of the optimal observer can be described by

z̄k+1 = F̄k+1 z̄k + T̄k+1 B̄k uk + K̄k+1 ȳk, (8)

v̂k+1 = z̄k+1 + H̄k+1 ȳk+1, (9)

where v̂k ∈ R2n is the state estimate of vk; and coefficient matrices F̄k+1 ∈ R2n×2n,
T̄k+1 ∈ R2n×2n, and K̄k+1 ∈ R2n×p, H̄k+1 ∈ R2n×p are to be determined such that the
estimation error variance is minimized and that the effect of the unknown input on the
estimation error is decoupled. For this purpose, we explicitly consider the initial condition
of Hk as H0 = 0. Then, the gain matrix K̄k+1 can be defined as K̄k+1 := K̄1

k+1 + K̄2
k+1,

for K̄1
k+1, K̄2

k+1 ∈ R2n×p. To construct the optimal filter, the coefficient matrices F̄k+1,
T̄k+1, and K̄2

k+1 must satisfy the following relations:

F̄k+1 = Āk − H̄k+1 C̄k+1 Āk − K̄1
k+1 C̄k, (10)

T̄k+1 = I − H̄k+1 C̄k+1, (11)

K̄2
k+1 = F̄k+1 H̄k. (12)

The decoupling of unknown input, dk, can be achieved by satisfying the relation

Ēk = H̄k+1 C̄k+1 Ēk. (13)

Here, the necessary and sufficient condition for this relation to hold is rank (C̄k+1 Ēk) =
rank (Ēk), which is equivalent to the condition given in assumption (iv). Thus, if assump-
tion (iv) is valid, H̄k+1 can be given by

H̄k+1 = Ēk(C̄k+1 Ēk)
+, (14)

where the superscript + again denotes the pseudo-inverse matrix. The gain matrix, K̄1
k+1,

can be determined from calculation of the weighted error covariance matrix given by
P̃k = E

{
Λeke

T
kΛ

}
, for the state estimation error, ek = vk − v̂k; and the weight matrix, Λ,

defined by a diagonal matrix. The gain matrix, K̄1
k+1, required to minimize the estimation

error variance, var{ek+1}, and the revised recursive algorithm, P̃k, are given by

K̄1
k+1 = Ā1

k+1(Λ
−1P̃kΛ

−1 C̄T
k − H̄kDkRkD

T
k )× (C̄k Λ

−1P̃kΛ
−1 C̄T

k +DkRkD
T
k )

−1, (15)

P̃k+1 = Λ
[
Ā1

k+1

{
Λ−1P̃kΛ

−1 − (Λ−1P̃kΛ
−1CT

k

− H̄kDkRkD
T
k )(CkΛ

−1P̃kΛ
−1CT

k +DkRkD
T
k )

−1

×(CkΛ
−1P̃kΛ

−1 −DkRkD
T
k H̄

T
k )

}
Ā1T

k+1

+ T̄k+1ḠkQkḠ
T
k T̄

T
k+1 + H̄k+1Dk+1Rk+1D

T
k+1H̄

T
k+1

]
Λ, (16)
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where Ā1
k+1 = Āk − H̄k+1 C̄k+1 Āk.

4. Fault Detection. Assuming that actuator and sensor faults can occur in the system
given by (1)-(3), the system can be rewritten as

xk+1 = Ak xk +Bk uk + Ek dk + ζk +Bk f
a
k , (17)

yk = Ck xk +Dk βk + f s
k , (18)

βk+1 = Sk βk + wk+1, (19)

where fa
k ∈ Rm and f s

k ∈ Rr are the actuator and sensor fault vectors, respectively. In
this section, we consider the construction of an algorithm to detect actuator and sensor
faults by using the proposed optimal filter.
Firstly, the sequence indicating the fault (called the residual), r̄k, is

r̄k = ȳk − C̄k v̂k, (20)

and the observation system consisting of the augmented vector, vk, with sensor faults is
given by

ȳk = C̄k vk +Dk wk + f s
k . (21)

Substituting (21) into (20), the residual can thus be expressed as

r̄k = C̄k ēk +Dk wk + f s
k , (22)

and (22) is a robust residual signal for the stochastic system having colored observation
noise, since the estimation error is unaffected by the unknown input Ek dk.
When an actuator or a sensor fault occurs in the system, the statistics of rk changes

sharply. Hence, determination of the existence of faults can be achieved by hypothesis
testing of the residual. The two hypotheses for the residual are: i) H0: the system has no
fault (normal mode); ii) H1: actuator or sensor faults occur in the system (fault mode).
When the system is under the normal (no fault) condition (i.e., H0), the residual statistics
are

H0

{
E{r̄k} = 0

cov{r̄k} = C̄k Λ
−1 P̃k Λ

−1 C̄T
k +Dk Rk D

T
k (=: W̄k),

(23)

and if the condition of system swaps to H1, the statistics of the residual change from (23).
Since the noise sequences ζk and wk are, from Section 2, assumed to be white Gaussian

noise, a chi-square test is applied to discriminate between hypotheses H0 and H1. The
test for the occurrence of faults consists of comparing the scalar test statistic

λk := r̄Tk W̄−1
k r̄k (24)

to a constant threshold, where λk is chi-square distributed with p degrees of freedom, and{
λk ≥ TD fault

λk < TD no fault,
(25)

for threshold, TD, determined from the chi-square distribution table with Prob{λk ≥
TD|H0} = Pf so that the probability of a false alarm, Pf , is maintained.
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5. Numerical Simulations. To demonstrate the above filter algorithm, we consider as
an example the following discrete-time time-invariant linear system with actuator and
sensor faults:

Ak =

 0.9944 −0.1203 −0.4302
0.0017 0.9902 −0.0747

0 0.8187 0

 ,

Bk = [0.4252,−0.0082, 0.1813]T , Ck = I3×3, Sk = diag {−0.1,−0.2,−0.8}, Dk = diag

{0.5, 0.5, 0.5}, xk = [x
(1)
k , x

(2)
k , x

(3)
k ]T ∈ R3, and yk ∈ R3. The covariance matrices of the

white Gaussian noise sequences, ζk and wk, are set as Qk ≡ diag{5 × 10−3, 5 × 10−3, 5
×10−5} and Rk ≡ 0.01 I3×3, respectively. Due to the model error [2], the unknown input
term, Ek dk, is assumed to be of the form:

Ek dk = ∆Ak xk +∆Bk uk

= E

{[
−0.8950 0.1083 0.3872
−0.0015 −0.8912 0.0672

]
xk +

[
0.0085
−0.0002

]
uk

}
, (26)

and E = [I2×2 0]T .
For the simulation, the actuator fault case is performed, and the actuator fault actually

arises at k = 35 such that fa
k ≡ 0:

fa
k =

{
0 for 0 ≤ k < 35

2 for 35 ≤ k.

To perform the simulation with an actuator fault, the known input is set as uk ≡ 10, and
the initial values are x0 = 0 and P̄0 = 0.01 I6×6. Furthermore, the weight matrix with
respect to P̄k is given by Λ = diag {1, 1, 1, 10, 10, 10}.

In obtaining the numerical result, the performance of the proposed filter algorithm is
similar to our previous approach [13]. However, quantitative analysis to substantiate this
will be required in the future. The simulation results are shown in Figures 1-6, where the
superscript i (i = 1, 2, 3) denotes each element of a variable. In Figure 1, the behavior of

state, xk, is depicted. At k = 35, it can be seen that the values of state variables x
(1)
k and

x
(2)
k sharply increase due to the actuator fault. Figure 2 shows sample runs of the colored

observation noise sequence, βk, generated by the subsystem given in (3), and in Figure

3 we see that the observation data, yk, is disturbed by this colored noise. y
(1)
k and y

(2)
k

also observed an sharp change of state at k = 35 due to the effects of the actuator fault.
The output of the proposed optimal filter is shown in Figure 4, where x̂k, denotes the
state estimate with respect to xk, and the norm of the estimation error, ek, is depicted in
Figure 5. From Figures 4 and 5, we can establish that estimation errors of the proposed
optimal filter are sufficiently small before the actuator fault occurs. However, after the
fault arises, the ek values increase substantially. In contrast, the unknown input Ek dk
does not affect the state estimate.

Finally, Figure 6 shows the behavior of the value of the test statistic function with
respect to the faults, rk. At the start of the simulation, rk has a large value, which is
caused by the immediate change of the state from the known input, uk. To use this
function for detecting faults, this large initial value must be negated. However, when the
actuator fault occurs at k = 35, rk attains a value larger than that for 2 < k < 35 (no
fault conditions).

6. Conclusions. In this paper, a new optimal filter for discrete-time linear stochastic
systems having unknown inputs and colored observation noise has been proposed. We
applied our modified version [16] of Chen and Patton’s algorithm [2] to the optimal filter
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Figure 1. Sample runs of state vector, xk, when an actuator fault occurs
at k = 35
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Figure 2. Colored observation noise sequence, βk, generated from (3)

for systems with colored noise formulated previously in [13]. Here, the error covariance
matrix, P̃k, of the obtained optimal filter has additional terms, and the gain matrix, K̄1

k+1,
is different from that employed before in [13].
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