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Abstract. A method based on an unscented Kalman filter is presented for collision
detection and control of parallel-structured two-link flexible manipulators. The exact
dynamics of parallel-structured two-link flexible manipulators is described by nonlinear
partial and ordinary differential equations having considerable complexity. Here, manip-
ulators are modeled approximately by a two-link flexible manipulator consisting of a pair
of flexible beams under the same boundary conditions as the original system. To discover
the instant at which the flexible manipulator collides with an unknown obstacle, the in-
novation of the unscented Kalman filter – a nonlinear state estimator – is introduced. To
control the manipulator, a sliding mode controller is employed. Under the normal con-
ditions, the sliding mode controller generates control torques such that the tip position
of the manipulator follows a given reference trajectory. However, when collision between
the flexible manipulator and an obstacle is detected, the controller switches from position
control to suspend control by changing the reference trajectory. The performance of the
proposed collision detection algorithm and controller is demonstrated via two numerical
simulations.
Keywords: Unscented Kalman filter, Flexible manipulator, Collision detection, Sliding
mode control, Innovation

1. Introduction. Recently, flexible manipulators have received increased attention and
have been investigated by many researchers [1-6]. In particular it has been desirable to
design flexible manipulators having both the features of a lightweight structure and flexi-
bility. As a result, current flexible manipulators have the advantages of being lightweight
and having low energy consumption. Such flexible manipulators have useful applications
in a number of fields, for example, space development programs and robots for assisting
humans. However, derivation of mathematical models and of accurate positioning control
is nontrivial for flexible manipulators because they are subject to undesirable vibrations
due to their low rigidity.

Furthermore, when utilizing flexible manipulators in a work environment, ensuring
the safe operation of the manipulator is important, since there are often a variety of
obstacles in the workspace (e.g., objects and humans). Therefore, flexible manipulators
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must be able to move while avoiding these obstacles. However, avoidance of unknown
obstacles in the workspace is not always possible, and to mitigate damage caused by
a flexible manipulator, the introduction of both active collision detection and suspend
control algorithms is necessary. Unfortunately, a sensor that detects collisions cannot
be installed directly on the manipulator, since this compromises the advantage of having
lightweight characteristics. Hence, the development of a collision detection mechanism for
the flexible manipulators that is based on observation data is a significant and challenging
mission.
Several investigations on collision detection methods for flexible manipulators that do

not involve additional sensors have already been conducted [7-9]. Moorehead and Wang
proposed a collision detection method for a flexible cantilevered beam by using two strain
gauges to determine the intensity and position of the external force resulting from a colli-
sion [7]. In their approach, estimation of the contact position was achieved by observing
the relation between the positions of the strain gauges and bending moments measured
by sensors. One of the current authors also proposed a method of collision detection
for a single-link flexible manipulator by using the innovation of a Kalman filter [12, 13].
Furthermore, the authors presented a method of collision detection and suspend control
for parallel-structured single-link flexible arms [14]. In that paper, collision is detected by
using the innovation of the Kalman filter based on data measure by strain sensors affixed
to the side of the arm.
Here, we extend our previously proposed collision detection approach [14] to a parallel-

structured two-link flexible manipulator by employing an unscented Kalman filter (UKF)
[15], a common nonlinear filter. The advantageous features of the parallel-structured
flexible manipulator are that it has sufficient rigidity in the vertical axis and display-
ing flexibility in the displacement axis of the arm [16]. The mathematical model of the
parallel-structured two-link flexible manipulator is described by nonlinear partial and or-
dinary differential equations having high complexity, because each link of the manipulator
consists of a pair of flexible beams that are deformed in parallel. In our research, each link
of the parallel-structured two-link flexible manipulator is instead modeled approximately
by a single flexible beam under the same boundary conditions as the original system.
Collision detection is then realized by using the innovation of the state estimator.
To achieve collision detection and suspend control for the flexible manipulator, we

employ the UKF, a nonlinear state estimator proposed by Julier et al. [17-19] and a
sliding mode controller. Although linearization of the mathematical model for the parallel-
structured two-link flexible manipulator is nontrivial owing to its high nonlinearity, the
state estimator for the manipulator can be constructed by using the UKF. The UKF is
chosen, since the intensity of the UKF innovation jumps to a large value at the instant a
collision occurs. Hence, by introducing a scalar function based on the innovation, collisions
between unknown obstacles and the flexible manipulator can be detected if the function
exceeds a pre-assigned threshold.
A controller for the nonlinear system model is additionally required. For this purpose,

a sliding mode controller is considered suitable for tracking and suspending control of
the manipulator. This controller has a simple structure and is robust [20]. When a
collision is detected, the controller is switched from tracking control of the tip position
to suspend control, which then replaces the reference trajectory at the point where the
collision occurred.

2. Mathematical Model.
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Figure 1. Parallel-structured two-link flexible manipulator

2.1. Parallel-structured two-link flexible manipulator. Consider a parallel-struc-
tured two-link flexible manipulator that collides with unknown obstacles, as schematically
illustrated in Figure 1. Each link of the manipulator consists of a pair of uniform Euler-
Bernoulli beams. To join the links, one end of each beam is clamped to a hub unit, while
the remaining end is clamped to a tip-mass. Under this configuration, for Link i, let
O1XY be the inertial Cartesian coordinate system, Oixiyi (i = 1, 2) be the coordinate
systems rotated by servomotors installed at O1 and O2, and Oijxijyj (i, j = 1, 2) be the
rotating coordinate systems of each Beam ij.

Derivation of the mathematical model for the parallel-structured two-link flexible ma-
nipulator involves highly complex nonlinear differential equations. However, the principal
components of the displacements for Beams k1 and k2 (k = 1, 2) can be regarded as
equal, and assuming that the centripetal force is sufficiently small, the mathematical
models for both beams in each link are equivalent. Therefore, for the sake of simplicity,
an approximated structure is considered (Figure 2). Here, we consider that each flexible
link consisting of two beams is approximated by a single beam under the same bound-
ary conditions as the original system. Hence, each link can be described in terms of a
nonlinear partial differential equation.

2.2. Simple-structured two-link flexible manipulator. Now, consider the simple-
structure two-link flexible manipulator colliding with an unknown obstacle (Figure 2).
We assume that the obstacle collides with either Link 1 (x1 = xc1) or Link 2 (x2 = xc2)
at time t = tc, where xci (i = 1, 2) and tc are all unknown. Let ui(t, xi) (i = 1, 2) denote
the transverse displacement of Beam i from the xi-axis and θi(t) be the angle between
the O1X and Oixi axes. The physical parameters of the beams are: ρ, the uniform mass
density; S, the cross-sectional area; EI, the uniform flexible rigidity (where E is Young’s
modulus and I is the second moment of cross-sectional area); and cD, the coefficient of
Kelvin-Voigt damping. Furthermore, the hub unit of Link i has moment of inertia Ji, and
the tip-mass attached to Link i has mass mi and moment of inertia Ji+2.

The mathematical model for the simplified flexible manipulator can be derived by
Hamilton’s principle [14], and is given by the following Euler-Bernoulli nonlinear partial
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Figure 2. Simple-structure model of parallel-structured two-link flexible manipulator

and ordinary differential equations:

ρS1ü1(t, x1) + cDI1u̇
′′′′
1 (t, x1) + EI1u

′′′′
1 (t, x1)

=− ρS1x1θ̈1(t) + ρS1u1(t, x1)θ̇
2
1(t) + g1γ1(t, x1)

+ s1(t)δ(x1 − xc1)−R1(p)δ(x1 − ℓ1), (1)

ρS2ü2(t, x2) + cDI2u̇
′′′′
2 (t, x2) + EI2u

′′′′
2 (t, x2)

=− ρS2

[{
L1 cos{θ2(t)− θ1(t)}+ u1(t, ℓ1) sin{θ2(t)− θ1(t)}

}
θ̈1(t) + x2θ̈2(t)

+ ü1(t, ℓ1) cos{θ2(t)− θ1(t)}+
{
L1 sin{θ2(t)− θ1(t)}

− u1(t, ℓ1) cos{θ2(t)− θ1(t)}
}
θ̇21(t)− u2(t, x2){θ̇2(t)− θ̇1(t)}2

+ 2u̇1(t, ℓ1)θ̇1(t) sin{θ2(t)− θ1(t)}
]
+ g2γ2(t, x2)

+ s2(t)δ(x2 − xc2)−R2(p)δ(x2 − ℓ2), (2)

P11(p)θ̈1(t) + P12(p)θ̈2(t) + P13(p)θ̇1(t) + P14(p)θ̇2(t)

+ P15(p)θ̇
2
1(t) + P16(p)θ̇

2
2(t)−Rs(p) +Q11(p)ü1(t, ℓ1) +Q12(p)u̇1(t, ℓ1)

=τ1(t)− τ2(t) + g3γθ1(t) (3)

P21(p)θ̈1(t) + P22(p)θ̈2(t) + P23(p)θ̇1(t) + P24(p)θ̇2(t)

+ P25(p)θ̇
2
1(t) + P26(p)θ̇

2
2(t) +Q21(p)ü1(t, ℓ1) +Q22(p)ü2(t, ℓ2)

=τ2(t) + g4γθ2(t), (4)

where the initial and boundary conditions of (1) and (2) are ui(0, xi) = u̇i(0, xi) = 0
and ui(t, 0) = u′i(t, 0) = u′i(t, ℓi) = u′′′i (t, ℓi) = 0 (i = 1, 2), and the initial conditions of

(3) and (4) are θi(0) = θ0i and θ̇i(0) = 0. γi(t, x) (i = 1, 2) represents the distributed
random disturbance. γθi (i = 1, 2) denotes the random disturbance acting at the respective
servomotor shaft.



UKF-BASED COLLISION DETECTION AND CONTROL OF FLEXIBLE MANIPULATORS 2403

Here, p(t) := [θ1(t), θ2(t), u1(t, x1), u2(t, x2)]
T, the prime represents ∂/∂xi, L1 := ℓ1+h1

and gi (i = 1, . . . , 4) are constants, δ(·) denotes the Dirac delta function, and si(t) (i =
1, 2) is the magnitude of the collision input. In addition, Pij(·) and Qij(·) are nonlinear
functions, R1(·) represents the reaction force between the tip-mass and Link 2, R2(·) is the
reaction force of the tip-mass, and Rs(·) is the reaction force resulting from the collision.
Finally, si(t) (i = 1, 2) denotes the external force due to the collision. Assuming that
the collision occurs only momentarily, the magnitude of collision, si(t) (i = 1, 2), can be
expressed by

si(t) = si0δ(t− tc), (5)

where si0 (i = 1, 2) is unknown parameter.
Observation data are measured with piezoelectric sensors and potentiometers. A piezo-

electric sensor with length bs is affixed at the base of each link (xi = ξi) to measure the
strain within the beams. The potentiometers are installed at the shaft of the servomotors.
Observations are given by the following manners:

yi(t) = ai

∫ ξi+bs

ξi

u′′i (t, xi)dxi + biβi(t), (6)

y2+i(t) = a2+iθi(t) + b2+iβ2+i(t), (i = 1, 2) (7)

where ai and bi are constants, and βi(t) represents the observation noise modeled by white
Gaussian noise.

2.3. State space model. By using the modal expansion method, solutions of (1) and
(2) can be represented as

ui(t, xi) ∼=
N∑
k=1

uik(t)ϕik(xi), (i = 1, 2) (8)

where N is a sufficiently large positive number. Moreover, ϕik(·) is the kth eigenfunction
(mode function) corresponding to eigenvalue λik of the following eigenvalue problem:

EI

ρSi

d4

dx4i
ϕik(xi) = λikϕik(xi), (i = 1, 2) (9)

with boundary conditions

ϕik(0) =
dϕik(0)

dxi
=
dϕik(ℓi)

dxi
=
d3ϕik(ℓi)

dx3i
= 0, (10)

and uik(t) (i = 1, 2) denotes the modal displacement corresponding also to λik.
Introducing the state vector defined by

v(t) = [u̇11(t), · · · , u̇1N(t), u̇21(t), · · · , u̇2N(t),
u11(t), · · · , u1N(t), u21(t), · · · , u2N(t), θ̇1(t), θ̇2(t), θ1(t), θ2(t)]T, (11)

the state space model of the combination of the simple-structure two-link flexible manip-
ulator and observation model is

v̇(t) = A(v)v(t) +B(v)f(t) +Gc(v; xc1, xc2)s(t) +G(v)γ(t), (12)

y(t) = Cv(t) + Eη(t). (13)

Gc(v;xc1, xc2) is a nonlinear function of the state v(t) and collision positions xc1 and
xc2; f(t) := [τ1(t), τ2(t)]

T; γ(t) := [γ11(t), · · · , γ1N(t), γ21(t), · · · , γ2N(t), γθ1(t), γθ2(t)]T;
γik(t) :=

∫ ℓi
0
γi(t, xi)ϕk(xi)dxi; η(t) := [β1(t), · · · , β4(t)]T; E{γ(t)γT(τ)} = Wδ(t− τ) and

E{η(t)ηT(τ)} = V δ(t− τ) (where E{·} : the mathematical expectation).
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3. Design of UKF. The state space model described by (12) and (13) is a stochastic
nonlinear system with a collision as the input. To control the tip position and to reduce
the random vibration of the entire flexible manipulator, information about the state v(t) is
required. For these purposes, the UKF for the following collision-free system is employed:

v̇f (t) = A(vf )vf (t) +B(vf )f(t) +G(vf )γ(t), (14)

where vf (t) is the state vector of the collision-free system.
However, the UKF is to be constructed for a discrete-time nonlinear stochastic system,

and (14) is a continuous-time system. Therefore, we convert (14) into a discretized version
by using a Runge-Kutta method with a time interval of ∆t. (13) and (14) are then
rewritten:

vf (k + 1) = F (vf (k), f(k), γ(k)), (15)

y(k) = Cv(k) + Eη(k), (16)

for time-step k. F (·) in (15) is the nonlinear function:

F (vf (k), f(k), γ(k)) =vf (k) + {H1(vf (k), f(k), γ(k))

+H2(vf (k), f(k), γ(k)) +H3(vf (k), f(k), γ(k))

+H4(vf (k), f(k), γ(k))}∆t/6, (17)

H1(·) = A(vf (k))vf (k) + B(vf (k))f(k) +G(vf (k))γ(k),

H2(·) = A(vf (k)){vf (k) +H1(·)dt/2}+B(vf (k))f(k) +G(vf (k))γ(k),

H3(·) = A(vf (k)){vf (k) +H2(·)dt/2}+B(vf (k))f(k) +G(vf (k))γ(k),

H4(·) = A(vf (k)){vf (k) +H3(·)dt}+B(vf (k))f(k) +G(vf (k))γ(k).

The UKF algorithm is then summarized by the following three steps:
[Step 1]: The (4N+4)-state vector, vf (k), is approximated by 2(4N+4)+1 sigma points,
Xi, with weight coefficients Wi:

X0 = v̂f (k|k), (18)

W0 =
κ

n+ κ
, (19)

Xi = v̂f (k|k) +
{√

(4N + 4 + κ)P (k|k)
}

i
, (20)

Wi =
1

2(n+ κ)
, (21)

Xi+4N+4 = v̂f (k|k)−
{√

(4N + 4 + κ)P (k|k)
}

i
, (22)

Wi+4N+4 =
1

2(n+ κ)
, (23)

(i = 1, . . . , 4N + 4)

where κ is an integer scaling parameter, Wi is the weight coefficient associated with the
ith point, and

{√
(4N + 4 + κ)P (k|k)

}
i
represents the ith column of matrix U satisfying

M = UUT when M := (4N + 4+ κ)P (k|k). Here, the U is calculated via the incomplete
Cholesky decomposition [21].
[Step 2]: Transform each point by using the nonlinear function F (·), and the predicted
mean, covariance, and observation; the innovation covariance, Pyy(k+1|k); and the cross
correlation matrix, Pvy(k + 1|k), are

Xi(k + 1|k) = F (Xi(k|k), f(k)), (24)



UKF-BASED COLLISION DETECTION AND CONTROL OF FLEXIBLE MANIPULATORS 2405

v̂f (k + 1|k) =
2(4N+4)∑

i=0

WiXi(k + 1|k), (25)

P (k + 1|k) =
2(4N+4)∑

i=0

Wi{Xi(k + 1|k)− v̂f (k + 1|k)}

× {Xi(k + 1|k)− v̂f (k + 1|k)}T +GWGT, (26)

Yi(k + 1|k) = CXi(k + 1|k), (27)

ŷ(k + 1|k) =
2(4N+4)∑

i=0

WiYi(k + 1|k), (28)

Pyy(k + 1|k) =
2(4N+4)∑

i=0

Wi{Yi(k + 1|k)− ŷ(k + 1|k)}

× {Yi(k + 1|k)− ŷ(k + 1|k)}T + EV ET, (29)

Pvy(k + 1|k) =
2(4N+4)∑

i=0

Wi{Xi(k + 1|k)− v̂f (k + 1|k)}

× {Yi(k + 1|k)− ŷ(k + 1|k)}T. (30)

[Step 3]: The state estimate and covariance are given by updating the prediction through
the linear update rule, which is specified by choosing weights that minimize the mean
squared error of the estimate. The update rule is

v̂f (k + 1|k + 1) = v̂f (k + 1|k) +K(k + 1){y(k + 1)− ŷ(k + 1|k)}, (31)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)Pyy(k + 1|k)KT(k + 1|k), (32)

where K(k + 1) is the Kalman filter gain given by

K(k + 1) = Pvy(k + 1|k)P−1
yy (k + 1|k). (33)

4. Collision Detection Algorithm. For the flexible manipulator to collide with an
unknown obstacle is undesirable, because the collision input, s(t), affects the state of the
flexible manipulator as a disturbance. The problem of the collision detection is considered
as a recognizing of the instantaneous change from a collision-free system to a system with
a collision. This change of systems can be indentified by using observation data measured
by the piezoelectric sensors affixed to the base of the links. Specifically, a collision is
detected by making a decision as to whether observation data, y(t), is provided by the
collision or collision-free model.

To detect rapid changes of the system, the intensity of the innovation is used. The UKF
innovation is defined as the difference between the actual observation and the estimated
observation from the collision-free system,

µ(k) = y(k)− Cv̂f (k|k), (34)

where v̂f (k|k) is the estimate of vf (k) and is calculated from the UKF in the previous
section. Substituting (16) into (34), we have

µ(k) = Cz(k) + Eη(k), (35)

where z(k) is the estimation error defined by z(k) := v(k) − v̂f (k|k). If a collision does
not occur, the state vector v(k) is equal to vf (k). However, if a collision does occur, v(k)
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is then equal to the state vector of the collision model, and z(k) becomes large due to
the collision input. To detect the collision, the scalar collision detection function, r(k), is
introduced:

r(k) = µT(k)µ(k). (36)

If r(k) exceeds threshold ε, then a collision has arisen.

5. Controller Design. The mathematical model for the flexible manipulator derived
in Section 2 is a nonlinear stochastic system. So that the tip position of the flexible
manipulator follows a reference trajectory, a controller to generate servomotor control
torques is required. In the present study, the sliding mode controller is employed.

XO1

Y

 (t)~�1(t)
~�2(t)L1
L2

L(t) (X(t); Y (t))Referenetrajetory

Figure 3. The two-link rigid manipulator

5.1. Error system. Let us consider that the tip position of a rigid manipulator is moved
from an initial position to a desired position on a given reference trajectory, as shown in
Figure 3. In this figure, (X(t), Y (t)) denotes the tip position of the rigid manipulator. If

θ̃i(t) (i = 1, 2) is the reference angle of the joint derived via the inverse kinematics, then

θ̃1(t) = ψ(t) + cos−1

{
L2(t) + L2

1 − L2
2

2L(t)L1

}
, (37)

θ̃2(t) = θ̃1(t)− cos−1

{
L2(t)− L2

1 − L2
2

2L1L2

}
. (38)

Here, Li (i = 1, 2) represents the length of rigid Link i, and L(t) and ψ(t) are given by

L(t) =
√
X2(t) + Y 2(t) (39)

ψ(t) = tan−1

{
Y (t)

X(t)

}
. (40)

The flexible manipulator is controlled such that its state converges to the equilibrium

state given by the rigid manipulator; namely, veq(t) := [O1×4N , ˙̃θ1,
˙̃θ2, θ̃1, θ̃2], where O1×4N
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expresses the 1× 4N zero vector. The error state vector, ve(t), is thus defined by

ve(t) := v(t)− veq(t)

≡ [u̇11(t), · · · , u̇1N(t), u̇21(t), · · · , u̇2N(t),
u11(t), · · · , u1N(t), u21(t), · · · , u2N(t), ė1(t), ė2(t), e1(t), e2(t)]T, (41)

for ei(t) := θi(t)− θ̃i(t) (i = 1, 2). By introducing ve(t), the system of errors corresponding
to (12) is

v̇e(t) = A(ve(t))ve(t) + B(ve(t))f(t). (42)

If the flexible manipulator is precisely controlled, the amplitude of ve(t) can be regarded
as being sufficiently small (i.e., ∥ve(t)∥ ≪ 1). Furthermore, in this paper, we assume that
A(ve(t)) ∼= A(0) and B(ve(t)) ∼= B(0). From these approximations, the error system is
rewritten as

v̇e(t) = Aeve(t) + Bef(t), (43)

where Ae and Be are the constant matrices defined by

Ae := A(0), Be := B(0). (44)

5.2. Sliding mode controller. The objective of the sliding mode controller is to track
the reference trajectory through the tip position and to suppress any random vibration of
the manipulator. Moreover, the controller suspends the motion of the manipulator when
a collision is detected.

The input to the controller is given by

f(t) = −(SBe)
−1SAeve(t)− F

σ(t)

∥σ(t)∥+ δ
, (45)

where S is a hyperplane, δ is a positive constant, F is the nonlinear controller gain, and
σ(t) is a switching function. There are a number of methods for determining the matrix S.
Here, S is chosen as a feedback gain of the optimal controller. Explicitly, S is determined
as follows [20]:

S = BT
e P, (46)

PAe + AT
e P − PBeB

T
e P +Q = 0, (47)

Q above denotes the non-negative symmetric weight matrix from the cost functional:

J =

∫ T

0

{∫ ℓ1

0

[
q1{u̇1(t, x1)}2 + q2{u1(t, x1)}2 + q3{u̇′′1(t, x1)}2 + q4{u′′1(t, x1)}2

]
dx1

+

∫ ℓ2

0

[
q5{u̇2(t, x2)}2 + q6{u2(t, x2)}2 + q7{u̇′′2(t, x2)}2 + q8{u′′2(t, x2)}2

]
dx2

+ q9ė
2
1(t) + q10e

2
1(t) + q11ė

2
2(t) + q12e

2
2(t)

}
dt

≡
∫ T

0

vTe (t)Qve(t)dt, (48)

and Q := diag{Θ1, Θ3, Θ2, Θ4, q9, q11, q10, q12}; Θ1 = q1IN + q3Ψ1. Additionally, in this
functional, Θ2 = q2IN + q4Ψ1, Θ3 = q5IN + q7Ψ2, Θ4 = q6IN + q8Ψ2 (IN : N -dimensional
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unit matrix), and

Ψi=


∫ ℓi

0

ϕ′′
i1(xi)ϕ

′′
i1(xi)dxi, · · · ,

∫ ℓi

0

ϕ′′
i1(xi)ϕ

′′
iN(xi)dxi

...
...∫ ℓi

0

ϕ′′
iN(xi)ϕ

′′
i1(xi)dxi, · · · ,

∫ ℓi

0

ϕ′′
iN(xi)ϕ

′′
iN(xi)dxi

 . (49)

Finally, the switching function for the controller input is defined by

σ(t) = Sve(t), (50)

and nonlinear controller gain must satisfy the following condition:

F

{
> 0 : if SBe > 0

< 0 : if SBe < 0.
(51)

Because we are using an unscented Kalman filter, the continuous σ(t) and f(t) functions
given by the sliding mode controller must be discretized using

σ(k) = Sve(k) (52)

f(k) = −(SBe)
−1SAeve(k)− F

σ(k)

∥σ(k)∥+ δ
. (53)

5.3. Suspend control. When a collision is detected, the flexible manipulator is sus-
pended to absorb the impact of the collision. With the flexible manipulator controlled
such that the tip position tracks the reference trajectory, to suspend the motion of the
manipulator using the sliding mode controller, we consider that the reference trajectory
is switched to an alternative trajectory at tc when collision occurs. The tip position of
the manipulator at tc is defined by

(X(tc), Y (tc)) =: (Xc, Yc), (54)

where Xc and Yc are constants. Suspend control is thus achieved by fixing the reference
trajectory at (Xc, Yc) after the collision has been detected:{

X(t) = Xc

Y (t) = Yc
(t > tc) (55)

6. Simulation Results. In this section, we present the results of two numerical simula-
tions. To this end, the flexible beams are assumed to be composed of phosphor bronze.
Physical parameters and coefficients of the flexible manipulator are listed in Table 1. The-
oretical observation data are assumed to have been measured with piezoelectric sensors
having length bs = 3×10−2 [m] and width 1.2×10−2 [m], affixed at positions ξi = 3×10−3

[m] (i = 1, 2), and potentiometers are installed at the respective hubs. Observation system
parameters were set as ai = bi = 1.0 (i = 1, · · · , 4). The covariance matrices for the sys-
tem noise and the observation noise were given by W = 10−5 × I4N+4 and V = 10−8 × I4,
respectively. The number of modes of the flexible arms was fixed at N = 2. Finally, the
time partition in the numerical simulations was set as ∆t = 1× 10−3 [s].
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Table 1. Physical parameters of the flexible manipulator

Parameter Value
ℓ1 0.3 [m]
ℓ2 0.28 [m]
E 1.1×105 [MPa]
S1 4×10−5 [m2]
S2 8×10−6 [m2]
ρ 8.8×103 [kg/m2]
cD 4.84×104 [N·s/m2]
J1 0.01 [kg·m2]
J2 0.035 [kg·m2]
J3 0.035 [kg·m2]
J4 0.002 [kg·m2]
m1 0.3 [kg]
m2 0.02 [kg]
h1 0.04 [m]
h2 0.01 [m]

gi (i = 1, . . . , 4) 1.0

O

Y

X

(X(t); Y (t))Desired position

Initial position

(0; D)

(D; 0)
Referene trajetory

Figure 4. Straight-line reference trajectory for the tip of the flexible manipulator

6.1. Tracking control. Consider a reference trajectory given by a straight line (Fig-
ure 4). If the position at the tip is (X(t), Y (t)), then the straight line is defined by

X(t) + Y (t) = D, (56)

where D (≤ L1+L2) is a positive constant. The tip of the flexible manipulator, therefore,
moves to desired position (0, D) from initial position (D, 0). In the simulation, we set
D = 0.5 [m], and the tip of the flexible manipulator was assumed to reach the desired
position at t = 2 [s]. Moreover, the initial conditions given to the model were uij(0) = 0

[m], u̇ij(0) = 0 [m/s], θ̇i(0) = 0 [rad/s], θ1(0) = 0.60 [rad], θ2(0) = −0.72 [rad], and
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the initial condition of the state vector for the control error system was set to zero.
The reference angles are calculated from (37)-(40). The weight coefficients in the cost
functional were set as q1 = 50, q2 = 1000, q3 = 500, q4 = 10, q5 = 500, q6 = 1000,
q7 = 500, q8 = 10, q9 = 10, q10 = 5000, q11 = 10, q12 = 5000. Lastly, the nonlinear
controller gain was F = 1 and δ = 0.5. The simulation study was carried out for 3 s. The
resultant path of the tip mass for the case of the tracking control shown in Figure 5 was
computed from

X(t) = L1 cos θ1(t)− u1(t, ℓ1) sin θ1(t) + L2 cos θ2(t)− u2(t, ℓ2) sin θ2(t), (57)

Y (t) = L1 sin θ1(t) + u1(t, ℓ1) cos θ1(t) + L2 sin θ2(t) + u2(t, ℓ2) cos θ2(t), (58)

where

ui(t, ℓi) =
2∑

k=1

uik(t)ϕik(ℓi). (59)

As seen in Figure 5, the tip position of the flexible manipulator has almost traced the
target trajectory exactly.

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

Y
[m

]

X [m]

Figure 5. Behavior of tip position of the flexible manipulator controlled
by the sliding mode controller. In this figure, the dashed line depicts the
reference trajectory, and the solid line represents the tip’s trajectory of the
flexible manipulator calculated from (57) and (58).

6.2. Collision detection and suspend control. A numerical simulation of collision
detection and suspend control for two-link flexible manipulator was performed. The
suspend trajectory for this example was the same as that used in the previous simulation
(Figure 4). After the collision was detected, the fixed position was used as the reference
trajectory that is given by (55). The collision was assumed to occur at tc = 1 [s] and the
threshold was ε = 1× 10−7.
The numerical results for the case that the obstacle collides with Link 1 are only con-

sidered. Figure 6 shows the variation over time of r(t) (t = k∆t). It can be seen that r(t)
has risen sharply at t = 1 [s]. Hence, the value of the collision detection function exceeded
ε at the moment the collision occurred. Figure 7 shows the corresponding trajectory of
the tip position. The tip position initially changed significantly due to the input when
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r(
t)

0 1 2 3

0

0.2

0.4

0.6

0.8

1
x 10

-6

threshold

Time t [s]

Figure 6. Behavior of the collision detection function, r(t), for the case
when an obstacle collides with Link 1 (xc1 = 0.15 [m], tc = 1 [s], θ2(t) = 0
[rad])

the collision was detected. However, the tip was then suspended at the position that the
collision took place.

0 0.2 0.4

0

0.1

0.2

0.3

0.4

0.5

Y
[m

]

X [m]

Figure 7. Trajectory of the tip position of flexible manipulator when a
collision is detected at Link 1 at tc = 1 [s]. The dashed line depicts the
reference trajectory, and the solid line represents the resultant path of the
flexible manipulator calculated from (57) and (58).

7. Conclusions. The mathematical model for a parallel-structured two-link flexible ma-
nipulator was described by a nonlinear distributed parameter system. The model of the
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manipulator was then converted into a finite-dimensional system by using the modal ex-
pansion technique, and the UKF and the sliding mode controller were designed for this
system. Collision detection was achieved by using the UKF innovation, since the two-link
flexible manipulator is a nonlinear system. Unexpected input caused by a collision with
an unknown obstacle excites an undesirable vibration in the flexible manipulator. How-
ever, it has been shown that the introduced collision detection function, r(t), successfully
detects when a collision has occurred.
The controller for the flexible manipulator was designed via sliding mode control theory.

The controller then satisfied the objectives of reducing the random vibration of the flexible
manipulator depending on the mechanical flexibility, and controlling the position of the
tip-mass such that the tip of the flexible manipulator followed a reference trajectory.
Suspend control was also achieved by switching a reference trajectory from the normal
control phase to the suspend control phase once the collision was detected.
Performing numerical simulations, the efficiency of the collision detection function and

the sliding mode controller were confirmed. Position control of the tip of flexible manip-
ulator has thus been accomplished by using the sliding mode controller.
Garcia et al. [10] investigated a collision detection algorithm based on estimation errors

of the arm angle and its derivative, and their approach is similar to our method. However,
the mathematical model in their approach is described as a deterministic system. In
contrast, since our approach is based on stochastic system theory, collision detection can
be achieved even when using a noisy measured signal. This characteristic is realized in
that even weak collision impacts could be detected.
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