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Abstract. In this paper, stochastic motion in nonlinear systems of Van der Pol-Mathieu
type is studied for various damping parameters. At first, a sine circle map to the non-
linear system is derived. Secondly, an approximate piecewise continuous map to the sine
circle map is derived. Finally, computational experiments for small damping parameters
show that if the oscillation in approximate piecewise continuous map is stochastic, that is
Lyapunov exponent to the map is positive, then the oscillation in original system of Van
der Pol-Mathieu type exhibits stochastic motion. The results obtained in this paper are
effective to design the nonlinear systems of Van der Pol-Mathieu type so as to generate
chaotic motion and periodic oscillation.
Keywords: Stochastic motion, Nonlinear systems, Van der Pol-Mathieu type

1. Introduction. The importance of nonlinear dynamics has been considerably intensi-
fied by researchers [1-3]. Xin et al. and Liu et al. presented the chaos synchronization
method to synchronize tow identical chaotic systems with different initial values [2-4].
Studies of nonlinear systems of Van der Pol-Mathieu type are important to design systems
to be structurally stable [5-8]. Recently, the Van der Pol-Mathieu equation has played in
the models such as micro electronic-mechanical systems [9-15]. Parlitz and Lauterborn
studied the system with large damping [16]. They obtained the results concerning with
period doubling cascades, the chaotic solution, and the devil’s staircase in winding num-
ber and frequency of external force. Mettin et al. also obtained the bifurcation structure
[17].

Recently, remarkable works [21-23] can be found in the International Journal of Inno-
vative Computing, Information and Control.

In this paper, by computational experiments, various oscillation modes are shown for
variation in the damping parameter. Based on Lyapunov exponent of the nonlinear system
and that of approximate piecewise continuous map (PCM) to a sine circle map associated
with the original nonlinear system, the results obtained in this paper enable us to design
the systems so as to generate stochastic motion and periodic oscillation.

The paper is organized as follows. In Section 2, a sine circle map and an approximate
PCM are derived, and in Section 3, it is shown that the rotation numbers in the maps
form a part of a Farey series. In Section 4, the dependence of multiplicity on damping
parameter is shown. In Section 5, based on Lyapunov exponents to approximate PCM,
computational experiments are shown to generate stochastic motion and periodic oscilla-
tion in the original nonlinear systems. In Section 6, concluding remarks of this paper are
presented.
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2. Sine Circle Map and Approximate PCM. Nonlinear systems of Van der Pol-
Mathieu type are represented by the following equation:

ẍ+
(
β − δx2

)
ẋ+

(
1 + γx2 + µcos(ωt)

)
x = 0, (1)

where β and δ are damping parametors, γ is a nonlinear parameter, µ and ω are an
amplitude and an angular frequency of the periodic force µ cos(ωt), respectively, where
δ = 0.01, γ = 0.01, µ is fixed to 20.0. The phase plane portrait of the system is shown in
Figure 1(a). Figures 1(b) and 1(c) show the time evolution of x and ẋ, respectively.

(a) (b) (c)

Figure 1. Oscillation and phase plane portrait of nonlinear systems of
Van der Pol-Mathieu type: (a) phase plane portrait, (b) time evolution of
x, (c) time evolution of ẋ, β = 0.07875 [s−1], δ = 0.01 [m−2 · s−1], γ = 0.01
[m−2 · s−2], ω = 10.0 [rad · s−1], µ = 20.0 [s−2]

3. Rotation Number and Farey Series in Sine Circle Map. In order to obtain the
picture of the dynamics, a sine circle map of the system is introduced. The angle variable
of the system is defined as

θn = tan−1

(
x(nT )

ẋ(nT )

)
, n = 0, 1, . . . (2a)

where

T =
2π

ω
. (2b)

The sine circle map F can be obtained by

θn+1 = F (θn), n = 0, 1, . . . . (3)

Figure 2 shows an example of evolution of an angle variable. The sine circle map is
obtained by the angle variables. The oscillation mode πr,s(m,m+1) consisting of r times
of the m peak oscillation (m-PO) and s times of (m+1)-PO of sine circle map is obtained
for varying damping parameter β.
A rotation number W is defined by

W =
P

M
, (4a)

where P and M denote the mixing degree and the multiplicity of the oscillation, respec-
tively, P and M satisfy the relation:

P = r + s, (4b)

M = mr + (m+ 1)s = mP + s. (4c)
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(a) (b)

Figure 2. Evolution of angle: (a) mapping pattern, (b) sine circle map

The rotation number of the oscillation mode πr,s(m,m + 1) consisting of r times of the
m peak oscillation (m-PO) and s times ((m + 1)-PO) is obtained for varying damping
parametor β.

W =
P

M
=

r + s

mr + (m+ 1)s
. (5)

The mixing degree and the multiplicity P and M are studied for varying values of the
damping parametor β. For the damping parametor β, the series of the rotation number
W is as follows:
for β from 0.005 to 0.033,

F36 :=

{
7

36
,
6

31
,
5

26
,
4

21
,
3

16
,
2

11
,
4

23
,
5

29
,
6

35
,
7

41
,
8

47
,
1

6

}
, (6a)

for β from 0.033 to 0.0575,

F104 :=

{
1

6
,
4

29
,
3

19
,
2

13
,
3

20
,
4

27
,
5

34
,
6

41
,
7

48
,
8

55
,
9

62
,
10

69
,
11

76
,

12

83
,
13

90
,
14

97
,
15

104
,
1

7

}
, (6b)

for β from 0.0575 to 0.0576,

F99 :=

{
1

7
,
14

99
,
23

92
,
12

85
,
11

78
,
10

71
,
9

64
,
8

57
,
7

50
,
6

43
,
5

36
,
4

29
,
3

22
,

2

15
,
3

23
,
4

31
,
5

39
,
6

47
,
7

55
,
8

63
,
1

8

}
, (6c)

for β from 0.0576 to 0.0906,

F81 :=

{
1

8
,
14

81
,
9

73
,
8

65
,
7

57
,
6

49
,
5

41
,
4

31
,
3

25
,
2

17
,
3

26
,
4

35
,

5

44
,
6

53
,
7

62
,
8

71
,
1

9

}
, (6d)

for β from 0.0906 to 0.10250,

F29 :=

{
1

1
,
1

9
,
3

28
,
2

19
,
3

29
,
1

10

}
. (6e)

In order to see the order of appearance of the oscillation modes of the system, a Farey
series is introduced (see [18-20]). The Farey series FM of order M is the monotonically
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increasing sequence of all irreducible rationales between 0 and 1. The Farey series can be
represented as

FM :=

{
P1

M1

,
P2

M2

,
P3

M3

,
P4

M4

, . . . ,
Pi

Mi

, . . . ,
PI

MI

}
(7)

where Pi, Mi are positive integers (Mi ≤ MI). If Pi/Mi and Pi+1/Mi+1 are consecutive
terms of FM , then the following relations hold;

PiMi+1 − Pi+1Mi = 1. (i = 1, 2, . . . , I − 1) (8)

For example, the sets FM for M = 5 and 10 are

F̃5 :=

{
1

1
,
4

5
,
3

4
,
2

3
,
3

5
,
1

2
,
2

5
,
1

3
,
1

4
,
1

5

}
, (9)

F̃10 :=

{
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9
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5

7
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7
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,
2

3
,
5

8
,
3

5
,
4

7
,
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9
,

1

2
,
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9
,
3

7
,
2

5
,
3

8
,
1

3
,
3
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,
2

7
,
1

4
,
2

9
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,
1
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}
(10)

and it follows that
F̃5 ⊂ F̃10. (11)

The structure of Farey series F̃5 is shown in Figure 3.

Figure 3. Farey series

Figure 3 shows that the rotation numbers W form a part of the Farey series.

4. Dependence of Multiplicity on Damping Parameter. The points in the dia-
gram: (

M

r + s
, β

)
(12)

fall on a curve for a given value of P for πr,s(m,m+ 1) as
P = 1, on curve A: π1,0(m,m+ 1) ≡ π(m),
P = 2, on curve B: π1,1(m,m+ 1),
P = 3, on curve C: π2,1(m,m+ 1),
P = 4, on curve D: π3,1(m,m+ 1),

for the damping parameter β.
Figure 4 shows that as β approaches a certain value, say β0, the value of M tends to

∞. For the curves A, B, C and D we suppose that the relation between M and β is(
M

r + s

)p

(β0 − β) = C0, (13)

for β, where p, β0, C0 are constants, respectively, and can be determined from the curves
A, the curve B, the curve C and the curve D, respectively. Assuming the value of β0 as the
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Figure 4. Multiplicity of oscillation mode πr,s(m,m+1) (for β from 0.009
to 0.080 m = 5, 6, 7, 8)

critical point where M/(r + s) tends to ∞, we take β0 = 0.15 for the curve A, β0 = 0.17
for the curve B, β0 = 0.19 for the curve C and β0 = 0.21 for the curve D, respectively.

Equation (13) can change into the equation as follows:

log(β0 − β) = logC0 − p log

(
M

r + s

)
. (14)

For the curve A, we put r + s = 1, for the curve B, r + s = 2, for the curve C, r + s = 3
and the curve D, r + s = 4, respectively. Then from Equation (14), we obtain

| log(β0 − β)| = p log

(
M

r + s

)
− logC0. (15)

Here, in Equation (15), we write as

log

(
M

r + s

)
= X, (16)

and
|log(β0 − β)| = Y. (17)

Thus, log(M/(r + s)) vs | log(β0 − β) | is written as

Y = pX + b, (18)

where b = − logC0. The relation of | log(β0 − β) | to log(M/(r + s)) is plotted by open
squares in Figure 5. A line drawn through the squares points with least mean squares
method.

Figure 5 shows that p and b values for the curve A as p = 1.8486, b = 0.5526, for the
curve B as p = 1.3402, b = 0.1783, for the curve C as p = 1.1084, b = 0.0567, for the curve
D as p = 0.9448, b = 0.019, respectively. Thus, the relation between the multiplicity M
and the damping parametor β for the oscillation modes, can be written as follows:(

M

r + s

)p

(β0 − β) = C0. (19)

5. Approximate PCM and Lyapunov Exponent. By using least mean square me-
thod, PCM to the sine circle map is obtained as follows:

θn+1 := f(θn) = A(θn + C), (0 ≤ θn < C̃) (20a)

θn+1 := g(θn) = B(θn − C̃), (C̃ < θn < 1) (20b)
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Figure 5. log(M/(r + s)) vs
|log(β0 − β)| for β from 0.013 to
0.095 (m = 5, 6, 7, 8)

Figure 6. Approximate PCM

where C̃ = 1− C.
Figures 2(b) and 6 show that sine circle map in the system can be well approximated

by the PCM. The Lyapunov exponent L(β) to the PCM is introduced as follows:

L(β) =
P

P +M
log

(
APBM

)
, (21)

where P denotes the number of iteration for the mapping f in Equation (20a), which is
degree of mixing, and M denotes the number of iteration for the mapping g in Equation
(20b), which is degree of multiplicity. If L > 0, then the motion of the mapped points of
sine circle map is stochastic, and that if L < 0, then the motion of the mapped points
of sine circle map is not stochastic. Figure 7(a) shows that the gradients A, B, Lya-
punov exponent vs the damping parameter β. Figure 7(b) shows that parameter D0, D1,
Lyapunov exponent vs the damping parameter β. Figure 8 shows that the maximum Lya-
punov exponent of nonlinear systems of Van der Pol-Mathieu type, Lyapunov exponent
of approximate PCM for the sine circle map vs the damping parameter β. It is known
that the Lyapunov exponent is positive to the dynamical systems, then the oscillation
exhibits stochastic or chaotic (see [18]). The bifurcation diagram of the original nonlinear
systems is shown in Figure 9. From Figures 7, 8 and 9, it follows that if oscillation in
approximate PCM is stochastic, then the motion of original nonlinear systems of Van der
Pol-Mathieu type is stochastic.

(a) (b)

Figure 7. Lyapunov exponent: (a) A, B: gradients of approximate PCM,
(b) D0, D1: cut off parameters of approximate PCM
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Figure 8. Lyapunov exponents (L(β) Lyapunov exponent to approximate
PCM LM(β): maximum Lyapunov exponent to original nonlinear system)

Figure 9. Bifurcation diagram Figure 10. Damping param-
eter β vs cut off parameter C̃

Figure 10 shows that the cut off parameter C̃ vs the damping parameter β. From Figure
10, it follows that the dependence of the cut off parameter in the approximate PCM to
the damping parameter is of the form of devil’s stair.

6. Concluding Remarks. Concluding remarks of this paper are summarized as follows:
(i) The sine circle map and the approximate PCM of nonlinear systems of Van der

Pol-Mathieu type are obtained.
(ii) It is shown that the series of the rotation number of oscillation in sine circle maps

form a subset of Farey series in the small region of the damping parameter β.
(iii) The dependence of multiplicity M on the damping parameter β is obtained. For

the small value of the damping parameter β, the value of the multiplicity M increases
hyperbolically for increasing the damping parameter β. The relation between the mul-
tiplicity M and the damping parameter β in the oscillation is represented by Equation
(19).

(iv) It is shown that if the Lyapunov exponent L > 0 in the approximate PCM, then
the motion of the original nonlinear systems of Van der Pol-Mathieu type is stochastic.

(v) The results obtained in this paper are effective to design the nonlinear systems of
Van der Pol-Mathieu type so as to generate stochastic motion and periodic oscillation.

Acknowledgment. The authors would like to express our sincere thanks to reviewers of
this paper for improving the paper.
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